
HAL Id: hal-00692086
https://hal.science/hal-00692086v1

Submitted on 28 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphic requirements for multistability and attractive
cycles in a Boolean dynamical framework

Elisabeth Remy, Paul Ruet, Denis Thieffry

To cite this version:
Elisabeth Remy, Paul Ruet, Denis Thieffry. Graphic requirements for multistability and attractive
cycles in a Boolean dynamical framework. Advances in Applied Mathematics, 2008, 41 (3), pp.335-350.
�10.1016/j.aam.2007.11.003�. �hal-00692086�

https://hal.science/hal-00692086v1
https://hal.archives-ouvertes.fr


Graphic requirements for multistability and

attractive cycles in a Boolean dynamical

framework

Élisabeth Remy∗, Paul Ruet∗, Denis Thieffry† 1

∗CNRS - Institut de Mathématiques de Luminy, UMR 6206
Campus de Luminy, Case 907, 13288 Marseille Cedex 9 (France).

Email: {remy,ruet}@iml.univ-mrs.fr
†Technologies Avancées pour le Génome et la Clinique, UMR 628, INSERM,

Université de la Méditerranée, Campus de Luminy, Case 928, 13288 Marseille
Cedex 9 (France). Email: thieffry@tagc.univ-mrs.fr

Abstract

To each Boolean function f : {0, 1}n → {0, 1}n and each x ∈ {0, 1}n, we associate a
signed directed graph G(x), and we show that the existence of a positive circuit in
G(x) for some x is a necessary condition for the existence of several fixed points in
the dynamics (the sign of a circuit being defined as the product of the signs of its
edges), and that the existence of a negative circuit is a necessary condition for the
existence of an attractive cycle. These two results are inspired by rules for discrete
models of genetic regulatory networks proposed by the biologist R. Thomas. The
proof of the first result is modelled after a recent proof of the discrete Jacobian
conjecture.
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1 Introduction

This article deals with properties of Boolean dynamical systems arising in
biology.

Biologists often represent the results of their genetic and molecular investiga-
tions in terms of graphs. General information on molecular biology may be
found in [2] or in the mathematical article [5]. In particular, genetic regula-
tory networks are usually represented by graphs, where vertices denote genes
or regulatory products (e.g., RNA, proteins) whereas edges denote regulatory
interactions between these genes or their products [16,6,25]. Regulatory inter-
actions are further directed and signed (+1 or −1) to denote activatory versus
inhibitory effects.

In order to relate regulatory networks to relevant dynamical properties, biol-
ogists often use them as a basis to generate dynamical models, using either
a differential framework or a discrete framework [34,6]. For instance, in a dif-
ferential model, the activity of a gene in a specific cell is measured by the
concentration of the transcribed RNA in the cell, a quantity called the expres-
sion level of the gene, and the expression levels of n genes are modelled by
an n-tuple x ∈ R

n obeying a differential equation ẋ = f(x). As available data
suggest that many interactions have to be modelled in terms of non-linear func-
tions, typically with strong threshold effects, f is usually non-linear. It should
be observed that the correspondence from regulatory networks to dynamics is
not a function, and from the mathematical viewpoint, it is more satisfactory
to turn the correspondence around and associate graphs to a given dynam-
ics. Anyway, the biological pertinence of the model considered is evaluated
by comparing numerical simulations with experimental observations, for in-
stance biochemical characterizations of cellular states, phenotypes of genetic
mutants, etc.

The biologist R. Thomas has proposed two rules relating the structure of
regulatory networks to their dynamical properties [33]:

(1) a necessary condition for multistability (i.e., the existence of several stable
fixed points in the dynamics) is the existence of a positive circuit in the
regulatory network (the sign of a circuit being defined as the product of
the signs of its edges);

(2) a necessary condition for the existence of an attractive cycle in the dy-
namics is the existence of a negative circuit.

These two types of dynamical properties correspond to important biological
phenomena: cell differentiation processes in the first case, homeostasis or pe-
riodic behaviours (e.g., cell cycle or circadian rhythms) in the second case.
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During the last decade, several authors have proposed demonstrations of these
rules in the differential framework [18,29,11,30]. However, these demonstra-
tions do not encompass the discrete framework, which initially nourished the
intuition of R. Thomas. Discrete approaches such as Boolean networks are in-
creasingly used in biology [13,32,34,14,35,27,1] because of the qualitative na-
ture of most experimental data, together with a wide occurrence of non-linear
regulatory relationships (e.g., combinatorial arrangements of molecular bind-
ings, existence of cooperative or antagonist regulatory effects). Recently, [3]
proved Thomas’ rules in the monotonous Boolean case, i.e., when the dynamics
of a system of n genes is given by a monotonous function f : {0, 1}n → {0, 1}n

(see also [4]). Furthermore, an extensive analysis of the properties of discrete
isolated circuits is provided in [19].

