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On the Fréchet derivative in elastic obstacle scattering

Frédérique Le Louër ∗

Abstract

In this paper, we investigate the existence and characterizations of the Fréchet
derivative of solutions to time-harmonic elastic scattering problems with respect to the
boundary of the obstacle. Our analysis is based on a technique - the factorization
of the difference of the far-field pattern for two different scatterers - introduced by
Kress and Päivärinta to establish Fréchet differentiability in acoustic scattering. For
the Dirichlet boundary condition an alternative proof of a differentiability result due
to Charalambopoulos is provided and new results are proven for the Neumann and
impedance exterior boundary value problems.

Keywords : Elastic scattering, Navier equation, Fréchet derivative, far-field pattern,
Dirichlet condition, Neumann condition, impedance condition, inverse scattering

1 Introduction

The inverse obstacle scattering problem for time harmonic waves is to determine the shape
of the boundary and the location of a scatterer from far field measurements of the total
wave. This problem is of practical interest in some important fields of applied physics, as
for example non destructive testing in linear elasticity. Although such an inverse problem
is theoretically difficult to solve since it is ill-posed and nonlinear, one can apply numerical
methods to recover an approximate solution. The use of regularized iterative methods via
first order linearization requires the Fréchet differentiability analysis of the far-field pattern
of the solution to the forward problem with respect to the boundary of the scatterer. An
explicit form of the first derivative is needed in view of its implementation in iterative
algorithms.

In acoustic scattering, Fréchet differentiability with characterizations of the derivative
as the far-field pattern of the radiating solution to a new exterior boundary value problem
were investigated by Hettlich [9] and Kirsch [15] via variational methods and by Hohage
[11] via the implicit function theorem. These characterizations allow the numerical imple-
mentation of the derivatives from the knowledge of the boundary values of the total wave
only (see [8, 11, 15]). By the use of boundary integral equation methods, one can express
the far field pattern of the solution to scattering problems in terms of products of boundary
integral operators with singular Schwarz kernels. The Fréchet differentiability analysis of
the far field was then developped by Potthast [24, 26, 27] for the Dirichlet and Neumann
acoustic problems via the Fréchet differentiability analysis of the boundary integral opera-
tors involved, in the framework of Hölder continuous and differentiable function spaces. In
this way we obtain an additional implementable formula to compute the Fréchet derivative
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of the far field by deriving the boundary integral operators (see [3, 13, 14, 18]). This ap-
proach was extended to electromagnetism by Potthast [25] for the perfect conductor problem
and to elasticity by Charalambopoulos [2] for the Dirichlet scattering problem only. More
recently, the Frechet differentiability of a class of boundary integral operators with pseudo-
homogeneous hypersingular and weakly singular kernels - which includes the usual boundary
integral operators occuring in time-harmonic potential theory - was analyzed by Costabel
and Le Louër [4, 5, 21], in the framework of Sobolev spaces. The smoothness of the integral
operators with respect to the boundary is proven. As a consequence, it yields the possibility
to establish the Fréchet differentiability of the far-field pattern for any scattering problem
by the use of boundary integral representations and the chain and product rules. The char-
acterization of the derivative can be obtain by directly deriving the boundary values of the
solution.

This paper is devoted to the Fréchet differentiability analysis of the far-field pattern of
the solution to elastic obstacle scattering problems in three-dimensional homogeneous and
isotropic media via an alternative technique introduced by Kress and Päivärinta in [17] to
establish Fréchet differentiability for sound-soft and sound-hard obstacles. It is based on
repeated uses of Green’s theorem and a factorization of the difference of the far-field pattern
of the scattered wave for a fixed obstacle and a perturbed obstacle. An interesting feature
of the method is that it requires only the continuous dependence of the boundary values of
the solution on the boundary in order to prove the Fréchet differentiabilty of the far-field
pattern. This approach was extended to the perfect conductor problem by Kress in [16]
and the impedance problem both in acoustic and electromagnetic scattering by Haddar and
Kress in [7].

The paper is organized as follows : In section 2 we recall elementary results on time-
harmonic Navier equations in Sobolev spaces, following the notations of [1]. More details
can be found in [6, 12]. The far-field identity for elastic waves in the case of a Dirichlet
boundary condition was established by Alves and Kress in [1]. In section 3, we use this
identity to give an alternative proof of the differentiability result due to Charalambopoulos
and we improve the boundary condition satisfied by the Fréchet derivative of the solution.
In section 4 we apply this method - following ideas of Haddar and Kress - to establish the
Fréchet differentiability of the boundary to far field-operator simultaneously for the cases of
a Neumann and an impedance boundary condition and again we provide a characterization
of the derivative.

