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Élisabeth Remy and Paul Ruet

CNRS - Institut de Mathématiques de Luminy,
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Abstract. We study rules proposed by the biologist R. Thomas relating
the structure of a concurrent system of interacting genes (represented by
a signed directed graph called a regulatory graph) with its dynamical
properties. We prove that the results in [10] are stable under projection,
and this enables us to relax the assumptions under which they are valid.
More precisely, we relate here the presence of a positive (resp. negative)
circuit in a regulatory graph to a more general form of biological differ-
entiation (resp. of homeostasis).

1 Introduction

The activity of a biological cell is to a large extent controlled by genetic reg-
ulation, which is an interacting process involving proteins and DNA (genes).
We are interested here in genetic regulatory networks which abstract from the
detailed genome-protein interaction by focussing on the genome and by consid-
ering interactions between genes. Such a simplification is somehow justified by
the importance of DNA as a program which is present in all the cells of an or-
ganism (whereas the concentrations in proteins and in RNA transcripted from
DNA vary according to the cell and the time). Genetic regulatory networks have
the structure of a signed directed graph, where vertices represent genes and di-
rected edges come equipped with a sign (+1 or −1) and represent activatory or
inhibitory effect.

This paper deals with properties relating the structure of such a concurrent
system of interacting genes with its dynamics. We shall consider here discretised
Boolean dynamics,1 where the activity of a gene in a specific cell is measured
by the concentration of the RNA transcripted from DNA, a quantity called the
expression level of the gene and assumed to be either 1 (gene expressed) or 0
(gene not expressed). Hence the state of a system of n genes is modelled by an

⋆ Corrected version of the paper published in the Transactions on Computational
Systems Biology VII, Springer LNCS 4230: 153-162, 2006.

1 Discrete approaches are increasingly used in biology because of the qualitative nature
of most experimental data, together with a wide occurrence of non-linear regulatory
relationships (e.g., combinatorial arrangements of molecular bindings, existence of
cooperative or antagonist regulatory effects).



n-tuple x ∈ {0, 1}n. The concurrent nature of these biological objects is clearly
demonstrated for instance by a mapping to standard Petri nets [2, 9], of which
genetic regulatory graphs can be considered as a subsystem.

The starting point of this work consists in two simple rules stated by the
biologist R. Thomas and relating the structure of regulatory graphs to their
asymptotic dynamical properties [17]:

1. a necessary condition for multistability (i.e., the existence of several stable
fixed points in the dynamics) is the existence of a positive circuit in the
regulatory graph (the sign of a circuit being the product of the signs of its
edges): this corresponds to cell differentiation processes;

2. a necessary condition for the existence of an attractive cycle in the dynam-
ics is the existence of a negative circuit: this corresponds to homeostasis
(sustained oscillatory behaviours, e.g., cell cycle or circadian rhythms).

These rules have given rise to mathematical statements and proofs mostly in a
differential dynamical formalism [8, 14, 4, 15], and more recently in the discrete
Boolean formalism [1, 10]. By proving in this paper that these properties are sta-
ble under projection (in a sense that we make precise in Lemma 1), we generalise
the results in [10] by showing that the existence of positive and negative circuits
actually follows from weaker assumptions (Theorems 3 and 4). In the case of
positive circuits for instance, the condition corresponds to a more general form
of differentiation than in [10].

We do not make explicit in this introduction how regulatory graphs and
dynamics are defined in terms of each other. This is done in Section 2. Let us
simply observe here that instead of starting from processes which are graphs
and studying their dynamics (which is typically graph rewriting, see [3] in the
case of protein-protein interaction), we start here with a given dynamics and
derive a regulatory graph at each point of the phase space (via a discrete form
of Jacobian matrix). In particular, our approach can be used to infer circuits in
regulatory networks. It is also possible to consider a fixed global “topology” of
interacting genes, e.g., by taking the union of the graphs over points in the phase
space, and to view our local graphs as annotations of the global one (where an
interaction is “active” in a certain region of the phase space). Observe however
that these more global graphs need not immediately correspond to the usual
interaction graphs considered by biologists: for instance, as noticed in [16], the
positive circuits occurring in [5, 7] are not regulatory feedback circuits, and the
regulatory graphs defined in [6] are the same as ours only up to self-regulations.