In this paper, we propose discrete counterparts of Thomas’ rules in the general
Boolean case and demonstrate them. In the differential framework, C. Soulé
[30] associates to each state a signed directed graph, which is defined from
the Jacobian matrix. From the biological viewpoint, this local character of
regulatory networks is consistent with the fact that interactions are often
context-sensitive, i.e., the effect of one regulatory product on a given gene
depends on the presence of other regulatory products. We follow this approach
in Section 2 by associating to a map f : {0, 1}n → {0, 1}n and a state x ∈
{0, 1}n a signed directed graph G(x), which is related to the discrete Jacobian
matrix J(x) defined in [22,23].

In Section 3, we state and prove Thomas’ rule for the existence of positive
circuits in the Boolean model (Theorem 3.2). Our proof of this rule is modelled
after a recent proof by M.-H. Shih and J.-L. Dong of the discrete version of
the Jacobian conjecture [26].

In Section 4, we state and prove a version of Thomas’ rule relating the pres-
ence of attractive cycles in the dynamics to the existence of a negative circuit
(Theorem 4.4), and we explore possible variants of these results. In particu-
lar, we show that the existence of some circuit, negative or not, follows from
the presence of (non necessarily attractive) cycles (Theorem 4.5). It is worth
observing that Theorems 3.2 and 4.4 give information on the vertices (i.e., the
genes) involved in the observed dynamic behaviour.

As we believe that these results are of intrinsic interest, Sections 2, 3 and 4
are essentially written from the point of view of dynamical systems, almost
without any reference to biology. The relationship with genetic regulatory
networks is explained in Section 2.3.

In Section 5, Thomas’ rules are illustrated with a simple example and fur-
ther discussed in relation with the problem of regulatory network inference in
molecular genetics and functional genomics.
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2 Signed directed graphs and Boolean dynamics

Let us start with preliminary notations. For β ∈ {0, 1}, we define β by 0 = 1
and 1 = 0. Let n be a positive integer. For x ∈ {0, 1}n and I ⊆ {1, . . . , n},
xI ∈ {0, 1}n is defined by:

(xI)i =







xi for i 6∈ I,

xi for i ∈ I.

When I = {i} is a singleton, x{i} is denoted by xi. The distance d : {0, 1}n ×
{0, 1}n → {0, 1, . . . , n} is the Hamming distance: d(x, y) is the number of
i ∈ {1, . . . , n} such that xi 6= yi.

2.1 Boolean dynamics

We consider {0, 1}n as the set of states of a dynamical system. In differen-
tial dynamical systems, the dynamics is typically governed by a differential
equation ẋ = f(x) where the map f is a vector field on, say, R

n. In contrast,
in discrete models, a dynamics is a binary relation R which we assume to be
irreflexive: R gives the rule for updating a state, i.e., it is the set of pairs of
states (x, y) such that state x can lead to state y. In particular, a stable state

is a state x such that for no y, (x, y) ∈ R.

In the context considered in this paper (genetic networks), it is not realistic to
assume a simultaneous update of all variables. Indeed, the Boolean dynamical
systems we are interested in can be seen as discretizations of piecewise-linear
differential systems [9,33,6,31], and for these systems, the set of trajectories
meeting more than one threshold hyperplane at a time has measure 0. We
shall therefore consider asynchronous dynamics, i.e., relations R such that:

(x, y) ∈ R implies d(x, y) = 1,

i.e., y = xi for some i. Such an asynchronous dynamics R may be non-
deterministic (it needs not be a function), but even then, it is possible and
convenient to represent it by a map

f : {0, 1}n → {0, 1}n
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Fig. 1. (a) Asynchronous dynamics: the states of a system consisting in two variables
1 (horizontal axis) and 2 (vertical axis) are pictured; an arrow from state x to state
xi means that fi(x) 6= xi. (b) The associated map f . (c) The regulatory graph G(x),
which turns out not to depend on x.

with coordinate functions f1, . . . , fn, defined by:

fi(x) 6= xi when (x, xi) ∈ R.

Observe that a stable state is then a fixed point x for f (f(x) = x). Given such
a map f , the corresponding asynchronous dynamics is defined in a straight-
forward way. The relation between an asynchronous dynamics and the corre-
sponding map f is illustrated by a very simple example in Figure 1.

