
HAL Id: hal-00691985
https://hal.science/hal-00691985v1

Submitted on 27 Apr 2012 (v1), last revised 30 Apr 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

YARTISS: A Tool to Visualize, Test, Compare and
Evaluate Real-Time Scheduling Algorithms

Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midonnet,
Manar Qamhieh

To cite this version:
Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midonnet, Manar Qamhieh.
YARTISS: A Tool to Visualize, Test, Compare and Evaluate Real-Time Scheduling Algorithms. UPE
LIGM ESIEE. 2012. �hal-00691985v1�

https://hal.science/hal-00691985v1
https://hal.archives-ouvertes.fr

CONTENTS

I Introduction 2

II Motivations: A Brief History of YARTISS 2

III Related Works 3

IV Functionalities 3

IV-A Single Task Set Simulation . 3

IV-A1 Task Models . 3

IV-A2 Uniprocessor / Multiprocessors . 3

IV-A3 Energy Profile . 4

IV-A4 Scheduling Policy . 4

IV-B Run Large Scale Simulations . 4

IV-C Task Sets Generation . 4

IV-D Graphic User Interface . 5

V Architecture 5

V-A Engine Module . 5

V-B Service Module . 5

V-C Framework Module . 5

V-D View Module . 6

VI Case Studies 6

VI-A Adding a Scheduling Policy . 6

VI-B Adding an Energy Profile . 6

VI-C Adding a Traffic Model . 6

VI-D Using an External Module to Generate Tasks . 7

VI-E Adding More Metrics . 7

VII Distribution 7

VIII Future Works 7

IX Conclusion 7

References 7

YARTISS: A Tool to Visualize, Test, Compare and

Evaluate Real-Time Scheduling Algorithms

Younes Chandarli∗†, Frédéric Fauberteau‡, Damien Masson∗, Serge Midonnet† and Manar Qamhieh†

Université Paris-Est, LIGM UMR CNRS 8049,
∗ESIEE Paris, 2 bld Blaise Pascal, BP 99, 93162 Noisy-le-Grand CEDEX, France

†Université Paris-Est Marne-la-vallée, 5 bld Descartes, Champs sur Marne, 77454 Marne-la-Vallée Cedex 2, France
‡CEA List, LaSTRE, Point Courrier 94, Gif-sur-Yvette, F-91191 France

Abstract—In this paper, we present a free software written in
Java, YARTISS, which is a real-time multiprocessor scheduling
simulator. It is aimed at comparing user-customized algorithms
with ones from the literature on real-time scheduling. This
simulator is designed as an easy-to-use modular tool in which
new modules can be added without the need to decompress,
edit nor recompile existing parts. It can simulate the execution
of a large number of concurrent periodic independent task
sets on multiprocessor systems and generate clear visual results
of the scheduling process (both schedules and tunable metrics
presentations). Other task models are already implemented in
the simulator, like graph tasks with precedence constraints and
it is easily extensible to other task models. Moreover, YARTISS
can simulates task sets in which the energy consumptions is a
scheduling parameter in the same manner as the Worst Case
Execution Time (WCET).

I. INTRODUCTION

In order to evaluate the efficiency of a new approach in real-

time systems, software simulation against other algorithms

are commonly used. Due to the lack of a standard simu-

lation tool approved by the real-time community, most of

the researchers tend to create their own. This situation raises

some concerns. In one hand, the presented results are hard

to be validated without careful examination of the simulation

tool, so those results might be biased toward the proposed

approach ; either by adapted generation of testing tasks, or

biased implementation against the compared algorithms. On

another hand, reasons as out-of-date simulation tools, or lack

of good documentation force others to create new tools, which

will lead to repetitive algorithms’ implementations, specially

the common algorithms (e.g. RM, DM, EDF) while consuming

the time and effort of researchers. Moreover, if a standard

platform succeeds to emerge, one can compare its own policy

with a very complicated one without having to understand

the very specificity and optimizations of this one. Finally, the

simulation protocols could be standardized, and more easily

describable by the use of such a reference tool.