We believe that the kind of properties at hand in this paper should serve as a
basis to study more refined models, which could in particular take into account
stochastic phenomena and metabolic pathways.

Acknowledgements. We thank Christophe Soulé and Denis Thieffry for
helpful discussions.



2 Thomas’ rules and stability under projection

2.1 Preliminaries

We start by recalling here the definitions which enable to associate regulatory
graphs to a dynamics. The paper is self-contained, though more details can be
found in [10].

Let n be a positive integer. The integers 1, . . . , n denote genes. A state of the
system is an x = (x1, . . . , xn) ∈ {0, 1}n, where xi is the (discretised) expression
level of gene i: xi = 1 when gene i is expressed, 0 otherwise. For β ∈ {0, 1}, we
define β by 0 = 1 and 1 = 0. For x ∈ {0, 1}n and I ⊆ {1, . . . , n}, xI ∈ {0, 1}n

is defined by (xI)i = xi for i 6∈ I and (xI)i = xi for i ∈ I. When I = {i} is a
singleton, x{i} is denoted by xi.

Dynamics We are interested in the dynamics of the system consisting in the n
interacting genes. Consider a map f : {0, 1}n → {0, 1}n, f(x) = (f1(x), . . . , fn(x)).
For each x ∈ {0, 1}n and i = 1, . . . , n, fi(x) denotes the value to which xi, the
expression level of gene i, tends when the system is in state x. We assume that
the system evolves according to the (non-deterministic) asynchronous dynamics
{(x, xi) s.t. x ∈ {0, 1}n, xi 6= fi(x)}, i.e., the expression level of only one gene is
updated at each step. Other dynamics can be considered, like the (deterministic)
synchronous dynamics {(x, f(x)) s.t. x ∈ {0, 1}n} where all the expression levels
xi are simultaneously updated to fi(x) in one step. But as argued in [10], the
asynchronous one is more realistic, and Theorem 2 for instance does not hold for
the synchronous one. Observe that kinetic parameters are not taken into account
in the discrete approach considered in this paper; however the model could be
enriched by temporal delays: this would enable to recover kinetic informations.

A cycle (for f) is a sequence of states (x1, . . . , xr) such that for each i =
1, . . . , r, the pair (xi, xi+1) belongs to the (asynchronous) dynamics. Indices are
taken here modulo r, i.e., r + 1 = 1. A cycle (x1, . . . , xr) is completely described
by one of its points, say x1, and its strategy, which is the map ϕ : {1, . . . , r} →
{1, . . . , n} such that

xi+1 = xi
ϕ(i)

.

A cycle (x1, . . . , xr) with strategy ϕ is said to be a trap cycle when, once in the
cycle, one cannot escape any more, i.e., for all i = 1, . . . , r:

f(xi) = xi
ϕ(i)

.

Regulatory graphs A regulatory graph is a signed directed graph with vertex
set {1, . . . , n}, i.e., a directed graph with a sign, +1 or −1, attached to each
edge. To f : {0, 1}n → {0, 1}n and x ∈ {0, 1}n, we associate a regulatory graph
G(f)(x) with an edge from j to i when

fi(x
j) 6= fi(x),



with positive sign when
xj = fi(x),

and negative sign otherwise. The intuition for the first condition is straightfor-
ward, and actually the graph underlying G(f)(x) (obtained by forgetting the
signs) has adjacency matrix the discrete Jacobian matrix of f at x defined in
[11, 12] and recently used in [13] for proving a discrete version of Jacobian con-
jecture. The intuition for the second condition is that the edge is positive when
the values xj and fi(x) either both increase or both decrease.

If I ⊆ {1, . . . , n}, an I-circuit is a circuit (n1, . . . , nk) such that n1, . . . , nk ∈
I. If J ⊆ I, a J-circuit is clearly an I-circuit. The sign of a circuit is the product
of the signs of its edges.

If G is a regulatory graph and I ⊆ {1, . . . , n}, the restriction of G to I is
the regulatory graph obtained from G by removing any vertex not in I and any
edge whose source or target is not in I.