A trajectory in the dynamics is a sequence of states (x1, . . . , xr) such that for
each i = 1, . . . , r − 1, (xi, xi+1) ∈ R. In terms of f , this means that for each i

there exists ϕ(i) ∈ {1, . . . , n} such that

fϕ(i)(x
i) 6= xi

ϕ(i) and xi+1 = xi
ϕ(i)

.

A trajectory T = (x1, . . . , xr) is completely described by its starting point x1

and the map ϕ : {1, . . . , r − 1} → {1, . . . , n}, called its strategy [22,23], thus
by abuse of notation, we shall write T = (x1, ϕ) as well.

A cycle is a trajectory of the form (x1, . . . , xr, x1) with r > 2. A cycle C is com-
pletely described by one of its points, say x1, and its strategy ϕ : {1, . . . , r} →
{1, . . . , n}, so we shall write C = (x1, ϕ) again. Observe that a trajectory
(x1, ϕ) with strategy ϕ is a cycle if, and only if, for any i = 1, . . . , n, the
cardinality of ϕ−1(i) is even (or zero); as a consequence, r is then even. We
shall be especially interested in a specific class of cycles which correspond to
periodic oscillations: a cycle (x1, ϕ) is said to be attractive when no trajectory
may leave it, i.e., for all i = 1, . . . , r, d(xi, f(xi)) = 1. Equivalently, for all
i = 1, . . . , r,

f(xi) = xi
ϕ(i)

.
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Fig. 2. A dynamics with no fixed point but a positive loop in the (constant) regula-
tory graph. The notation is the same as in Figure 1.

Figure 2 shows an example of dynamics with two attractive cycles:

((0, 0), (1, 0), (0, 0)) and ((0, 1), (1, 1), (0, 1)),

Further examples of cycling dynamics are provided in Sections 4 and 5.

2.2 Discrete Jacobian matrices and signed directed graphs

Given f : {0, 1}n → {0, 1}n, we attach to each x ∈ {0, 1}n its discrete Jacobian

matrix J(x) as defined in [22,23]: J(x) is the n × n matrix with (i, j)-entry

J(x)i,j =







1 if fi(x
j) 6= fi(x),

0 otherwise.

A signed directed graph is a directed graph with a sign, +1 or −1, attached to
each edge.

Definition 2.1 Given f : {0, 1}n → {0, 1}n and x ∈ {0, 1}n, define G(x) to

be the signed directed graph with vertex set {1, . . . , n} and with an edge from

j to i when J(x)i,j = 1, with positive sign when

xj = fi(x),

and negative sign otherwise.

A circuit in a graph G is a non-empty sequence (n1, . . . , nk, n1) of vertices
such that G contains an edge from ni to ni+1 for i = 1, . . . , k − 1 and an edge
from nk to n1. If I ⊆ {1, . . . , n}, an I-circuit is a circuit whose vertices belong
to I. Observe that if J ⊆ I, a J-circuit is clearly an I-circuit. The sign of a

circuit C is the product of the signs of its edges.
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For instance, it is easy to check that the function f corresponding to the dy-
namics in Figure 1 is given by f(x) = (x2, x1); the Jacobian matrix associated
to any state x is therefore given by:

J(x) =







x2 + x2 x2 + x2

x1 + x1 x1 + x1





 =







0 1

1 0





 ,

where the sum here is the sum of {0, 1} identified with the field F2. Therefore,
the graph G(x) at any state consists in a circuit between 1 and 2, hence a
{1, 2}-circuit. Since x1 6= f2(x) and x2 6= f1(x), the two edges are negative
and the circuit is positive.

2.3 Modelling genetic regulatory networks

In the context of genetic regulatory networks, we are interested in the evolution
of the system consisting of n genes, which are denoted by the integers 1, . . . , n.
Given a state x = (x1, . . . , xn) ∈ {0, 1}n, xi denotes the (discretized) expres-
sion level of gene i. These expression levels are either 0 (when the gene product
is considered absent or inactive) or 1 (when the gene product is present and ac-
tive). Given a map f : {0, 1}n → {0, 1}n, for each x ∈ {0, 1}n and i = 1, . . . , n,
fi(x) denotes the value to which xi, the expression level of gene i, tends when
the system is in state x.

The signed directed graph G(x) attached to each state x encompasses a subset
of the regulatory interactions found in the complete regulatory network.These
graphs are analogous to the local interaction graphs considered in [30] for
instance. Consequently, in our Boolean framework, a regulatory interaction
and its sign may depend on the context, i.e., on the state of the system, in
particular on the values of co-regulators acting on the same target. By taking
the unions of graphs on states x, it is possible to lose some details and recover
more global notions of regulatory networks as in [19,33]: for any E ⊆ {0, 1}n,
let G(E) =

⋃

x∈E G(x) be the graph with a positive (resp. negative) edge from
j to i when there exists x ∈ E such that G(x) contains a positive (resp.
negative) edge from j to i. Note that this opens the possibility to have both
a positive and a negative edge connecting the same pair of vertices.