In this paper, we introduce YARTISS, a new simulation

tool for real-time systems. Generality is its main feature, by

which we hope to overcome the previous problems mentioned

before. New users are allowed to add their own implemented

algorithms easily, with no need to understand how the sim-

ulator is built or works. We do not pretend to propose a

perfect simulator, however we tried during its development

to learn from our past tries [1], [2]. YARTISS is written in the

Java programming language, which is very popular nowadays

and offers valuable attributes regarding portability. In order

to ensure independence between the different features of the

simulator and to reduce the possibilities of massive failures

among them, we used modern programming paradigms, like

module oriented programming and Java unit tests (JUnit)

oriented development.

We tried to develop YARTISS keeping in mind that in order

for a simulator to became a reference tool, it should have

the following properties: 1) the software must be available

under an open source license which gives any researcher the

freedom to analyze, verify or modify its implementation ; 2)

the Application Programming Interface (API) of the software

must be well documented and the developer who wants to

add or modify an algorithm should not have to read the entire

source code in order to understand its behavior ; 3) each

part of the simulator (its core, the tasks generator, the results

analyzer, ...) must be independent from each other, and easily

replaceable by an external module ; and 4) the simulator has

to be easy to use in a way that a non-developer researcher

can be able to use it. Due to its generality and modularity, we

hope that YARTISS makes a valuable contribution to the long

process of developing a standard simulation tool recognized

by the real-time scheduling research community.

We expose our motivations in Section II. We review related

works in Section III. Section IV presents the simulator func-

tionalities. The program architecture is described in Section V.

Case studies which demonstrate the extensibility of the tool

are presented in Section VI. How to get the tool is explained

in Section VII. Future works are discussed in Section VIII and

finally we conclude in Section IX.

II. MOTIVATIONS: A BRIEF HISTORY OF YARTISS

Our first try in writing a real-time system simulator was

called RTSS [1] and developed between 2005 and 2008. The

tool was first developed to test some algorithms to handle

temporal fault tolerance and was later extended in order to

test aperiodic tasks handling algorithms [3], [4]. Lot of the

modifications was made in a hurry and making assumptions

on the behavior of existing classes without documentation.

Then modifying anything could result in errors in another

completely not connected parts. Moreover, if the tools was

initially programmed in Java, it began to rely more and more

on bash scripts to be launched and to transform output in

human readable files. Based on this first tool, a second one,

RTMSim [2], was developed between 2008 and 2011 in the

purpose to simulate multiprocessors platforms [5]. The general

key ideas was kept, but the first tool had became such a

gasworks that it had to be restart from scratch. Of course,

all validated parts of RTSS which was of no interest at that

specific time was not reimplemented and so were lost (e.g.

an implementation of DOV ER [6]). A third try was made

in early 2011, RTSS v2 [1], which was basically a rebuild

of RTSS including energy consuming tasks and used for [7].

Unfortunately, even if it is more usable today than the first

RTSS, it suffers from the same lack of documentation and

modularity, and usability to simulate and exploit results of

large scale simulations. Moreover, it seems difficult to extend

it to simulate multiprocessor platforms.

We so came to the development of a new software:

YARTISS. From the start, we aimed to produce a tool where

the task model, the number of processors and behavior such

as the energy consumption model are as easy as possible

to modify. The second point where we focus our attention

on is the usability of the user interface to produce human

readable traces. Our goal was to develop a simulator to

produce evaluations but also one that helps us to debug our

energy-related algorithms. When we wanted to use YARTISS

for an another purpose, namely the simulation of directed

graph model of real-time tasks which is a model of tasks

with precedence constraints and concurrency (see [8]), this

was done without any problems, validating its extensibility.

III. RELATED WORKS

It exists a lot of tools to simulate or visualize instrumented

real-time systems execution traces. Due to space limitation,

we cannot produce here an extensible list of existing tools.

For the instrumented execution analyzer tools, one can refer

to [9], [10]. Among open simulation tools, we can cite MAST

[11], Cheddar [12], STORM [13] and FORTAS [14]. MAST

permits to model distributed real-time systems and offer tools

to e.g. test their feasibility or perform sensitivity analysis.

