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Abstract

When the study variable is functional and storage capacities are limited or trans-
mission costs are high, selecting with survey sampling techniques a small fraction of the
observations is an interesting alternative to signal compression techniques, particularly
when the goal is the estimation of simple quantities such as means or totals. We extend,
in this functional framework, model-assisted estimators with linear regression models
that can take account of auxiliary variables whose totals over the population are known.
We first show, under weak hypotheses on the sampling design and the regularity of the
trajectories, that the estimator of the mean function is uniformly consistent. Then, un-
der additional assumptions, we prove a functional central limit theorem and we assess
rigorously a fast technique based on simulations of Gaussian processes which is employed
to build asymptotic confidence bands.

Keywords : calibration, covariance function, functional linear model, GREG, Hájek esti-
mator, Horvitz-Thompson estimator, linear interpolation.

1 Introduction

Survey sampling techniques, which consist in randomly selecting only a part of the statistical
units of the population, are interesting alternatives to signal compression when one has to
deal with very large samples of quantities that evolve along time. Indeed they offer a good
trade-off between accuracy of the estimators and size of the data. Motivated by the esti-
mation of mean consumption electricity profiles measured every half an hour over one week,
Cardot and Josserand (2011) have introduced Horvitz-Thompson estimators of the mean
function and shown that, under weak hypotheses on the regularity of the functional trajec-
tories and the sampling design, one get uniformly convergent estimators. They also prove
a functional central limit theorem, in the space of continuous functions, that can, in part,
justify the construction of asymptotic confidence bands. More recently, Cardot et al. (2012b)
performed a comparison of different sampling approaches that can take auxiliary information
into account in such a functional context on another large sample of real load curves. They
conclude that very simple strategies based on simple sampling designs (such as simple random
sampling without replacement) could be improved if some well chosen auxiliary information,
whose total is known for the whole population, is also taken into account. Such an auxiliary
information may be used at the sampling stage, e.g. with probability proportional-to-size
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samplings, or at the estimation stage, e.g with model-assisted class of estimators. We focus
in this paper on model-assisted estimators.

A model is thus introduced to describe the relationship between the auxiliary variables
and the functional response. The considered model in Cardot et al. (2012b) is a functional
linear model (see Faraway (1997) or Ramsay and Silverman (2005)) so that the model-assisted
estimator can be seen as a direct extension, to a functional context, of the GREG estimator
studied in Robinson and Särndal (1983) and Särndal et al. (1992). Note also that from another
point of view this model-assisted approach can be seen as a calibration technique (Deville
and Särndal (1992)). Confidence bands are then built using a simulation technique developed
in Faraway (1997), Cuevas et al. (2006) and Degras (2011). We first estimate the covariance
function of the mean estimator and then, assuming asymptotic normality, perform simulations
of a centered Gaussian process whose covariance function is the covariance function estimated
at previous step. We can obtain an approximation to the law of the "sup" and deduce
confidence bands for the mean trajectory. In a recent work, Cardot et al. (2012a) have
given a rigorous mathematical justification of this technique for sampled functional data and
Horvitz-Thompson estimators for the mean. The required theoretical ingredients that can
justify such a procedure are the functional central limit theorem for the mean estimator,
in the space of continuous functions equipped with the sup-norm, as well as a uniformly
consistent estimator of the covariance function.

The aim of this paper is to show that such procedure can still be employed to build
confidence bands when considering model-assisted, or calibrated, estimators of the mean
function. In Section 2, we introduce notations and we suggest a slight modification of the
model assisted-estimators which permits to control the variance of the regression coefficient
estimator. Under classical assumptions on the sampling design and on the regularity of the
trajectories, we state, in Section 3, the uniform convergence of the model assisted-estimators
to the mean function. Under additional assumptions on the design we also prove a functional
central limit theorem and justify rigorously that the confidence bands built with the procedure
based on Gaussian process simulations attain asymptotically the desired level of confidence.
A brief discussion about possible extensions and future investigation is proposed in Section 5.
All the proofs are gathered in an Appendix.

2 Notations and estimators

2.1 The Horvitz Thompson estimator for functional data

Let us consider a finite population UN = {1, ..., N} of size N supposed to be known, and
suppose that, for each unit k of the population UN , we can observe a deterministic curve
Yk = (Yk(t))t∈[0,T ]. The target is the mean trajectory µN (t), t ∈ [0, T ], defined as follows:

µN (t) =
1

N

∑
k∈U

Yk(t). (1)

We consider a sample s, with known size n, drawn from UN according to a fixed-size
sampling design pN (s), where pN (s) is the probability of drawing the sample s. We suppose
that the first and second inclusion probabilities satisfy πk = P(k ∈ s) > 0, for all k ∈ UN ,
and πkl = P(k&l ∈ s) > 0 for all k, l ∈ UN , k 6= l.