Some applications of this discrete model of genetic networks can be found in
[34,15,8,24] and references therein. We now turn to the main results of this
paper, and we shall comment again on their biological significance in Section
5.
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3 Multistability and positive circuits

Suppose 0 6 k 6 n, and I is a k-element subset of {1, . . . , n}. Then each
x ∈ {0, 1}n generates an affine k-dimensional subspace xJIK of {0, 1}n = F

n
2

defined by:

xJIK = {y ∈ {0, 1}n such that yj = xj for all j 6∈ I}.

We call such a subspace xJIK an I-subcube, or a k-subcube, or simply a subcube

[26]. If κ is an I-subcube, a κ-fixed point is an x ∈ κ such that fi(x) = xi for
all i ∈ I.

Lemma 3.1 Let f : {0, 1}n → {0, 1}n and I ⊆ {1, . . . , n}. If for each x ∈
{0, 1}n, G(x) has no positive I-circuit, then for each I-subcube κ, f has at

most one κ-fixed point.

Proof — Proceed by induction on the cardinality k of I. The result holds
trivially for k = 0, since a 0-subcube is a singleton. For k = 1, a 1-subcube
is of the form κ = {x, xi} for some x, i: if both x and xi were κ-fixed points,
then fi(x) = xi 6= xi = fi(x

i), thus G(x) would contain a positive loop on i,
hence a positive {i}-circuit.

Now, if 1 6 k 6 n − 1, let κ = xJIK be a (k + 1)-subcube. Suppose for a
contradiction that for each x ∈ {0, 1}n, G(x) has no positive I-circuit, but
that f has at least two κ-fixed points a and b. There are two cases:

• If d(a, b) = r 6 k, there is an r-element set J strictly included in I such that
b = aJ , therefore a and b both belong to the r-subcube λ = aJJK and are
obviously λ-fixed points. Since for each x ∈ {0, 1}n, G(x) has no positive
I-circuit, G(x) has no positive J-circuit, and we have a contradiction with
the induction hypothesis.

• If d(a, b) = k + 1, then b = aI . For each i ∈ I, b
i
∈ κi = aJI \ {i}K,

a k-subcube. Now, a is a κi-fixed point for each i ∈ I, and b
i
6= a since

k + 1 > 2. For each x ∈ {0, 1}n, G(x) has no positive (I \ {i})-circuit, thus

the induction hypothesis implies that b
i
is not a κi-fixed point for any i ∈ I.

Hence there is a j ∈ I \ {i} such that fj(b
i
) 6= (b

i
)j . Furthermore, (b

i
)j = bj

because i 6= j, and bj = fj(b) because b is a κ-fixed point, so fj(b
i
) 6= fj(b)

and J(b)j,i = 1. Therefore, the principal submatrix of J(b) consisting of
the (i, j)-entries for i, j ∈ I has no zero column. As argued in [22,23], this
implies that G(b) has an I-circuit C = (i1, . . . , iℓ, i1) with i1, . . . , iℓ ∈ I

(column i1 has a non-zero entry on some line i2, and then going on with
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column i2, the sequence has to loop). Therefore, we have:

bi2 = fi2(b) = σ1(bi1)
...

biℓ = fiℓ(b) = σℓ−1(biℓ−1
)

bi1 = fi1(b) = σℓ(biℓ),

where σm : {0, 1} → {0, 1} is either the map σ that exchanges 0 and 1 when
the edge from im in C is negative, or the identity when the edge from im in C

is positive. By hypothesis, the circuit C has to be negative, thus the number
q of negative edges in C is odd, so bi1 = (σℓ ◦ · · · ◦ σ1)(bi1) = σq(bi1) = bi1 ,
a contradiction.

2

As an immediate consequence, we have a general Boolean version of Thomas’
rule relating multistability to positive circuits.

Theorem 3.2 Let f : {0, 1}n → {0, 1}n. If f has at least two fixed points, then

there is an x ∈ {0, 1}n such that G(x) has a positive circuit. More precisely,

if f has two fixed points a and b, and if I is such that b = aI , then there is an

x ∈ {0, 1}n such that G(x) has a positive I-circuit.

Proof — The first assertion follows from the second one. For a proof of the
second assertion, it suffices to observe that a and b are two aJIK-fixed points
and to use Lemma 3.1. 2

The requirement in Theorem 3.2 is clearly not a sufficient condition for mul-
tistability. For instance, the dynamics given in Figure 2 for n = 2 has no fixed
point, whereas the regulatory graph associated to any state has a positive
loop.