Cheddar is written in Ada, handles the multiprocessor case and

provides many implementations of scheduling, partitioning

and analysis algorithms. It also comes with a user-friendly

Graphical User Interface (GUI). Unfortunately, no API doc-

umentation is available to help the implementation of new

algorithms. Moreover, the choice of the Ada language reduces

the potential additional developer number. Finally, FORTAS

and STORM are tools which, as YARTISS, are written in

Java, had modular architectures and permits to simulate task

sets on multiprocessor architectures. They both represent very

valuable contributions in the effort to provide open and mod-

ular tools and could be good candidates in our opinion to be

widely used. Unfortunately, even if it is in its current state

more usable than our previous tools, FORTAS seems to suffer

from the same issues. Its development is not open to other

developers for now. We can only download .class files. No

Figure 1. Energy and Multiprocessor Simulation views

documentation is yet provided. It seems that no new version

have been released to public since its presentation last year in

WATERS.

IV. FUNCTIONALITIES

The two main features of our simulator are the simulation

of the execution of one task set scheduled by a specific

scheduling policy and the large-scale comparison of several

scheduling policies in different scenarios, which implies its

third feature: the randomly task sets generation.

A. Single Task Set Simulation

Through the GUI, we can load a task set from a file,

randomly generate one, or manually enter its parameters. We

can parametrize the desire simulation and then a button permits

to run it. Several views are then proposed. The simulation

parameters are the task set, the number of processors, the

scheduling algorithm and the energy profile.

1) Task Models: YARTISS offers an open architecture that

greatly facilitates the integration of different task models.

The current version proposes two models. The first one is

the Liu and Layland task model augmented with energy

related parameters. All the tasks are independents and one

task is characterised by its WCET Ci, its worst case energy

consumption Ei, its period Ti and its deadline Di. The second

one is the Graph task model which is a common real-time

task model on multiprocessor systems. It is used to implement

systems consisting of number of missions in which there exists

dependencies controlling their execution flow. In this model,

a graph Gi is a collection of real-time tasks {τi,1, τi,2, τi,q},

sharing the same deadline Di and period Pi of the graph, and

they differ in their WCET Ci,j . The directed edges between

the tasks of the graph determine their precedence constraints,

and since each task in the graph might have more than

one successor and predecessor, concurrent execution can be

generated. We will see in Section VI that it is easy to propose

another task models.

2) Uniprocessor / Multiprocessors: Using the simulator,

one can implement and test its own multiprocessors algorithms

and partitioning policies. Some multiprocessors scheduling

algorithms was implemented to test this feature like EDF and

FP. Figure 1 shows the user interface.

3) Energy Profile: Unlike many other simulators, this one

permits to model the production and the consumption of

energy in the system. It permits the user to model an energy

harvester like a battery or a capacitor with limited or unlimited

capacity. It can also model a renewable energy source by a

charging function. The user can implement and use its own

energy profiles. Figure 1 shows the user interface. Note that

the view used to print the energy level can easily be augmented

to print other metrics, such as system slack times for example.

a) Energy Source Model: We have implemented an en-

ergy source profile that models a renewable energy source

represented by a battery with limited capacity and a linear

charging function. This model is not the only possible one,

the user can add its own profile by implementing the interface

and injecting it into the engine of the simulator in few lines

of code and without needing to open packages. An example

is given in Section VI.

b) Consumption Model: It is important to note that for

some works, energy consumption of a task must be modeled

independently from its WCET [15]. This is why our simulator

provides the ability to specify a consumption profile for each

task of the system or choose one global profile applied to

all tasks. A consumption model is represented by a function

and must be able to provide the amount of energy consumed

between two dates during the tasks execution i.e. the integral

of the consumption function. Implemented models so far are:

Linear consumption (not realistic but permits to establish some

interesting preliminary conclusions) and Early instantaneous

consumption where all the energy cost of a task is consumed

as soon as a task is scheduled. This later model is assumed to

represent the worst case scenario. As the energy source profile,

a new consumption model can be added without having to

open the simulators packages. An example is given in Section

VI.