Without auxiliary information, the mean curve µN (t) is often estimated by the Horvitz-
Thompson estimator, defined as follows for t ∈ [0, T ],

µ̂(t) =
1

N

∑
k∈s

Yk(t)

πk
=

1

N

∑
k∈U

Yk(t)

πk
1k, (2)
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where 1k is the sample membership indicator, 1k = 1 if k ∈ s and 1k = 0 otherwise. For
each t ∈ [0, T ], the estimator µ̂(t) is design-unbiased of µN (t), i.e. Ep(µ̂(t)) = µN (t), where
Ep[.] denotes expectation with respect to the sampling design.
The Horvitz-Thompson covariance function of µ̂ between two instants r and t, computed
with respect to the sampling design, is defined as follows

Covp(µ̂(r), µ̂(t)) =
1

N2

∑
k∈U

∑
l∈U

(πkl − πkπl)
Yk(r)

πk
· Yl(t)
πl

r, t ∈ [0, T ]. (3)

Note that for r = t, we obtain the Horvitz-Thompson variance function.

2.2 The mean curve estimator assisted by a functional linear model

Let us suppose now that for each unit k ∈ U we can also observe p real variables, X1, ..., Xp,
and let us denote by xk = (xk1, ..., xkp)

′, the value of the auxiliary variable vector for each
unit k in the population. We introduce an estimator based on a linear regression model that
can use these variables in order to improve the accuracy of µ̂. By analogy to the real case (see
e.g. Särndal et al. (1992)) we suppose that the relationship between the functional variable
of interest and the auxiliary variables is modeled by the superpopulation model ξ defined as
follows:

ξ : Yk(t) = x′kβ(t) + εkt, t ∈ [0, T ] (4)

where β(t) = (β1(t), . . . , βp(t))
′ is the vector of functional regression coefficients, εkt are inde-

pendent (across units) and centered continuous time processes, Eξ(εk) = 0, with covariance
function Covξ(εkt, εkr) = Γ(t, r), for (t, r) ∈ [0, T ] × [0, T ]. This model is a direct extension
to several variables of the functional linear model proposed by Faraway (1997).

If xk and Yk are known for all units k ∈ U and if the matrix G = 1
N

∑
U xkx

′
k is

invertible, it is possible to estimate β(t) by β̃(t) = G−1 1
N

∑
k∈U xkYk(t), the ordinary least

squares estimator. Then, the mean curve µN (t) can be estimated by the difference estimator
(see Särndal et al. (1992), Chapter 6) defined as follows for all t ∈ [0, T ],

µ̃(t) =
1

N

∑
k∈U

x′kβ̃(t)− 1

N

∑
k∈s

x′kβ̃(t)− Yk(t)
πk

(5)

=
1

N

∑
k∈U

Ỹk(t)−
1

N

∑
k∈s

Ỹk(t)− Yk(t)
πk

,

where Ỹk(t) = x′kβ̃(t).
To build an estimator of µN (t), we substitute each total in β̃(t) by its Horvitz-Thompson

estimator. Thus if the matrix Ĝ = 1
N

∑
k∈s

xkx
′
k

πk
is invertible, β̃(t) is estimated by:

β̂(t) = Ĝ−1
1

N

∑
k∈s

xkYk(t)

πk
, t ∈ [0, T ]. (6)

Remark that the denominator N is used in the expression of β̃(t) for asymptotic purposes and
need not to be estimated. The model-assisted estimator µ̂MA(t) is then defined by replacing
β̃(t) by β̂(t) in (5),

µ̂MA(t) =
1

N

∑
k∈U

Ŷk(t)−
1

N

∑
k∈s

Ŷk(t)− Yk(t)
πk

, t ∈ [0, T ], (7)
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where Ŷk(t) = x′kβ̂(t). Since
∑

k∈U Ŷk(t) =
(∑

k∈U xk
)′
β̂(t), the only required information

to build µ̂MA(t) is xk and Yk(t) for all the units k ∈ s as well as the population totals of the
auxiliary variables,

∑
k∈U xk.

Remark 1. If the vector of auxiliary information contains the intercept (constant term), then
it can be shown (see Särndal (1980)) that the Horvitz-Thompson estimator of the estimated
residuals Ŷk(t)−Yk(t) is equal to zero for each t ∈ [0, T ]. This means that the model-assisted
estimator µ̂MA reduces in this case to the mean in the population of the predicted values Ŷk,

µ̂MA(t) =
1

N

∑
U

Ŷk(t), t ∈ [0, T ].