Recall that a graph is said to be simple when for any two vertices i and j, there
is at most one edge from i to j. For each x ∈ {0, 1}n, define Γ(x) to be the
simple directed graph with vertex set {1, . . . , n} and an edge from j to i when
J(x)i,j = 1, i.e., the graph whose adjacency matrix if the transpose of J(x).
Observe that Γ(x) is the graph underlying the signed directed graph G(x). In
[26], M.-H. Shih and J.-L. Dong prove a discretised version of the Jacobian
conjecture, which relates the dynamical behaviour of f with the (non-signed)
graphs Γ(x). They show that if f : {0, 1}n → {0, 1}n is such that for each
x ∈ {0, 1}n, Γ(x) has no circuit, then f has a unique fixed point. The proof
of Lemma 3.1 is modelled after the proof of Shih-Dong’s theorem, and the
contraposition of Theorem 3.2 gives a positive version of this result, with a
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stronger hypothesis (no positive circuit) and a stronger conclusion (at most
one fixed point).

4 Cycles and negative circuits

Thomas’ rule relating homeostasis and negative circuits has to be reformulated
in the discrete framework. This can be done in various ways. Should the cycle
be attractive? Is it then possible to infer the existence of a negative circuit in
the graph G(x) attached to a single state x or to a set of states?

We prove in Section 4.2 that the existence of an attractive cycle C implies the
presence of a negative circuit in the union of the graphs G(x) for x a state
of C (Theorem 4.4), and we observe that the attractiveness hypothesis is
necessary. However, the existence of an arbitrary (non-necessarily attractive)
cycle implies the existence of some (positive or negative) circuit (Theorem
4.5). By exhaustive exploration, one can further show that an attractive cycle
implies the presence of a negative circuit in the graph G(x) attached to a
single state x when n 6 3, but we have no proof that this holds for any n.

4.1 First recurrence function

If r ∈ N, r > 1 and k, ℓ ∈ {1, . . . , r} are such that k 6= ℓ, ]k, ℓ[ denotes
either {k + 1, . . . , ℓ− 1} if k < ℓ, or {k + 1, . . . , r, 1, 2, . . . , ℓ− 1} if ℓ < k, and
[k, ℓ[ = {k}∪ ]k, ℓ[. The intuition is that we view 1, . . . , r as r points of a cycle.

Definition 4.1 If X is a set and ϕ : {1, . . . , r} → X, the first recurrence
function for ϕ is the partial function Rϕ : {1, . . . , r} → {1, . . . , r} such that

Rϕ(k) is the unique ℓ 6= k satisfying ϕ(k) = ϕ(ℓ) and for each i ∈ ]k, ℓ[,
ϕ(i) 6= ϕ(k), if such an ℓ exists.

Clearly, Rϕ(k) is defined if, and only if, ϕ(k) has at least two preimages under
ϕ. In particular, if for all x ∈ X, ϕ−1(x) has cardinality at least 2, Rϕ is a
permutation of {1, . . . , r}.

Lemma 4.2 If ϕ : {1, . . . , r} → X is such that for all x ∈ X, ϕ−1(x) has car-

dinality at least 2, then there exists k ∈ {1, . . . , r} such that

{ϕ(k), . . . , ϕ(Rϕ(k) − 1)} = {ϕ(1), . . . , ϕ(r)} = X.

Proof — Otherwise, for each k ∈ {1, . . . , r}, there is i ∈ X such that

[k, Rϕ(k)[ ∩ ϕ−1(i) = ∅. (1)

10
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Rϕ(k0)

Rϕ(k1)
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.

.

Fig. 3. First recurrence function in the proof of Lemma 4.2.

Take k′ ∈ ϕ−1(i) such that:

]k′, k[ ∩ ϕ−1(i) = ∅. (2)

Then k′ 6= k because k 6∈ ϕ−1(i). Moreover, by definition of Rϕ, we have
Rϕ(k′) ∈ ϕ−1(i). Therefore (1) implies Rϕ(k′) 6∈ [k, Rϕ(k)[ and (2) implies
Rϕ(k′) 6∈ [k′, k[. Hence [k, Rϕ(k)[ is a strict subset of [k′, Rϕ(k′)[. By iterat-
ing this process, we may construct an infinite sequence k0, k1, k2, . . . such that
ki 6= ki+1 and [ki, Rϕ(ki)[ is a strict subset of [ki+1, Rϕ(ki+1)[ for each i > 0:
see Figure 3. But then, (ki)i>0 is an infinite sequence of distinct elements of
{1, . . . , r} and we have a contradiction. 2

4.2 Attractive cycles

Lemma 4.3 Assume f : {0, 1}n → {0, 1}n has an attractive cycle

(x1, . . . , xr, x1), with strategy ϕ : {1, . . . , r} → {1, . . . , n}. Then Rϕ is a per-

mutation, and for each k ∈ {1, . . . , r} and each i ∈ [k, Rϕ(k)[, G(xi) has an

edge from ϕ(i) to ϕ(i + 1) with sign εi such that
∏

i∈[k,Rϕ(k)[ εi = −1.