4) Scheduling Policy: The main purpose of the simulator

is to test scheduling algorithms, compare them and show their

performances and efficiency. Much attention has been focused

on the design of this part of the simulator to make it as

generic as possible so that users can add, override and inject

new scheduling policies easily. There are currently twenty

algorithms implemented including classic algorithms (RM,

DM, EDF uni and multiprocessors), heuristics for the energy

constrained scheduling problem and policies for precedence

graph model based on Least-Laxity-First LLF. As with other

parameters of the run-time environment of the simulator, the

user can add and link his own algorithms in some lines of code

without open core packages. An example is given in Section

VI.

B. Run Large Scale Simulations

A major utility of the simulator is the large scale comparison

of several algorithms or scheduling policies. It is done in the

same way than a simple single simulation but on a large set

of systems on different scenarios. The comparison is based

Figure 2. Concurrent large scale simulations: histogram and curves views

on statistics that currently can be the number of failure or

missed deadlines, the system lifetime, the amount of time

spent at maximum energy level Emax and minimum level

Emin and the average duration of idle period and busy periods.

One can add its own metrics as demonstrated in Section VI.

Multiple simulations are run concurrently by using the java

multi-threading concept and so the duration of simulations is

hardly reduced, taking advantages of hardware parallelism. We

show in Figure 2 examples of charts which can be displayed

with YARTISS.

C. Task Sets Generation

Performing large-scale test requires a large set of tasks

systems. To be credible, we have to use sufficiently varied

systems to cover the possible tasks systems space. The simu-

lator provides the ability to choose its generator according to

scenarios and algorithms to be tested. The current version in-

cludes a generator inspired by the UUniFast-Discard algorithm

[16] adapted to energy constraints. This algorithm generates

a task set that respect the CPU utilization (U =
∑

Ci

Ti

) and

the energy utilization (Ue =
∑

Ei

Ti×Pr
) imposed by the user.

The basic version is not energy aware. We had to adapt it

to produce time feasible and energy feasible systems. The

principle is to distribute the load imposed on the tasks that

compose the system. When we add energy cost to the task and

an energy load to the system we end up with two parameters to

vary and two conditions to satisfy. The algorithm in its current

version distribute U and Ue in the same way on the tasks then

tries to find the pair (Ci, Ei) which satisfies all the conditions

namely Ui, Ue and Pr < Ei

Ci

− Pr < Emax. The operation

is repeated a few times and keeps the couple that approaches

most the imposed conditions, and so the algorithm returns a

time potentially1 energy feasible system. The user can use the

described generator as it can write and use its own one.

1until now there is no feasibility test that takes into account energy
constraints, we hope to have the possibility to present some key ideas to
RTSOPS, conjointly organized with ECRTS and WATERS

Figure 3. Modules connexion UML Diagram

D. Graphic User Interface

To facilitate the use of the simulator by a large number of

users, we equipped the application with a graphical interface

to make available the features mentioned above in interactive

and intuitive way. After the simulation of a single system with

an energy profile and a scheduling policy the user can follow

and analyze the schedule on three different views: a time

chart, a processor view and the energy curve which shows

the evolution of energy (as mentioned before, other data can

be monitored and print on this view).

In order to run simulations and get the results of a com-

parison of scheduling policies, the application offers a view

that allows the user to select the scheduling policies to be

compared, the energy scenarios and to run simulations. Thus

the user can see the results as graph per scenario or per

comparison criterion. This view offers also a debugging tool

in which the user can analyse the result of comparison system

by system and can optionally display the time chart of each

system and in each scheduling policy. This can help to detect

behaviors that differ in one algorithm to another. Then this

simulator can produce results on a large scale of randomly

generated task systems in order to evaluate a scheduling

policy, but also easily explore properties of a new algorithm,

find counter examples on hypothesis we can make by easily

isolating degenerate cases. For example, in the case of energy

scheduling, no optimal algorithm exists yet. If you think your

algorithm is, you can first run it on a large number of task

systems, and ask the simulator to present you only systems

where your algorithm fails whereas another heuristics succeed.