Moreover, if only the intercept term is used, namely Yk(t) = β(t) + εkt for all k ∈ U, then the
estimator µ̂MA is simply the well known Hájek estimator,

µ̂MA(t) =

∑
s π
−1
k Yk(t)∑
s π
−1
k

, t ∈ [0, T ],

which is sometimes preferred to the Horvitz-Thompson estimator (see e.g. Särndal et al.
(1992), Chapter 5.7).

Remark 2. Estimator µ̂MA(t) may also be obtained by using a calibration approach (Deville
and Särndal (1992)) which consists in looking for weights wks, k ∈ s, that are as close as
possible, according to some distance, to the sampling weights 1/πk while estimating exactly
the population totals of the auxiliary information,∑

s

wksxk =
∑
U

xk.

Considering the chi-square distance leads to the following choice of weights

wks =
1

πk
−

(∑
s

xl
πl
−
∑
U

xl

)′(∑
s

xlx
′
l

πl

)−1
xk
πk

and the calibration estimator
∑

swksYk(t)/N for the mean µN (t) is equal to µ̂MA(t) defined
in (7). Using another distance (Deville and Särndal (1992)) would lead to an estimator for
the mean µN (t) that would be asymptotically equivalent to µ̂MA(t).

2.3 A regularized estimator for asymptotics

The construction of estimator µ̂MA(t) is based on the assumption that matrix Ĝ is invertible.
To show the uniform convergence, we consider a modification of Ĝ which will permit to control
the expected norm of its inverse. Such a trick has already been used for example in Bosq
(2000) and Guillas (2001). Since Ĝ is a p×p symmetric and non negative matrix it is possible
to write it as follows

Ĝ =

p∑
j=1

λj,nvjnv
′
jn, (8)

where λj,n is the j th eigenvalue, λ1,n ≥ .. ≥ λp,n ≥ 0, and vjn is the corresponding orthonor-
mal eigenvector. Let us consider a real number a > 0 and define the following regularized
estimator of G,

Ĝa =

p∑
j=1

max(λj,n, a) vjnv
′
jn. (9)
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It is clear that Ĝa is always invertible and

‖Ĝ−1a ‖ ≤ a−1, (10)

where ‖.‖ is the classical norm for matrices. Furthermore, if λp,n ≥ a then Ĝ = Ĝa. If a > 0 is
small enough, we show under standard conditions on the moments of the variables X1, . . . , Xp

and on the first and second order inclusion probabilities that P(λp,n ≤ a) = O(n−1) (see
Lemma A.1 in the Appendix).

Consequently, it is possible to estimate the mean function µN (t) by the following estimator

µ̂MA,a(t) =
1

N

∑
k∈U

Ŷk,a(t)−
1

N

∑
k∈s

Ŷk,a(t)− Yk(t)
πk

, t ∈ [0, T ], (11)

where Ŷk,a(t) = x′kβ̂a(t) and β̂a(t) = Ĝ−1a
1
N

∑
s
xkYk(t)
πk

.

2.4 Discretized observations

Note finally that with real data, we do not observe Yk(t) at all instants t in [0, T ] but only for
a finite set of D measurement times, 0 = t1 < ... < tD = T . In functional data analysis, when
the noise level is low and the grid of discretization points is fine, it is usual to perform a linear
interpolation or to smooth the discretized trajectories in order to obtain approximations of
the trajectories at every instant t ∈ [0, T ] (see Ramsay and Silverman (2005)).

If there are no measurement errors, if the trajectories are regular enough (but not nec-
essarily differentiable) and if the grid of discretization points is dense enough, Cardot and
Josserand (2011) showed that linear interpolation can provide sufficiently accurate approx-
imations to the trajectories so that the approximation error can be neglected compared to
the sampling error for the Horvitz-Thompson estimator. Note also that even if the observa-
tions are corrupted by noise, it has been shown on simulations in Cardot et al. (2012a) that
smoothing does really improve the accuracy of the Horvitz-Thompson estimator only when
the noise level is high.