Proof — Under the conditions of the lemma, it is clear that the preimage of
each element in the image of ϕ has an even non-zero cardinality. Therefore,
Rϕ is a permutation. Let then k ∈ {1, . . . , r} and ℓ = Rϕ(k), and let i ∈
[k, ℓ[. We take indices modulo r, i.e., we identify r + j and j. Since the cycle
(x1, . . . , xr, x1) is attractive, f(xi) = xi+1 and f(xi+1) = xi+2, hence:

fϕ(i+1)(x
i) = xi+1

ϕ(i+1) (3)

and
fϕ(i+1)(x

i+1) = xi+2
ϕ(i+1). (4)

11



By definition of the strategy ϕ, we have:

xi+1 = xi
ϕ(i)

(5)

and
xi+2 = xi+1

ϕ(i+1)
. (6)

By (5) and (4) we have:

fϕ(i+1)

(

xi
ϕ(i)

)

= fϕ(i+1)(x
i+1) = xi+2

ϕ(i+1),

and by (6) and (3) we have:

xi+2
ϕ(i+1) 6= xi+1

ϕ(i+1) = fϕ(i+1)(x
i).

As a consequence:

fϕ(i+1)

(

xi
ϕ(i)

)

6= fϕ(i+1)(x
i)

and G(xi) has an edge from ϕ(i) to ϕ(i+1). Let εi be its sign: εi = −1 if, and
only if, xi

ϕ(i) 6= fϕ(i+1)(x
i) = xi+1

ϕ(i+1). Hence:

xi+1
ϕ(i+1) =

(

xi
ϕ(i)

)εi

,

where, for β ∈ {0, 1}, β+1 = β and β−1 = β. This holds for any i ∈ [k, ℓ[,
therefore:

xℓ
ϕ(ℓ) =

(

xk
ϕ(k)

)

∏

i∈[k,ℓ[
εi

.

Since in addition ℓ = Rϕ(k) we have xℓ
ϕ(ℓ) = xℓ

ϕ(k) 6= xk
ϕ(k), and consequently

∏

i∈[k,ℓ[ εi = −1. 2

Theorem 4.4 If f : {0, 1}n → {0, 1}n has an attractive cycle

C = (x1, . . . , xr, x1) with strategy ϕ, then G(C) = G(x1) ∪ · · · ∪ G(xr) has

a negative circuit with vertices ϕ(1), . . . , ϕ(r).

Proof — Since (x1, . . . , xr, x1) is a cycle, ϕ enjoys the condition of Lemma 4.2,
thus there exists k such that {ϕ(k), . . . , ϕ(Rϕ(k)−1)} = {ϕ(1), . . . , ϕ(r)}. By
Lemma 4.3 and the remark that ϕ(Rϕ(k)) = ϕ(k), C = (ϕ(k), . . . , ϕ(Rϕ(k)−
1), ϕ(Rϕ(k))) is a negative circuit of G(C) =

⋃r
i=1 G(xi), and its vertex set is

{ϕ(1), . . . , ϕ(r)}. 2

One could think of other notions of cycles than the cycles of the asynchronous
dynamics considered here. For instance, we could consider a form of syn-
chronous dynamics in which all variables are updated simultaneously, and
define an f -cycle in the obvious way, i.e., to be a sequence (x1, . . . , xr, x1) of
states such that f(xi) = xi+1 for i < r and f(xr) = x1. For example, the
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(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

1 2

3

+

++

Fig. 4. A dynamics with no attractive cycle, a non-attractive one, and no negative
circuit in the (constant) regulatory graph. The notation is the same as in Figure 1;
dotted lines are used to ease the 3-cube visualisation.

synchronous dynamics for the cross-inhibitory circuit described in Figure 1
has an f -cycle ((0, 0), (1, 1), (0, 0)), while the graph G(x) associated to any
state x has no negative circuit. Therefore, the synchronous dynamics does not
comply with Theorem 4.4. In contrast, the asynchronous dynamics associated
with the same graph has no cycle, which is consistent with Theorem 4.4.