V. ARCHITECTURE

To meet the requirements specified in Section II, we have

ensured that the design is as generic and open as possible

by applying the appropriate design patterns and modular pro-

gramming practices. We cut the project in four main modules:

the engine or core module, the services module responsible to

connect the engine with outside, a module for GUI and finally

a framework module that contains general tools necessary for

the application. This module separations follows the classical

Model-View-Controller design pattern (see Figure 3) which

permits to isolate the core application part from its presentation

and thus permits to the engine to be generic and easily

integrable in other tools.

Figure 4. The engine module UML diagram

A. Engine Module

The Simulation class, responsible of running a simulation,

takes as parameter a container that contains a scheduling pol-

icy, an energy profile and a set of tasks. An UML diagram of

this module is given by Figure 4. The simulator being based on

events, on receipt of an event the scheduler is called to update

the running tasks, it then call the scheduling policy to choose

the tasks to execute and the associated processors. This module

so defines interfaces needed to execute, i.e. the scheduling

policy, the energy source model and tasks energy consumption

model. The interface implementation is not directly linked to

the simulation object. In order to build an energy profile, for

example, one have to register an instance of this class in a

factory. This factory is responsible to create new instances

when needed and completely obfuscates the implementation.

This allows anybody to create its own scheduling policy or its

own task consumption model in a transparency way: one only

have to write the model code and register an instance of its

class by calling a method of the factory in order to make the

new class available through the graphical interface. Case study

are give in Section VI in order to demonstrate this assertion.

B. Service Module

This module makes the interface between the simulator core

and the potential user interfaces. It permits to give the neces-

sary data to the GUI and to get back the user modifications

from it. It also permits to prepare the simulation parameters,

or to set up a large scale test. This module component has

been made in such a way that it permits to reuse the same

classes for an other GUI, such as a textual user interface for

example.

C. Framework Module

This is a toolbox module that contains generic classes and

functions in order to facilitate the code writing. This module

1 p u b l i c c l a s s MainDemoSP {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

3 S c h e d u l i n g P o l i c y F a c t o r y . r e g i s t e r P o l i c y (new LLF ()) ;

DesktopMain main = new DesktopMain () ;

5 main . s e t V i s i b l e (t ru e) ;

}

7 }

9 c l a s s LLF ex tends A b s t r a c t M u l t i P r o c S c h e d u l i n g P o l i c y {

@Override p u b l i c S t r i n g ge tPo l i cyName () {

11 re turn "LLF" ;

}

13 @Override p u b l i c I T a s k S e t c r e a t e T a s k S e t () {

re turn new A b s t r a c t T a s k S e t (new Comparator < ITask > () {

15 @Override p u b l i c i n t compare (ITask t1 , ITask t 2) {

long l a x i t y 1 = t 1 . g e t D e a d l i n e () − t 1 . g e t R e m a i n i n g C o s t () ;

17 long l a x i t y 2 = t 2 . g e t D e a d l i n e () − t 2 . g e t R e m a i n i n g C o s t () ;

i n t cmp = (i n t) (l a x i t y 1 − l a x i t y 2) ;

19 i f (cmp==0)

re turn (i n t) (t 1 . g e t P r i o r i t y () − t 2 . g e t P r i o r i t y ()) ;

21 re turn cmp ;

}

23 }) {

@Override p u b l i c S o r t e d S e t < ITask > g e t A c t i v e T a s k s (long d a t e) {

25 S o r t e d S e t < ITask > a c t i v e T a s k s = new TreeSe t < ITask >(c o m p a r a t o r) ;

f o r (ITask t : t h i s)

27 i f (t . i s A c t i v e ())

a c t i v e T a s k s . add (t) ;

29 re turn a c t i v e T a s k s ;

}

31 } ;

}

33

@Override p u b l i c P r o c e s s o r [] chooseNex tTasks (

35 P r o c e s s o r [] p r o c e s s o r s , I T a s k S e t t a s k S e t ,

I E n e r g y P r o f i l e e n e r g y P r o f i l e , long da te ,

37 E v e n t G e n e r a t o r evGen) {

i n t i =0 ;