Thomas’ rules The following results have been proved in [10].

Theorem 1. Let f : {0, 1}n → {0, 1}n. If f has at least two fixed points, then
there is an x ∈ {0, 1}n such that G(f)(x) has a positive circuit. More precisely,
if f has two fixed points a and b, and if I is such that b = aI , then there is an
x ∈ {0, 1}n such that G(f)(x) has a positive I-circuit.

Theorem 2. If f : {0, 1}n → {0, 1}n has a trap cycle (x1, . . . , xr) with strategy
ϕ, then G(f)(x1)∪· · ·∪G(f)(xr) has a negative I-circuit with I = {ϕ(1), . . . , ϕ(r)}.

Examples of biological situations illustrating these two kinds of dynamical prop-
erties have been studied for instance in [2]: drosophila cell cycle for an example
of homeostasis and negative circuit, flowering of arabidopsis for an example of
differentiation and positive circuit.

2.2 Stability under projection

We show that the regulatory graphs defined in Section 2.1 are stable under
projection in the following sense.

Given I ⊆ {1, . . . , n}, let m be the cardinality of I, m 6 n, and let πI :
{0, 1}n → {0, 1}m be the projection on {0, 1}m. Given such a subset I of genes,
there are several ways to define a dynamics on I: if f : {0, 1}n → {0, 1}n and
s : {0, 1}m → {0, 1}n is a section of πI (i.e., πI ◦ s is the identity), let

fI,s = πI ◦ f ◦ s : {0, 1}m → {0, 1}m.

We shall be especially interested in very specific sections, those for which genes
out of I are given a fixed expression level: a section s is said regular when
πk ◦ s : {0, 1}m → {0, 1} is constant for each k /∈ I.

Let us say furthermore that I is compatible with f when for all x, y ∈ {0, 1}n,
πI(x) = πI(y) implies πI(f(x)) = πI(f(y)). In that case, all the maps fI,s, for



s a section of πI , are equal, and we may let fI : {0, 1}m → {0, 1}m be their
common value: fI is then also given by

fI(z) = πI(f(x))

for x ∈ {0, 1}n any point over z, i.e., such that πI(x) = z.

Lemma 1. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and z ∈ {0, 1}m. If s is a
regular section of πI , then G(fI,s)(z) coincides with the restriction of G(f)(s(z))
to I. In particular, when I is compatible with f , G(fI)(z) is the restriction of
G(f)(x) to I for x ∈ {0, 1}n any point over z.

Proof — Let i, j ∈ I. The regulatory graph G(fI,s)(z) contains an edge from j
to i if, and only if,

(fI,s)i(z
j) 6= (fI,s)i(z).

But (fI,s)i(z) = fi(s(z)) because

πi ◦ πI = πi

for i ∈ I. On the other hand, (fI,s)i(z
j) = fi

(

s(z)
j
)

because, for j ∈ I, we have

s(zj) = s(z)
j

since s is regular. Hence G(fI,s)(z) has an edge from j to i if, and only if,
G(f)(s(z)) has. The edge in G(fI,s)(z) is positive if, and only if,

zj = (fI,s)i(z),

and the edge in G(f)(s(z)) is positive if, and only if,

s(z)j = fi(s(z)).

These conditions are equivalent for i, j ∈ I. �

This Lemma asserts a sort of commutation property: the regulatory graph as-
sociated to the projected dynamics is the restriction of the initial regulatory
graph. Observe however that the projection does not commute with the dynam-
ics. Indeed, let us define the asynchronous dynamics of fs,I : a pair (z, z′) ∈
{0, 1}m × {0, 1}m with z 6= z′ is in the dynamics when there exists x′ ∈ {0, 1}n

such that z′ = πI(x
′) and (s(z), x′) belongs to the asynchronous dynamics of f .

The point is that a pair (x, x′) in the dynamics of f may satisfy πI(x) = πI(x
′)

(when x′ = xi with i 6∈ I) and hence not be mapped to a pair in the dynamics
of fs,I .

x = s(z) x′

z z′

s πI



Observe that Lemma 1 does not hold when s is not regular. Let indeed f :
{0, 1}2 → {0, 1}2 be given by:

f(0, 0) = (1, 0)

f(1, 0) = (1, 1)

f(1, 1) = (0, 1)

f(0, 1) = (0, 0),

I = {1} and s(0) = (0, 0), s(1) = (1, 1): then G(fI,s)(0) has a negative self-loop
on 1 whereas G(f)(s(0)) consists in a positive edge from 1 to 2 and a negative
edge from 2 to 1.