2 The Navier equation

The propagation of time-harmonic elastic waves in the three-dimensional isotropic and ho-
mogeneous elastic medium characterized by the positive Lamé constants µ and λ and the
density ρ is described by the Navier equation

div σ(u) + ρω2
u = 0, (2.1)

where ω > 0 is the frequency. Here

σ(u) = λ(divu)I3 + 2µε(u) and ε(u) =
1

2

(

[∇u] + [∇u]T
)

denote the stress tensor and the strain tensor respectively. Notice that I3 is the 3-by-3
identity matrix and [∇u] is the matrix whose the j-th column is the gradient of the j-th
component of u. We set ∆

∗
u := div σ(u) = µ∆u+ (λ+ µ)∇ divu.
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Let Ω ⊂ R
3 be a bounded domain with a boundary Γ of class C 2 and outward unit normal

vector n and let Ωc denote the exterior domain R
3\Ω. We denote by Hs(Ω), Hs

loc(Ω
c) and

Hs(Γ) the standard (local in the case of the exterior domain) complex valued, Hilbertian
Sobolev space of order s ∈ R defined on Ω, Ωc and Γ respectively (with the convention
H0 = L2.) Spaces of vector functions will be denoted by boldface letters, thus Hs = (Hs)3.
We set :

H
1(Ω,∆∗) :=

{

u ∈ H
1(Ω) : ∆

∗
u ∈ L

2(Ω)
}

,

H
1
loc(Ω

c,∆∗) :=
{

u ∈ H
1
loc(Ω

c) : ∆
∗
u ∈ L

2
loc(Ω

c)
}

.

The space H
1(Ω,∆∗) is an Hilbert space endowed with the natural graph norm.

We use the following traces and tangential derivatives :

∂

∂n
= n · ∇ (normal derivative),

T (n, ∂) = 2µ
∂

∂n
+ λn div+µn× curl (traction derivative),

M(n, ∂) =
∂

∂n
− n div+n× curl (tangential Günter’s derivative).

The tangential gradient ∇Γ and the surface divergence divΓ are defined for a scalar function
u and a vector function v by the following equalities [23]:

∇u = ∇Γu+
∂u

∂n
n, div v = divΓ v +

(

n · ∂v
∂n

)

,

and the Günter tangential derivative can be rewritten as follow:

Mv =
(

∇Γv − (divΓ v)I3
)

n. (2.2)

We note that, due to the trace lemma, u|Γ ∈ H
1

2 (Γ) for u ∈ H
1(Ω,∆∗)∪H

1
loc(Ω

c,∆∗). The

normal derivative ∂
∂n

u|Γ and the traction derivative Tu|Γ are both defined as distributions

in H
− 1

2 (Γ) via the first Green formula (see [6, 20, 23] and lemma 2.1).
For two (3×3) matrices A and B whose columns are denoted by (a1, a2, a3) and (b1, b2, b3),

respectively, we set A : B = a1 · b1 + a2 · b2 + a3 · b3. The following lemma is a consequence
of the Gauss divergence theorem and the identity

div
(

σ(u)v
)

= ∆
∗
u · v + σ(u) : ε(v). (2.3)

Lemma 2.1. For vector functions u and v in H
1(Ω,∆∗), we have the following first Green

formula
∫

Ω

∆
∗
u · v dx =

∫

Γ

Tu · v ds−
∫

Ω

σ(u) : ε(v) dx. (2.4)

The symmetry of the product σ(u) : ε(v) = λ(divu)(div v) + 2µ ε(u) : ε(v) = σ(v) : ε(u)
yields the second Green formula

∫

Ω

(u · ∆∗
v − ∆

∗
u · v) dx =

∫

Γ

(

u · Tv − Tu · v
)

ds. (2.5)

If u and v solve the Navier equation in Ω then each term in (2.5) vanishes.
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Further we will use the following different representations of the traction operator T :

Tu = σ(u)n = 2µMu+ (λ+ 2µ)(divu)n− µn× curlu (2.6)

= µ

(

∂u

∂n
+Mu

)

+ (λ+ µ)(divu)n (2.7)

= (λ+ 2µ)
∂u

∂n
− λMu+ (λ+ µ)n× curlu. (2.8)

Now we assume that the domain Ω has a connected boundary Γ. In the sequel we are
concerned with the following exterior boundary value problems for elastic waves: Given

vector densities f ∈ H
1

2 (Γ) and g ∈ H
− 1

2 (Γ), find a solution u ∈ H
1
loc(Ω

c,∆∗) to the
Navier equation (2.1) in Ωc which satisfies either a Dirichlet boundary condition

u = f on Γ (2.9)

or an impedance boundary condition

Tu+ iα ω
√
ρµu = g on Γ. (2.10)

The impedance coefficient α is assumed to be a real non negative constant (the case α = 0
refers to a Neumann-type boundary condition). In addition the field u has to satisfy the
Kupradze radiation condition

lim
r→∞

r

(

∂up

∂r
− iκpup

)

= 0, lim
r→∞

r

(

∂us

∂r
− iκsus

)

= 0, r = |x|,

uniformly in all directions. Here, the longitudinal wave is given by up = −κ−2
p ∇ divu and

the transversal wave is given by us = u− up associated with the respective wave numbers
κp and κs given by

κ2
p =

ρω2

λ+ 2µ
, κ2

s =
ρω2

µ
.

Solutions of the Navier equation satisfying the Kupradze radiation condition are called
radiating solution.

The fundamental solution of the Navier equation is given by

Φ(x, y) =
1

µ

(

eiκs|x−y|

4π|x− y| I3 +
1

κ2
s

∇x∇T

x

(

eiκs|x−y|

4π|x− y| −
eiκp|x−y|

4π|x− y|

))

.