39 f o r (ITask t a s k : t a s k S e t . g e t A c t i v e T a s k s (d a t e)) {

i f (i < p r o c e s s o r s . l e n g t h) {

41 long h l c e t = e n e r g y P r o f i l e . howLongCanExecute (t a s k) ;

i f (h l c e t <= 0) {

43 evGen . g e n e r a t e E v e n t (" e n e r g y _ f a i l u r e " , t a s k , da t e , n u l l) ;

p r o c e s s o r s [i] . s e t N e x t T a s k (n u l l) ;

45 }

e l s e {

47 evGen . g e n e r a t e E v e n t (" c h e c k _ e n e r g y _ s t a t e " , t a s k , d a t e + 1 , n u l l) ;

p r o c e s s o r s [i] . s e t N e x t T a s k (t a s k) ;

49 }

}

51 i ++;

}

53 f o r (; i < p r o c e s s o r s . l e n g t h ; i ++){

p r o c e s s o r s [i] . s e t N e x t T a s k (n u l l) ;

55 }

re turn p r o c e s s o r s ;

57 }

59 @Override p u b l i c I S c h e d u l i n g P o l i c y n e w I n s t a n c e () {

re turn new LLF () ;

61 }

}

Listing 1. How to add a scheduling policy

permits to accelerate the execution of several simulations by

using the capacities of modern multiprocessors architecture,

using the JAVA concurrency API. It follows the producer

consumer design pattern in order to permits for example to

run several simulations in the same time, sending the result of

each one to the consumer which compute statistics and update

the GUI. This is also used for the task set generation. Several

producers can run in concurrency, sending the produced tasks

to consumers which write them in files. This permits to speed

up the generation and simulation of large scale tests.

D. View Module

This module contains the necessary classes for the GUI. We

do not detail it here.

VI. CASE STUDIES

We demonstrate in this section that it is easy to tune the

simulator to address specific needs.

A. Adding a Scheduling Policy

To add a new scheduling policy, e.g. LLF, one first need to

add the simulators .jar files to a new project in its favorite

1 p u b l i c c l a s s MainDemo {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

3 S c h e d u l i n g P o l i c y F a c t o r y . r e g i s t e r P o l i c y (new LLF ()) ;

C o n s u m p t i o n P r o f i l e F a c t o r y . r e g i s t e r C o n s u m p t i o n P r o f i l e (new LogConsumption ()) ;

5 DesktopMain main = new DesktopMain () ;

main . s e t V i s i b l e (t ru e) ;

7 }

}

9

c l a s s LogConsumption implements I E n e r g y C o n s u m p t i o n P r o f i l e {

11 @Override p u b l i c S t r i n g getName () { re turn " l o g " ; }

@Override p u b l i c L i s t <Double > g e t P a r a m e t e r s () { re turn n u l l ; }

13 @Override p u b l i c vo id s e t P a r a m e t e r s (L i s t <Double > params) {}

15 @Override p u b l i c long getConsumed (long wcet , long wcee ,

long romain ingTimeCos t , long d u r a t i o n) {

17 double a = wcet − romain ingTimeCos t ;

double b = a + d u r a t i o n ;

19 i f (b > wcet) b = wcet ;

i f ((b−a) <= 0) re turn 0 ;

21 long r e s u l t = (long) Math . l o g (b / a) ;

i f (r e s u l t > wcee) r e s u l t = wcee ;

23 re turn r e s u l t ;

}

25

@Override p u b l i c I E n e r g y C o n s u m p t i o n P r o f i l e c l o n e P r o f i l e () {

27 re turn new LogConsumption () ;

}

29 }

Listing 2. How to add a new energy profile

IDE and then provide an implementation of the interface

ISchedulingPolicy. The policies are named to identify them

among all others. The method getPolicyName() must so return

the policy’s name. To allow the scheduling policies factory

to instantiate the new class, one must implement the method

newInstance() that returns a new instance of its policy class.

Then he specifies the task set model by implementing the

method createTaskSet(), having the choice to use the available

task models or to create its own one according how tasks must

be sorted. ITaskSet is an iterable of ITasks that sorts tasks and

give a sorted set of activated tasks at time t. For LLF tasks

must be sorted by their laxity. To decide which task execute

and on which processor the method chooseNextTasks() must

implemented. Listing 1 gives the whole code needed to use

LLF as an external module with the simulator.