When I is compatible with f , the equivalence relation ∼ induced by the pro-
jection πI between states (x ∼ y if, and only if, πI(x) = πI(y)) is a bisimulation
for the asynchronous dynamics: indeed, it can be checked that if x ∼ y and
(x, x′) is in the dynamics of f , then there exists y′ such that x′ ∼ y′ and (y, y′)
is in the dynamics of f .

Now, Lemma 1 enables us to relax the conditions of validity of Theorems 1
and 2, as we shall see in the following sections.

3 Disjoint stable subspaces and positive circuits

The process of biological differentiation does not necessarily correspond to multi-
stationarity. Consider for instance the process which controls the lysis-lysogeny
decision in the bacteriophage lambda. The dynamics has a single fixed point
(lysogeny) and a trap cycle (lysis): these two stable subspaces can be viewed
as a differentiation phenomenon, and we would like this to imply the existence
of a positive circuit (which exists indeed in the regulatory graph associated to
our example, between genes C1 and Cro). In this Section we show that holds in
general for Boolean dynamics.

(0, 1) (1, 1)

(0, 0) (1, 0)

1 2

− +

Fig. 1. On the left, a dynamics for n = 2 with no fixed point is pictured on a framed
square, and a bold arrow from state x to state xi means that xi 6= fi(x). The x-axis
carries the expression level of gene 1 and the y-axis the expression level of gene 2. On
the right, a positive loop on gene 2 in the (constant) regulatory graph, in accordance
with Theorem 3.



(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

1

2 3

+

+

−

+

Fig. 2. On the left, a dynamics with a single fixed point (0, 0, 1); dotted lines are only
supposed to ease visualising the 3-cube. On the right, the regulatory graph associated
to the state (1, 1, 1) has a positive loop on 1, in accordance with Theorem 3.

Theorem 3. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and s a regular section
of πI . If fI,s has at least two fixed points, then there is an x ∈ {0, 1}n such
that G(f)(x) has a positive circuit. More precisely, if fI,s has two fixed points a
and b, and if J ⊆ I is such that b = aJ , then there is an x ∈ {0, 1}n such that
G(f)(x) has a positive J-circuit.

Proof — By Theorem 1, there is a z ∈ {0, 1}m such that G(fI,s)(z) has a
positive J-circuit, and Lemma 1 suffices to conclude. �

The following obvious Lemma states that multistationarity of fI corresponds
to the existence of disjoint subspaces which are stable under f , clearly a more
general form of biological differentiation than multistationarity.

Lemma 2. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and z ∈ {0, 1}m. When I
is compatible with f , z is a fixed point for fI if, and only if, the subspace π−1

I (z)
is stable under f .

For instance, the dynamics given in Figures 1 and 2 do not have multistability,
but projecting the dynamics on the y-coordinate (I = {2} ⊆ {1, 2} is compat-
ible with f) in the first case and on the x-coordinate (I = {1} ⊆ {1, 2, 3} is
compatible with f , too) in the second case, gives rise to multistability and this
explains in both cases the existence of a positive circuit in the regulatory graph
associated to some state.

A possible generalisation of Theorem 3 would be that positive circuits are
necessary for the genuine coexistence of disjoint attractors (in our framework:
disjoint sets of states which are stable under the dynamics), a conjecture which
still remains to be demonstrated.

It is worth observing that this stability under projection is independent from
the framework. For instance, it may be applied to the differential framework in
[15]. Indeed, let Ω ⊆ R

n be a product of open intervals in R and f : Ω → R
n.