It is a 3 × 3 matrix and for j = 1, 2, 3 we denote by Φj the j-th column of Φ. We have

Φ(x, y) = Φ(x, y)
T

= Φ(y, x). From the second integral theorem (2.5), for a radiating
solution u ∈ H

1
loc(Ω

c,∆∗) to the Navier equation (2.1), one can derive the Somigliana
integral representation formula for x ∈ Ωc:

u(x) =

∫

Γ

(

[TyΦ(x, y)]
T
u(y)− Φ(x, y)Tyu(y)

)

ds(y), (2.11)

where Ty = T (n(y), ∂y) and TyΦ(x, y) is the tensor obtained by applying the traction
operator Ty to each column of Φ(x, y). For existence and uniqueness of a solution to the
above boundary-value problems via boundary integral equation we refer to Kupradze [20].
The radiation condition implies that the solution has an asymptotic behavior of the form

u(x) =
eiκp|x|

|x| u
∞
p (x̂) +

eiκs|x|

|x| u
∞
s (x̂) +O

(

1

|x|

)

, |x| → ∞,
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uniformly in all directions x̂ =
x

|x| . The fields u
∞
p and u

∞
s are defined on the unit sphere

S2 in R
3 and known as the longitudinal and the transversal far-field pattern, respectively.

We introduce the L
2-spaces

L
2
s(S

2) = {h ∈ L
2(S2); h(x̂) · x̂ = 0},

L
2
p(S

2) = {h ∈ L
2(S2); h(x̂)× x̂ = 0}.

We have u
∞
s ∈ L

2
s(S

2) and u
∞
p ∈ L

2
p(S

2).

3 The exterior Dirichlet boundary value problem

The scattering problem of time-harmonic waves by a bounded obstacle Ω leads to special
cases of the above boundary value problems. In this section we consider the rigid body
problem. The total displacement field u + u

i is given by the superposition of the incident
field u

i, which we assume to be an entire solution of the Navier equation, and the scattered
field u, which solves the Navier equation in Ωc, the Dirichlet boundary condition

u+ u
i = 0 on Γ,

and satisfies the Kupradze radiation condition.
For x ∈ Ωc let W be the 3×3 matrix whose the j-th column Wj is the radiating solution

of (2.1) and (2.9) for the boundary value

f = −Φj(x, ·) on Γ,

and set V (x, ·) = Φ(x, ·) + W (x, ·), that is W and V are the scattered and the total field,
respectively, for the scattering of a point source located at x ∈ Ωc. We note that V satisfies
the reciprocity

V (x, y) = [V (y, x)]
T
, x, y ∈ Ωc, x 6= y,

which can be derived from the second Green formula (2.5), the Somigliana integral repre-
sentation formula (2.11) and the symmetry of the fundamental solution.

Lemma 3.1. The unique radiating solution v ∈ H
1
loc(Ω

c,∆∗) of the Navier equation (2.1)

satisfying the boundary condition (2.9) for any f ∈ H
1

2 (Γ) admits the following integral

representation

v(x) =

∫

Γ

[TyV (x, y)]
T
f(y)ds(y), x ∈ Ωc. (3.1)

Proof. From the second Green formula (2.5) on Ωc for the radiating solutions W and v we
can write

∫

Γ

(

[TyW (x, y)]
T
v(y)− [W (x, y)]

T
Tyv(y)

)

ds(y) = 0,

for all x ∈ Ωc. Using the boundary condition for W and v, the symmetry of Φ and the
Somigliana integral representation formula for v we obtain

v(x) =

∫

Γ

(

[TyΦ(x, y)]
T
v(y) + [W (x, y)]

T
Tyv(y)

)

ds(y)

=

∫

Γ

(

[TyΦ(x, y)]
T
v(y) + [TyW (x, y)]

T
v(y)

)

ds(y)

=

∫

Γ

[TyV (x, y)]
T
v(y)ds(y) =

∫

Γ

[TyV (x, y)]
T
f(y)ds(y).
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For a fixed incident field u
i, we consider the boundary to far field operator

F : Γ 7→ u
∞ = (u∞

s ,u∞
p ) ∈ L

2
s(S

2)×L
2
p(S

2)

which maps the boundary of the rigid scatterer Ω onto the far-field patterns u∞
s and u

∞
p of

the scattered field u. In order to describe the dependence of the operator F on the shape of
the boundary Γ, we choose a fixed reference domain Ω and we consider variations generated
by transformations of the form

x 7→ x+ θ(x)

of point x in the space R
3, where θ is a smooth vector function defined in the neighborhood

of Γ. The functions θ are assumed to be sufficiently small elements of the Banach space
C 2(Γ,R3) in order that (I + θ) is a diffeomorphism from Γ to

Γθ = (I + θ)Γ = {x+ θ(x); x ∈ Γ} ,

so that the surface Γθ is a connected boundary of class C 2 of a domain Ωθ. The mapping
F : θ 7→ F (Γθ) is well defined in the neighborhood of the zero function in C 2(Γ,R3). We
then analyze the Fréchet differentiability of F at θ = 0. We want to prove the existence of
a linear and continuous mapping F ′(0) : C 2(Γ) → L

2
s(S

2) × L
2
p(S

2) such that we have the

following expansion in L
2
s ×L

2
p

F(ξ)−F(0) = F ′(0)ξ + o(||ξ||C 2 ), when ||ξ||C 2 → 0.