Building on these results, generalizations of Theorems 3.2 and 4.4 can be found
in [20,21].

4.3 Arbitrary cycles

The dynamics given in Figure 4 with n = 3 is characterised by the unique,
non-attractive cycle

((1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 0, 0))

and by two fixed points (0, 0, 0) and (1, 1, 1). This dynamics is essentially taken
from [19]. The regulatory graph associated to any state is a single positive cir-
cuit, thus it has no negative circuit. The attractiveness hypothesis is therefore
necessary to conclude with the presence of a negative circuit. Yet, the follow-
ing theorem asserts that the presence of some circuit, negative or not, follows
from the existence of (non necessarily attractive) cycles.

Theorem 4.5 If f : {0, 1}n → {0, 1}n has a cycle C = (x1, . . . , xr, x1) with

strategy ϕ, then G(C) = G(x1) ∪ · · · ∪ G(xr) has a circuit.

13



Proof — Suppose that C = (x1, . . . , xr, x1) = (x1, ϕ) is a cycle of minimal
length, i.e., such that there is no cycle of length strictly smaller than r. Let
I ⊆ {1, . . . , n} be the image of ϕ. In order to conclude that G(C) has a circuit,
it suffices to prove that for any j ∈ I, there exist i ∈ I and x ∈ {x1, . . . , xr}
such that J(x)i,j = 1.

Fix j ∈ I and suppose for a contradiction that for all i ∈ I and for all
x, fi(x) = fi(x

j). Let k be such that ϕ(k) = j, and let ℓ = Rϕ(k). For
p = k, . . . , ℓ − 1, define yp by yk = xk and for p = k, . . . , ℓ − 2:

yp+1 = ypϕ(p+1)
.

Let us show that (yk, . . . , yℓ−1) is a trajectory. By definition of the first recur-
rence function Rϕ, for p = k, . . . , ℓ − 1, we have

xp = xk
{ϕ(k),...,ϕ(p−1)}

and yp = yk
{ϕ(k+1),...,ϕ(p)}

,

therefore:

yp = xp+1ϕ(k)
= xp+1j

. (7)

Now, (xk+1, . . . , xℓ) is a trajectory, thus for p = k, . . . , ℓ − 2, we have

fϕ(p+1)(x
p+1) 6= x

p+1
ϕ(p+1).

By the hypothesis on j, this implies that:

fϕ(p+1)(y
p) 6= x

p+1
ϕ(p+1),

and y
p
ϕ(p+1) =

(

xp+1j
)

ϕ(p+1)
= x

p+1
ϕ(p+1) since ℓ = Rϕ(k). Therefore:

fϕ(p+1)(y
p) 6= y

p
ϕ(p+1),

and (yp, yp+1) is a trajectory for p = k, . . . , ℓ−2, as illustrated in the following
diagram.

xp+1 xp+2

yp yp+1

ϕ(p + 1)

ϕ(p + 1)

j j

By composing these trajectories of length 1, we obtain the expected trajectory
(yk, . . . , yℓ−1). Now, yk = xk and by (7) we have:

yℓ−1 = xℓ
ϕ(k)

= xℓ
ϕ(ℓ)

= xℓ+1.
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Hence we have constructed a cycle

(x1, . . . , xk = yk, yk+1, . . . , yℓ−1 = xℓ+1, . . . , xr, x1)

of length r − 2 < r, in contradiction with the minimality hypothesis. 2

5 Illustration and discussion

In this section, we illustrate the notions presented in the previous sections
through a simple example for which we give detailed computations, and we
discuss these notions in relation with the problem of regulatory network in-
ference.

Figure 5 describes the Boolean asynchronous dynamics of a simple three-genes
genetic regulatory network. This dynamics has a single fixed point (0, 0, 1) and
an attractive cycle

((1, 0, 0), (1, 0, 1), (1, 1, 1), (1, 1, 0), (1, 0, 0)) = (x1, x2, x3, x4, x1).

The strategy of this cycle is the map ϕ : {1, 2, 3, 4} → {1, 2, 3} which associates
to i the variable ϕ(i) updated at state xi. Since

x2 = x1
3
, x3 = x2

2
, x4 = x3

3
, x1 = x4

2
,

we have ϕ : 1 7→ 3, 2 7→ 2, 3 7→ 3, 4 7→ 2. Let us compute the discrete Jacobian
matrix J(x) of the map f associated to this dynamics. It is not difficult to
check that:

f(x) = (x1, x1x3, x2).