The projection pI : R
n → R

m, where m is the cardinality of I, is given by

(pI(x))i =

{

xi if i ∈ I,

0 otherwise,

and compatibility of I ⊆ {1, . . . , n} with f is defined in the same way as in the
Boolean case: for all x, y ∈ Ω, pI(x) = pI(y) implies pI(f(x)) = pI(f(y)). In that
case, we may let fI : R

m → R
m be defined by fI(z) = pI(f(x)) for x ∈ Ω any

point over z. When f is continuously differentiable, C. Soulé associates to any
x ∈ Ω a regulatory graph G(f)(x) as follows: there is a positive (resp. negative)
edge from j to i when the (i, j) entry J(f)(x)i,j of the Jacobian matrix is positive
(resp. negative).

Now, when I is compatible with f , we have
(

∂(fI)i/∂xj

)

(z) =
(

∂fi/∂xj

)

(x)
for x any point over z, hence the Jacobian matrix J(fI)(z) is a submatrix of
J(f)(x) and we get the following analogous of Lemma 1: if x ∈ Ω is any point
over z, then G(fI)(z) is the restriction of G(f)(x) to I. This implies the following
slight generalisation of Theorem 1 in [15]: if I ⊆ {1, . . . , n} is compatible with
f and fI has at least two nondegenerate zeros (points a such that fI(a) = 0
and detJ(fI)(a) 6= 0), then there exists x ∈ Ω such that G(f)(x) has a positive
circuit.

4 Dynamic cycles and negative circuits

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

3

1 2

−

−

+

Fig. 3. On the left, a dynamics with no trap cycle. On the right, the regulatory graph
associated to state (0, 0, 0) has a negative circuit, in accordance with Theorem 4.

Theorem 4. Let f : {0, 1}n → {0, 1}n, I ⊆ {1, . . . , n} and s a regular section
of πI . If fI,s has a trap cycle (z1, . . . , zr) with strategy ϕ, then

G(f)(s(z1)) ∪ · · · ∪ G(f)(s(zr))

has a negative J-circuit with J = {ϕ(1), . . . , ϕ(r)}.



Proof — By Theorem 2, G(fI,s)(z
1) ∪ · · · ∪ G(fI,s)(z

r) has a negative circuit
with vertices ϕ(1), . . . , ϕ(r). Since ϕ(1), . . . , ϕ(r) ∈ I, by Lemma 1, this negative
circuit is also in G(f)(s(z1)) ∪ · · · ∪ G(f)(s(zr)). �

Figure 3 gives an example of dynamics with many dynamical cycles, none of
which is a trap, hence Theorem 2 cannot be applied to infer some negative
circuit. We observe that I = {1, 2} ⊆ {1, 2, 3} is compatible with f : the two
horizontal cycles are in parallel planes. Then by projecting on I, we get a trap
cycle, and this explains the negative circuit involving genes 1 and 2. In the present
case, the negative circuit occurs in the regulatory graph G(0, 0, 0) associated to
a single state.

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

1

2 3

+

+

−

+

+ −

Fig. 4. On the left, a dynamics with both differentiation and homeostasis in different
projections. On the right, the regulatory graph associated to state (0, 0, 0).

A non trivial example of a dynamics with differentiation and homeostasis is
given in Figure 4. On the one hand, projecting on {1} is compatible with the
dynamics and gives rise to multistationarity, whence a positive self-loop on 1.
On the other hand, projecting on {3} and taking the following regular section:

s(0) = (0, 0, 0)

s(1) = (0, 0, 1)

leads to a trap cycle between 0 and 1, whence a negative self-loop on 3.
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4. J.-L. Gouzé. Positive and negative circuits in dynamical systems. Journal of

Biological Systems, 6:11–15, 1998.
5. R. Karmakar and I. Bose. Graded and binary responses in stochastic gene expres-

sion. Technical report, arXiv:q-bio. OT/0411012, 2004.
6. F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang. The yeast cell-cycle network is

robustly designed. Proceedings of the National Academy of Sciences of the United

States of America, 2004.
7. N. I. Markevich, J. B. Hoek, and B. N. Kholodenko. Signaling switches and bista-

bility arising from multisite phosphorylation in protein kinase cascades. Journal

of Cell Biology, 2004.
8. E. Plahte, T. Mestl, and S. W. Omholt. Feedback loops, stability and multista-

tionarity in dynamical systems. Journal Biological Systems, 3:409–413, 1995.
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