To this end, since we can interchange the differentiation with respect to the boundary and
passing to the limit |x| → ∞, we will establish the Fréchet differentiability of the scattered
field away from the boundary Γ. By nθ we denote the exterior unit normal vector to Γθ and,
in what follows, we will distinguish the quantities related to the exterior Dirichlet scattering
problem for the domain Ωθ through the subscript θ. We use the following identity established
by Alves and Kress in [1] pp. 13.

Lemma 3.2. Assume that Ω ⊂ Ωθ. Then

uθ(x)− u(x) = −
∫

Γθ

[V (x, y)]TTy

(

uθ(y) + u
i(y)

)

ds(y), (3.2)

for all x ∈ Ωc
θ.

Proof. From the second Green formula (2.5) for Φ(x, ·) and u
i we can write

∫

Γ

(

[TyΦ(x, y)]
T
u
i(y)− Φ(x, y)Tyu

i(y)
)

ds(y) = 0,

for all x ∈ Ωc. Using the boundary condition of u we then obtain

u(x) = −
∫

Γ

Φ(x, y)Ty

(

u(y) + u
i(y)

)

ds(y), x ∈ Ωc. (3.3)

From the second Green formula (2.5) for the radiating solutions W and uθ in Ωc
θ we can

write
∫

Γθ

(

[TyW (x, y)]
T
uθ(y)− [W (x, y)]

T
Tyuθ(y)

)

ds(y) = 0, x ∈ Ωc
θ.
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From the second Green formula (2.5) on Ωθ\Ω for W and u
i, the last equation and the

boundary condition of uθ we have
∫

Γθ

[W (x, y)]TTy

(

uθ(y) + u
i(y)

)

ds(y)

=

∫

Γθ

(

[W (x, y)]
T
Ty

(

uθ(y) + u
i(y)

)

− [TyW (x, y)]
T
(

uθ(y) + u
i(y)

)

)

ds(y)

=

∫

Γθ

(

[W (x, y)]
T
Tyu

i(y)− [TyW (x, y)]
T
u
i(y)

)

ds(y)

=

∫

Γ

(

[W (x, y)]
T
Tyu

i(y)− [TyW (x, y)]
T
u
i(y)

)

ds(y),

(3.4)

for x ∈ Ωc
θ. Using the boundary condition of W and u on Γ, the integral representation

(3.3) of u and the second Green formula for radiating solutions we obtain

u(x) =

∫

Γ

W (x, y)Ty

(

u(y) + u
i(y)

)

ds(y)

=

∫

Γ

(

[W (x, y)]
T
Tyu

i(y) + [TyW (x, y)]
T
u(y)

)

ds(y)

=

∫

Γ

(

[W (x, y)]
T
Tyu

i(y)− [TyW (x, y)]
T
u
i(y)

)

ds(y)

=

∫

Γθ

[W (x, y)]
T
Ty

(

uθ(y) + u
i(y)

)

ds(y),

for x ∈ Ωc. From (3.3) we can write for uθ

uθ(x) = −
∫

Γθ

Φ(x, y)Ty

(

uθ(y) + u
i(y)

)

ds(y), x ∈ Ωc
θ. (3.5)

We obtain the identity (3.2) by combining the last two equations.

Remark 3.3. As Kress and Päivärinta pointed out in [17] in the acoustic case, the lemma
3.2 remains valid when the domain Ω is not strictly contained in Ωθ and W can be extended
as a solution to the Navier equation in the exterior of Ωθ. By theorem 5.7.1’ in [22] pp. 169,
this can be assured if Γ is analytic and Ωθ does not differ too much from Ω. In this case the
last equality in (3.4) follows by choosing an open domain D such that Ω∩Ωθ ⊂ D and then
applying Green’s integral theorem first in D\Ω and then in D\Ωθ.

Lemma 3.4. Assume that Γ is analytic. Then the following expansion holds

uθ − u =

∫

Γ

[TyV (·, y)]TBu(y)ds(y) + o
(

||θ||C 2

)

, (3.6)

in H
1(G,∆∗) for all compact subset G of Ωc and θ sufficiently small, where

Bu = −(θ · n)
(

1

µ

(

n× T (u+ u
i)
)

× n+
1

λ+ 2µ

(

n · T (u+ u
i)
)

n

)

.

Proof. We use similar arguments as in the proof of theorem 3.1 in [17] for the analogous
acoustic case. We denote by Sθ and K ′

θ the integral operators on the boundary Γθ with sin-
gular kernels 2Φ(x, y) and 2[TxΦ(x, y)] respectively. The fundamental solution Φ is pseudo-

homogeneous of class −1. It can be shown that these operators are bounded from H
− 1

2 (Γθ)
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to itself (see [6] and [23], pp. 176). From (3.5) and the jump relations, it can be deduced
that the traction derivative of the total field (uθ+u

i) solves the boundary integral equation

(I +K ′
θ − iηSθ)T (uθ + u

i
|Γθ

) = 2(Tui
|Γθ

− iηui
|Γθ

).