Therefore:

J(x) =















x1 + x1 0 0

x1x3 + x1x3 0 x1x3 + x1x3

0 x2 + x2 0















=















1 0 0

x3 0 x1

0 1 0















. (8)

In particular,

J(1, 0, 0) =















1 0 0

0 0 1

0 1 0















, J(0, 0, 1) =















1 0 0

1 0 0

0 1 0















and J(1, 1, 1) =















1 0 0

1 0 1

0 1 0















.
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(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

Fig. 5. The asynchronous dynamics of a three-element genetic regulatory network.
The notation is the same as in Figure 4.

The local regulatory network G(1, 0, 0) thus contains three edges, one from 2 to
3, one from 3 to 2 and a loop on 1. For x = (1, 0, 0), x1 = f1(x), x2 = 0 6= f3(x)
and x3 = 0 = f2(x), thus the loop on gene 1 is positive (self-activation), gene
2 inhibits gene 3 (negative edge), and gene 3 activates gene 2 (positive edge).
Therefore:

G(1, 0, 0) =

1

2 3

+

−

+

Similarly, the local regulatory network G(0, 0, 1) contains three edges, one from
1 to 2, one from 2 to 3 and a loop on 1. For x = (0, 0, 1), x1 = f1(x) = 0 = f2(x)
and x2 = 0 6= f3(x); consequently, the edge from 2 to 3 is negative, whereas
the two other edges are positive.

G(0, 0, 1) =

1

2 3

+

+

−

According to (8), the regulatory network G(1, 1, 1) is simply the union of the
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graphs just mentioned: G(1, 1, 1) =
⋃

x∈{0,1}3 G(x) = G(1, 0, 0) ∪ G(0, 0, 1).

G(1, 1, 1) =

1

2 3

+

+
−

+

In agreement with Theorem 4.4, the regulatory graph G(1, 0, 0) ∪ G(1, 0, 1)∪
G(1, 1, 1)∪G(1, 1, 0) = G(1, 1, 1) contains a negative circuit, and the strategy
ϕ of the attractive cycle corresponding to the oscillatory behaviour of 2 and
3 enables us to infer that the vertices of this circuit are 2 and 3.

The regulatory network G(x) associated to each state x has, by (8) and the
equality x1 = f1(x), a positive self-regulation of 1. The dynamics illustrated
in Figure 5 does not exhibit multiple fixed points, but rather two alternative
attractors: the attractive cycle and the fixed point (0, 0, 1). Thus, in this ex-
ample, we do not have an exact application of Theorem 3.2 on the requirement
of a positive circuit in presence of multistability, but rather an illustration of
a generalization of this theorem to the coexistence of alternative attractors,
which is achieved in [20].

From a biological point of view, it is interesting to note that similar negative
circuits are found at the core of cell cycle and circardian rhythm controlling
networks: see, e.g., [10,12] and references therein. Furthermore, in our example,
the dynamical role of the negative circuit depends on the presence of some
regulatory product (the product of gene 1), thereby defining what we may call
a functionality context (the set of states x for which G(x) contains the circuit),
which corresponds to the biological notion of check point. In the example, the
functionality context of the negative circuit is given by x1 = 1.

For dimensions higher than 3, the computation of the regulatory network re-
quires the computation of G(x) for larger numbers of states x in order to cover
the space {0, 1}n. However, for higher dimensions, it should still be possible
to analyse the discrete Jacobian matrix around specific sets of states and in-
duce the corresponding local regulatory networks, leading to the progressive
delineation of the feedback circuits present in the original regulatory network.
This corresponds to the problem of the inference of genetic regulatory networks
from temporal gene expression data obtained at the level of transcription (e.g.,
using DNA chips) or proteins (approaches combining protein chromatographic
separation and mass spectrometry). An interesting strategy for the inference
of genetic regulatory networks from kinetic data is proposed by [17]. In this
context, the main challenge consists in dealing with limited and imperfect dy-
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namical data sets, i.e., sparse, poorly reproducible, or imprecise time series, for
relatively small subsets of possible initial conditions. In this respect, it should
be observed that our tentative approach focuses on structural properties of
the inferred network (occurrence of signed circuits, list of genes involved in
these circuits), which could still largely hold even though some intermediary
elements acting in the original networks could be missed.

Finally, we have to concede that, at this point, we have not considered ex-
plicitly any kind of time constraints on concurrent transitions under the asyn-
chronous updating assumption. Such time constraints can lead to the elimina-
tion of some edges from the full asynchronous state transition graph. For in-
stance, [7,28] consider different temporization approaches applied to biological
systems. Consequently, the number and the type of attractors corresponding
to a given regulatory network can be affected. However, once a given dynam-
ical property is observed, our procedure for the inference of the underlying
graph remains relevant.
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