B. Adding an Energy Profile

The same methodology can be applied to add a new energy

consumption profile. Listing 2 gives the whole code needed

to use a logarithmic consumption profile, still as an external

module.

C. Adding a Traffic Model

To add a new task type, one has to implement the interface

ITask and register the class into the Schedulable factory. The

current version of the interface describes a standard Liu and

Layland task. It can be used in its current state to model an

other kind of tasks like we do with graph tasks and task with

precedences without open the packages. If it is not sufficient,

one can extends it to make it more suitable to its needs.

For example, to implement uncertain tasks model where the

tasks execution times are specified into an interval, one can

implement the interface ITask and modify the behavior of some

methods to permit the exceeding of WCET by manipulating

the remainingCost() method and the conditions of jobs end.

Due to space limitation, we cannot give the code here, but it

will be added to the demonstration package code suite (see

Section VII).

D. Using an External Module to Generate Tasks

One of the advantages of the simulator is that it works with

files of standard format like XML. It lets us use external tools

if needed to generate tasks by converting the output file with

XSL transformation to get an input file understandable by our

simulator.

E. Adding More Metrics

If one want to count the number of preemptions, for exam-

ple, he has to modify the class Simulator to check each of tasks

begin and end events to detect preemptions and increment

a counter in the statistics container. Then, to show the new

metric on GUI he must modify the class Metric to add the

new one and the necessary algorithms to compute maximum,

minimum and average. Clearly, this is not a good design. This

point is discussed in Section VIII.

VII. DISTRIBUTION

The project is available from the GForge collaborative

development environment hosted at https://svnigm.univ-mlv.

fr/projects/yartiss/. This environment provides a subversion

(svn) server allowing anonymous checkouts, documentations

hosting, RSS feeds subscriptions, and public forums. A web

page dedicated to YARTISS is also available at http://yartiss.

univ-mlv.fr. In addition to a general presentation of the tool,

it proposes a demo applet version which allows interested

reader to try YARTISS directly from his web browser and an

application form to allow anybody to share external modules.

VIII. FUTURE WORKS

The actual release offers many important and expandable

features but the simulator is still under development. Some

parts of the project have been made in the emergency which

has prevented them to be as clean as they could. For example,

the implementation of comparison metrics is strangely coupled

with simulation classes and if we want to add a new metric we

will be forced to open the engine module and modify internal

classes as described in Section VI-E. This may be dangerous

and not acceptable architecturally. Improvement works are

planned to address such weaknesses, like we have done for

energy profiles and scheduling policies. Some other future

works are planned: 1) We want to provide a command line user

interface to allow the use of our simulator without the graphic

environment to permits its use inside automated scripts and/or

through a distant machine. This should be done easily because

of the adopted architecture and responsibilities separation. 2)

If we use XML format in mostly all inputs and outputs in

order to be able to reuse other external tools functionalities,

this feature must be generalized to the simulation results in

order to permits their visualization with an external tool (e.g.

GRASP[10]). 3) An additional work is needed on the descrip-

tion of processor and we need to add the ability to execute

on heterogeneous and independent processors in terms of

computational power, memory and energy consumption. This

could also lead to integrate research on distributed systems.

4) Finally, concerning the energy part, we must integrate the

Dynamic Voltage and Frequency Scaling (DVFS) model in

order to be compliant with most recent works in this area.

IX. CONCLUSION

In this paper we presented YARTISS, a real-time multi-

processor scheduling simulator. A consequent effort has been

made to make it as extensible as possible. To justify the need

for an open and generic tool, we presented the history of

YARTISS development. Then we briefly presented existing

simulation tools. We have described the three main function-

alities of YARTISS: 1) simulate a task set on one or several

processors with monitoring the system energy consumption, 2)

concurrently simulate a large number of task set and present

the results in a user friendly way that permits to isolate

interesting cases, and 3) randomly generate a large number

of task set. Then, in order to demonstrate the modularity and

extensibility of our tool, we presented its architecture and five

case studies that shows how to add functionalities, in most

cases without having to open the project archive. Finally we

gave the instructions to test YARTISS and presented some

improvement features we will implement.