The operator K ′
θ is not compact, therefore we use a regularization technique (see [2, 20]) to

modify the integral equation as below

(I + Bθ)T (uθ + u
i
|Γθ

) = 2Hθ(Tu
i
|Γθ

− iηui
|Γθ

)

where (I + Bθ) = Hθ (I +K ′
θ − iηSθ), Hθ is an integral operator with a strongly singular

kernel and Bθ is an integral operator with a weakly singular kernel. The new integral

operator I + Bθ : H− 1

2 (Γθ) → H
− 1

2 (Γθ) is a Fredholm operator of the second kind which
is invertible with bounded inverse. We use the transformation τθ which maps a function uθ

defined on Γθ onto the function uθ ◦ (I+ θ) defined on Γ. Reducing the analysis in [4] to the
continuity and not the differentiability, we can prove that the boundary integral operators
τθBθτ

−1
θ and τθHθτ

−1
θ depend continuously on the deformation θ ∈ C 2(Γ) and so does the

inverse τθ(I+Bθ)
−1τ−1

θ from the Neumann series. Since the incident field is analytic on the
boundary Γθ, we then deduce that the total field satisfies

||τθ
(

T (uθ + u
i)|Γθ

)

− T (u+ u
i)||

H
−

1

2 (Γ)
→ 0, ||θ||C 2 → 0 (3.7)

Since Γ is analytic, by theorem 5.7.1’ in [22] pp. 169 the total fields (u+u
i) and W can be

extended as a solution to the Navier equation across Γ in the exterior of Ω ∩ Ωθ. We also
have

||τθ
(

T (u+ u
i)|Γθ

)

− T (u+ u
i)||

H
−

1

2 (Γ)
→ 0, ||θ||C 2 → 0. (3.8)

By lemma 3.2 and using Taylor’s formula together with (3.7)-(3.8), the boundary condition
for V and the smoothness of V (x, ·) up to Γ for x away from the boundary, it follows that

∫

Γθ

[V (·, y)]TTy

(

uθ(y) + u
i(y)

)

ds(y) =

∫

Γθ

[V (·, y)]TTy

(

u(y) + u
i(y)

)

ds(y) + o(||θ||C 2 ),

in H
1(G,∆∗) for all compact subset G of Ωc. From this, the first Green formula (2.4) and

the boundary condition for W we obtain

uθ − u = −
∫

Ω∗

θ

{

(

[

∇Vj

]

: σ
(

u+ u
i
)

)

j=1,2,3
− ρω2[V ]T(u+ u

i)

}

χdy + o(||θ||C 2 )

where
Ω∗

θ = {y ∈ Ωθ; y 6∈ Ω} ∪ {y ∈ Ω; y 6∈ Ωθ},
and χ(y) = 1 if y ∈ Ωθ and y 6∈ Ω and χ(y) = −1 if y ∈ Ω and y 6∈ Ωθ. Any z ∈ Ω∗

θ can be
represented of the form z = y + tθ(y), with y ∈ Γ and t > 0. We have :

(a) χ(z)dz =
(

θ(y) · n(y)
)

ds(y)dt+ o(||θ||C 2 ),

(b) (u+ u
i)(y + tθ(y)) = o(||θ||C 2) and V (·, y + tθ(y)) = o(||θ||C 2 ),

(c) ∇
(

u+ u
i
)

=
∂

∂n
(u+ u

i) · nT + o(||θ||C 2) and,
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(d) for j = 1, 2, 3,

[

∇Vj

]

: σ
(

u+ u
i
)

= σ
(

Vj

)

:
[

∇(u+ u
i)
]

= TyVj ·
∂

∂n
(u + u

i) + o(||θ||C 2).

The expansion (a) for the volume form is a well-known result and we refer to [7, 17] for a
proof. Approximating the integral over Ω∗

θ by an integral over Γ we obtain that

uθ − u = −
∫

Γ

[TyV (·, y)]T ∂(u+ u
i)

∂n
(y)

(

θ(y) · n(y)
)

ds(y) + o(||θ||C 2 ).

To conclude, we express the normal derivative of (u+u
i) in function of its traction derivative.

Since u+u
i = 0 on Γ then the tangential Günter’s derivative M(u+u

i)|Γ vanishes. Using

(2.7), we obtain
(

n× T (u+ u
i)
)

×n = µ
(

n× ∂
∂n

(u + u
i)
)

×n, and using (2.8) we obtain

n · T (u+ u
i) = (λ+ 2µ)

(

n · ∂
∂n

(u+ u
i)
)

.

Theorem 3.5. Let Γ be analytic. Then the mapping F : C
2(Γ,R3)→L

2
s(S

2)×L
2
p(S

2) is

Fréchet differentiable at θ = 0 with the Fréchet derivative defined for ξ ∈ C 2(Γ,R3) by

F ′(0)ξ = v
∞
ξ , where v

∞
ξ is the far-field pattern of the solution vξ to the Navier equation

in Ωc that satisfies the Kupradze radiation condition and the following Dirichlet boundary

condition on Γ

vξ = −(ξ · n)
(

1

µ

(

n× T (u+ u
i)
)

× n+
1

λ+ 2µ

(

n · T (u+ u
i)
)

n

)

.

Proof. This is a direct consequence of Lemmas 3.1 and 3.4.

Although theorem 3.5 was proven under the assumption that Γ is analytic, we expect
that, proceeding as in [17, Theorem 3.1], the result is also valid for C 2 boundaries.

4 The exterior impedance boundary value problem

Now we consider the scattering problem by a cavity or an absorbing obstacle Ω. The total
displacement field u + u

i is given by the superposition of the incident field u
i, which we

assume to be an entire solution of the Navier equation, and the scattered field u, which
solves the Navier equation in Ωc, the impedance boundary condition

T (u+ u
i) + iαω

√
ρµ (u + u

i) = 0 on Γ,

and satisfies the Kupradze radiation condition. For a seek of simplicity we introduce the
notation Tα = (T + iαω

√
ρµ I) with the convention T0 = T .

For x ∈ Ωc let W be the 3×3 matrix whose the j-th column Wj is the radiating solution
of (2.1) and (2.9) for the boundary value

g = −TαΦj(x, ·) on Γ,

and set V (x, ·) = Φ(x, ·) +W (x, ·).

Lemma 4.1. The unique radiating solution v ∈ H
1
loc(Ω

c,∆∗) of the Navier equation (2.1)

satisfying the boundary condition (2.10) for any g ∈ H
− 1

2 (Γ) admits the following integral

representation

v(x) = −
∫

Γ

[V (x, y)]Tg(y)ds(y), x ∈ Ωc. (4.1)

9



Proof. From the second Green formula (2.5) on Ωc for the radiating solutions W and v we
can write

∫

Γ

(

[Tα,yW (x, y)]Tv(y)− [W (x, y)]TTα,yv(y)
)

ds(y) = 0,

for all x ∈ Ωc. Using the boundary condition for W and v and the Somigliana integral
representation formula for v we obtain

v(x) =

∫

Γ

(

[

Tα,yΦ(x, y)
]T

v(y)− [Φ(x, y)]TTα,yv(y)
)

ds(y)

=

∫

Γ

(

−
[

Tα,yW (x, y)
]T

v(y)− [Φ(x, y)]
T
Tα,yv(y)

)

ds(y)

= −
∫

Γ

[V (x, y)]
T
Tα,yv(y)ds(y) = −

∫

Γ

[V (x, y)]
T
g(y)ds(y).

Here again we use a parametrization of the boundaries in order to investigate the Fréchet
differentiability of the boundary to far field operator

F : Γ 7→ u
∞ = (u∞

s ,u∞
p ) ∈ L

2
s(S

2)×L
2
p(S

2)

which maps the boundary of a Neumann or an impedance obstacle Ω onto the far-field
patterns u

∞
s and u

∞
p of the scattered field u. Thus we will consider instead the mapping

F : θ 7→ F (Γθ). The following lemma gives a factorization of the difference of the scattered
field for two neighboring impedance obstacles.

Lemma 4.2. Assume that Ω ⊂ Ωθ. Then

uθ(x)− u(x) =

∫

Γθ

[Tα,yV (x, y)]
T
(

uθ(y) + u
i(y)

)

ds(y), (4.2)

for all x ∈ Ωc
θ.

Proof. From the second Green formula (2.5) for Φ(x, ·) and u
i we can write

∫

Γ

(

[Tα,yΦ(x, y)]
T
u
i(y)− Φ(x, y)Tα,yu

i(y)
)

ds(y) = 0,

for all x ∈ Ωc. Using the boundary condition of u we then obtain

u(x) =

∫

Γ

[Tα,yΦ(x, y)]
T
(

u(y) + u
i(y)

)

ds(y), x ∈ Ωc. (4.3)

From the second Green formula (2.5) for the radiating solutions W and uθ in Ωc
θ we can

write for x ∈ Ωc
θ

∫

Γθ

{

[Tα,yW (x, y)]
T
uθ(y)− [W (x, y)]

T
Tα,yuθ(y)

}

ds(y) = 0.

From the second Green formula (2.5) for W and u
i in Ωθ\Ω, the last equation and the

10



boundary condition of uθ we have
∫

Γθ

[Tα,yW (x, y)]
T
(

uθ(y) + u
i(y)

)

ds(y)

=

∫

Γθ

(

[Tα,yW (x, y)]T
(

uθ(y) + u
i(y)

)

− [W (x, y)]TTα,y

(

uθ(y) + u
i(y)

)

)

ds(y)

=

∫

Γθ

(

[Tα,yW (x, y)]Tui(y)− [W (x, y)]TTα,yu
i(y)

)

ds(y)

=

∫

Γ

(

[Tα,yW (x, y)]Tui(y)− [W (x, y)]TTα,yu
i(y)

)

ds(y),

for x ∈ Ωc
θ. Using the boundary condition of W and u on Γ, the integral representation

(4.3) of u and the second Green formula for radiating solutions we obtain

−u(x) =

∫

Γ

[Tα,yW (x, y)]T
(

u(y) + u
i(y)