We hope that this software can became a first step toward a

widely adopted simulation tool through the real-time schedul-

ing community.

REFERENCES

[1] D. Masson, “RTSS v1 and v2,” https://svnigm.univ-mlv.fr/projects/
rtsimulator/.

[2] F. Fauberteau, “RTMSIM,” http://rtmsim.triaxx.org/.
[3] D. Masson and S. Midonnet, “Userland Approximate Slack Stealer with

Low Time Complexity,” in Proc. of RTNS, 2008, pp. 29–38.
[4] ——, “Handling non-periodic events in real-time java systems,” in

Distributed, Embedded and Real-time Java Systems, M. T. Higuera-
Toledano and A. J. Wellings, Eds. Springer US, 2012, pp. 45–77.

[5] F. Fauberteau, S. Midonnet, and L. George, “Laxity-Based Restricted-
Migration Scheduling,” in Proc. of the 16th IEEE ETFA. IEEE
Computer Society, 2011, pp. 1–8.

[6] G. Koren and D. Shasha, “Dover : An Optimal On-Line Scheduling
Algorithm for Overloaded Uniprocessor Real-Time Systems,” SIAM J.

Comput., vol. 24, no. 2, pp. 318–339, Apr. 1995.
[7] M. Chetto, D. Masson, and S. Midonnet, “Fixed priority Scheduling

strategies for Ambient Energy-Harvesting embedded systems,” in Proc.

of GreenCom, 2011, pp. 50–55.
[8] M. Qamhieh, S. Midonnet, and L. George, “A Parallelizing Algorithm

for Real-Time Tasks of Directed Acyclic Graphs Model,” in Proc. of

WiP RTAS, 2012.
[9] S. K. Kato, R. R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time

Scheduler Suite for Multicore Platforms,” Tech. Rep., 2009.
[10] M. Holenderski, M. v. d. Heuvel, R. Bril, and J. Lukkien, “Grasp:

Tracing, visualizing and measuring the behavior of real-time systems,”
in Proc. of WATERS, 2010.

[11] M. G. Harbour, J. J. G. García, J. C. P. Gutiérrez, and J. M. D. Moyano,
“MAST: Modeling and analysis suite for real time applications,” in Proc.

of ECRTS, 2001.
[12] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a Flexible

Real Time Scheduling Framework,” in Proc. of SIGAda, 2004.
[13] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM: a Simulation

Tool for Real-time Multiprocessor Scheduling Evaluation,” GDR SOC

SIP, p. 1, 2009.
[14] P. Courbin and L. George, “FORTAS: Framework fOr Real-Time Anal-

ysis and Simulation,” in Proc. of WATERS, 2011, pp. 21–26.
[15] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the Worst-Case Energy

Consumption of Embedded Software,” in Proc. of RTAS, 2006, pp. 81–
90.

[16] E. Bini and G. C. Buttazzo, “Measuring the Performance of Schedula-
bility Tests,” Real-Time Syst., vol. 30, no. 1-2, pp. 129–154, May 2005.

https://svnigm.univ-mlv.fr/projects/yartiss/
https://svnigm.univ-mlv.fr/projects/yartiss/
http://yartiss.univ-mlv.fr
http://yartiss.univ-mlv.fr
https://svnigm.univ-mlv.fr/projects/rtsimulator/
https://svnigm.univ-mlv.fr/projects/rtsimulator/
http://rtmsim.triaxx.org/

	Introduction
	Motivations: A Brief History of YARTISS
	Related Works
	Functionalities
	Single Task Set Simulation
	Task Models
	Uniprocessor / Multiprocessors
	Energy Profile
	Scheduling Policy

	Run Large Scale Simulations
	Task Sets Generation
	Graphic User Interface

	Architecture
	Engine Module
	Service Module
	Framework Module
	View Module

	Case Studies
	Adding a Scheduling Policy
	Adding an Energy Profile
	Adding a Traffic Model
	Using an External Module to Generate Tasks
	Adding More Metrics

	Distribution
	Future Works
	Conclusion
	References