)

ds(y)

=

∫

Γ

(

[Tα,yW (x, y)]
T
u
i(y) + [W (x, y)]

T
Tα,yu(y)

)

ds(y)

=

∫

Γ

(

[Tα,yW (x, y)]
T
u
i(y)− [W (x, y)]

T
Tα,yu

i(y)
)

ds(y)

=

∫

Γθ

[Tα,yW (x, y)]
T
(

uθ(y) + u
i(y)

)

ds(y),

for x ∈ Ωc. From (4.3) we can write for uθ

uθ(x) = −
∫

Γθ

[Tα,yΦ(x, y)]
T
(

uθ(y) + u
i(y)

)

ds(y), x ∈ Ωc
θ. (4.4)

We obtain the identity (4.2) by combining the last two equations.

The remark 3.3 is still available here, so that we expect that the identity (4.2) remains
valid when the domain Ω is not strictly contained in Ωθ.

For a vector function u, we denote by [∇Γu] the matrix whose the j-th column is the
tangential gradient of the j-th component of u. For a (3× 3) tensor function M , we denote
by divΓ M the vector whose the j-th component is the surface divergence of j-th column of
M . We denote by HΓ the mean curvature of Γ defined by

HΓ = divΓ n.

Lemma 4.3. Assume that Γ is analytic. Then the following expansion holds

uθ(x) − u(x) = −
∫

Γ

[V (x, y)]Bu(y)ds(y) + o
(

||θ||C 2(Γ,R3)

)

, (4.5)

in H
1(G,∆∗) for all compact subset G of Ωc and θ sufficiently small, where

Bu = divΓ

(

(θ · n)
{

σ
I
(u + u

i)− iαω
√
ρµ

(

ut + u
i
t

)

⊗ n
T
}

)

+ ρω2(θ · n)
(

(

1− α2
)

(ut + u
i
t) +

(

1− α2 µ

λ+ 2µ

)

(un + u
i
n)n

)

+ iαω
√
ρµ (θ · n)

(

[∇Γ(u + u
i)]n+

λ

λ+ 2µ
(divΓ(u+ u

i))n

)

−iαω
√
ρµ (θ · n)(u+ u

i)HΓ,

(4.6)
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with

σ
I
(u) = λ

(

2µ

λ+ 2µ
divΓ u− i

αω
√
ρµ

λ+ 2µ
un

)

Π3 + µΠ3

(

[∇Γu] + [∇Γu]
T

)

Π3, (4.7)

and

Π3 = I3 − n⊗ n
T, ut = (n× u)× n and un = u · n.

Proof. We follow the same procedure as in the proof of lemma 3.4. We denote by Sθ and Kθ

the integral operators on the boundary Γθ with singular kernels 2Φ(x, y) and 2[TyΦ(x, y)]
T

respectively. Assume that α > 0. From (4.4) and the jump relations, it can be deduced that
the restriction to Γ of the total field (uθ + u

i) solves the boundary integral equation

(I−Kθ − iαω
√
ρµSθ) (uθ + u

i)|Γθ
= 2ui

|Γθ
. (4.8)

The operator Kθ is not compact. By regularization techniques (see [20]), here again, we
can modify the above equation in order to obtain an integral equation of the second kind

which has to be solved for the unknown uθ +u
i in H

1

2 (Γ). From this new equation and the
convergence of integral operators as θ → 0, it can be deduced that the total field satisfies

||τθ(uθ + u
i)|Γθ

− (u+ u
i)|Γ||

H
1

2 (Γ)
→ 0, ||θ||C 2 → 0 (4.9)

We also have
||τθ(u+ u

i)|Γθ
− (u+ u

i)|Γ||
H

−
1

2 (Γ)
→ 0, ||θ||C 2 → 0.

Then we can write that
∫

Γθ

[Tα,yV (·, y)]T
(

uθ(y) + u
i(y)

)

ds(y)

=

∫

Γθ

[Tα,yV (·, y)]T
(

u(y) + u
i(y)

)

ds(y) + o(||θ||C 2 ),

in H
1(G,∆∗) for all compact subset G of Ωc. Notice that the outer unit normal vector n

to Γ can be extended in a continuously differentiable function, denoted again by n, on a
tubular

BT = {z = y + tn(y); y ∈ Γ, t ∈ [−T ;T ]}
for some sufficiently small T . By the first Green formula (2.4) together with the following
expansion for y ∈ Γ (see [7])

n(y) ·
(

nθ(y)− n(y)
)

= −n(y) · ∇Γ

(

θ(y) · n(y)
)

+ o(||h||C 2) = o(||h||C 2)

and the boundary condition for W we obtain

uθ − u

=

∫

Ω∗

θ

{

div
(

σ(Vj)(u+ u
i) + iαω

√
ρµ

(

Vj · (u + ui)
)

n

)

j=1,2,3

}

χdy + o(||θ||C 2 )

where
Ω∗

θ = {y ∈ Ωθ; y 6∈ Ω} ∪ {y ∈ Ω; y 6∈ Ωθ},
and χ(y) = 1 if y ∈ Ωθ and y 6∈ Ω and χ(y) = −1 if y ∈ Ω and y 6∈ Ωθ. Approximating the
integral over Ω∗

θ by an integral over Γ we obtain that

uθ − u

=

∫

Γ

div
(

σ(Vj)(u+ u
i) + iαω

√
ρµ

(

Vj · (u+ ui)
)

n

)

j=1,2,3
(θ · n)ds(y) + o(||θ||C 2 )
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For j = 1, 2, 3, we have

div
(

σ(Vj)(u + u
i)
)

= σ(Vj) :
[

∇(u+ u
i)
]

− ρω2
(

Vj · (u+ u
i)
)

=
[

∇Vj

]

: σ
(

u+ u
i
)

− ρω2
(

Vj · (u+ u
i)
)

= [∇Γ(Vj)] :
(

Π3σ(u + u
i)Π3

)

− ρω2
(

Vj · (u + u
i)
)

−iαω
√
ρµ

(

∂

∂n
Vj · (u+ u

i) + [∇ΓVj ] : (ut + u
i
t)⊗ n

T

)

and

div
(

(

Vj · (u + ui)
)

n

)

=

(

∂

∂n
+HΓ

)

(

Vj · (u+ ui)
)

Collecting the two above equalities we obtain

div
(

σ(Vj)(u+ u
i) + iαω

√
ρµ

(

Vj · (u + ui)
)

n

)

= [∇Γ(Vj)] :
(

Π3σ(u + u
i)Π3 − iαω

√
ρµ

(

(ut + u
i
t)⊗ n

T
))

−ρω2
(

Vj · (u + u
i)
)

+ iαω
√
ρµVj ·

(

∂

∂n
+HΓ

)

(u + u
i)

(4.10)

To conclude we have to express Π3σ(u+u
i)Π3 and ∂

∂n
(u+u

i) in function of the tangential
derivatives of u. First, we note that

Π3σ(u + u
i)Π3 = λdiv(u+ u

i)Π3 + µΠ3

(

[∇Γu] + [∇Γu]
T

)

Π3

Then we use the identity (2.6) together with the boundary condition of u, which gives

div(u+ u
i) =

2µ

λ+ 2µ
divΓ(u+ u

i)− i
α

λ+ 2µ
ω
√
ρµn · (u+ u

i).

The identity (2.7) yields
(

n× ∂

∂n
(u+ u

i)

)

× n = −[∇Γ(u + u
i)]n− i

α

µ
ω
√
ρµ

(

n× (u+ u
i)
)

× n,

and the identity (2.8) yields

n · ∂

∂n
(u + u

i) = − λ

λ+ 2µ
divΓ(u+ u

i)− i
α

λ+ 2µ
ω
√
ρµn · (u+ u

i).

Substituing all the above identity in (4.10) we obtain the characterization (4.6).

Theorem 4.4. Let Γ be analytic. Then the mapping F : C 2(Γ,R3)→L
2
s(S

2)×L
2
p(S

2) is

Fréchet differentiable at θ = 0 with the Fréchet derivative defined for ξ ∈ C 2(Γ,R3) by

F ′(0)ξ = v
∞
ξ , where v

∞
ξ is the far-field pattern of the solution vξ to the Navier equation

in Ωc that satisfies the Kupradze radiation condition and the following impedance boundary

condition on Γ

Tαvξ = divΓ

(

(ξ · n)
{

σ
I
(u + u

i)− iαω
√
ρµ (ut + u

i
t)⊗ n

T
}

)

+ ρω2(ξ · n)
(

(

1− α2
)

(ut + u
i
t) +

(

1− α2 µ

λ+ 2µ

)

(un + u
i
n)n

)

+ iαω
√
ρµ (ξ · n)

(

[∇Γ(u+ u
i)]n+

λ

λ+ 2µ

(

divΓ(u+ u
i)
)

n

)

−iαω
√
ρµ (ξ · n)(u + u

i)HΓ,
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where the symmetric tensor σ
I
(u) is given by (4.7).

Proof. This is a direct consequence of Lemmas 4.1 and 4.3.

When α = 0, the integral equation (4.8) is not uniquely solvable for all positive real
values of the frequency ω. However one can prove that the total field (uθ + u

i) is the
solution of a boundary integral equation of the first kind (see [20]) and by a regularization
technique one can prove that the estimation (4.9) is still valid in this case. For the Neumann
problem, we finally obtain the characterization:

Theorem 4.5. Let Γ be analytic. Then the mapping F : C 2(Γ,R3)→L
2
s(S

2)×L
2
p(S

2) is

Fréchet differentiable at θ = 0 with the Fréchet derivative defined for ξ ∈ C
2(Γ,R3) by

F ′(0)ξ = v
∞
ξ , where v

∞
ξ is the far-field pattern of the solution vξ to the Navier equation

in Ωc that satisfies the Kupradze radiation condition and the following Neumann boundary

condition on Γ

Tvξ = divΓ
(

(ξ · n)σ
N
(u + u

i)
)

+ ρω2(ξ · n)(u + u
i),

where

σ
N
(u) =

2λµ

λ+ 2µ
(divΓ u)Π3 + µΠ3

(

[∇Γu] + [∇Γu]
T

)

Π3. (4.11)
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