Thus, for each unit k in the sample s, we build the interpolated trajectory

Yk,d(t) = Yk(ti) +
Yk(ti+1)− Yk(ti)

ti+1 − ti
(t− ti), t ∈ [ti, ti+1], (12)

and we define β̂a,d(t) the estimator of β(t) based on the discretized observations as follows

β̂a,d(t) = Ĝ−1a
1

N

∑
s

xkYk,d(t)

= β̂a(ti) +
β̂a(ti+1)− β̂a(ti)

ti+1 − ti
(t− ti). (13)

Therefore, the estimator of the mean curve µN (t) based on the discretized observations
is defined by the interpolated estimator of µ̂MA,a(ti) and µ̂MA,a(ti+1) as follows,

µ̂MA,d(t) = µ̂MA,a(ti) +
µ̂MA,a(ti+1)− µ̂MA,a(ti)

ti+1 − ti
(t− ti)

=
1

N

∑
k∈U

Ŷk,d(t)−
1

N

∑
k∈s

(Ŷk,d(t)− Yk,d(t))
πk

, t ∈ [ti, ti+1] (14)

where Ŷk,d(t) = x′kβ̂a,d(t).
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3 Asymptotic properties under the sampling design

All the proofs are postponed in an Appendix.

3.1 Assumptions

To derive the asymptotic properties under the sampling design p(·) of µ̂MA,d we must suppose
that the both the sample size and the population size become large. More precisely, we
consider the superpopulation framework introduced by Isaki and Fuller (1982) with a sequence
of growing and nested populations UN with size N tending to infinity and a sequence of
samples sN of size nN drawn from UN according to the sampling design pN (sN ). The first
and second order inclusion propabilities are respectively denoted by πkN and πklN . For
simplicity of notations and when there is no ambiguity, we drop the subscript N . To prove
our asymptotic results we need the following assumptions.

A1. We assume that lim
N→∞

n

N
= π ∈]0, 1[.

A2. We assume that min
k∈U

πk ≥ λ > 0, min
k 6=l

πkl ≥ λ∗ > 0 and

lim sup
N→∞

nmax
k 6=l
|πkl − πkπl| < C1 <∞

A3. There are two positive constants C2 et C3 and 1 ≥ β > 1/2 such that, for all N and
for all (r, t) ∈ [0, T ]× [0, T ],

1

N

∑
k∈U

Yk(0)2 < C2 and
1

N

∑
k∈U
{Yk(t)− Yk(r)}2 < C3|t− r|2β.

A4. We assume that there is a positive constant C4 such that for all k ∈ U, ‖xk‖2 < C4.

A5. We assume that, for N > N0, the matrix G is invertible and that the number a chosen
before satisfies ‖G−1‖ < a−1.

Assumptions A1 and A2 are classical hypotheses in survey sampling and deal with the
first and second order inclusion probabilities. They are satisfied for many usual sampling
designs with fixed size (see for example Hájek (1981), Robinson and Särndal (1983) and
Breidt and Opsomer (2000)).

Assumption A3 is a minimal regularity condition already required in Cardot and Josserand
(2011). Even if pointwise consistency, for each fixed value of t, can be proved without any
condition on the Hölder coefficient β, this regularity condition is necessary to get a uniform
convergence result. A counterexample, in the simpler case of i.i.d copies of a bounded and
uniformly continuous random function defined on a compact interval that do not satisfy the
Central Limit Theorem in the space of continuous functions unless β > 1/2 is given in Hahn
(1977). This hypothesis also implies that the trajectories of residual processes εkt, see (4),
are regular enough (but not necessarily differentiable). Assumption A4 could certainly be
weakened at the expense of longer proofs. Assumption A5 means that for all u ∈ R, with
u 6= 0, we have u′Gu ≥ au′u. The same kind of assumption is required in Isaki and Fuller
(1982) to get the pointwise convergence in probability whereas Robinson and Särndal (1983)
introduce a much stronger condition (condition A7 in their article) which directly deals with
the mean square convergence of the estimator of the vector β of regression coefficients.
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3.2 Uniform convergence of µ̂MA,d

We first state the uniform consistency of the estimator β̂a,d(t) towards its population coun-
terpart β̃(t) under conditions on the number and the repartition of discretization points.

Proposition 3.1. Let assumptions (A1)-(A5) hold. If the discretization scheme satisfies
limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1) then there is a constant C > 0 such that, for
all n,

√
n Ep

{
sup
t∈[0,T ]

∥∥∥β̂a,d(t)− β̃(t)
∥∥∥} ≤ C.

We can now state a similar type of result for the estimator of the mean function.

Proposition 3.2. Let assumptions (A1)-(A5) hold. If the discretization scheme satisfies
limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1) then there is a constant C > 0 such that, for
all n,

√
n Ep

{
sup
t∈[0,T ]

| µ̂MA,d(t)− µ(t) |

}
≤ C.

We deduce from Proposition 3.2 that estimator µ̂MA,d(t) is asymptotically unbiased as
well as design consistent. Note that the approximation error (with linear interpolation) is
negligible, compared to the sampling variability, under the additional assumption on the
repartition of the discretization points.

Let us also remark that, for each t,

µ̂MA,a(t)− µ̃(t) =
1

N

∑
k∈U

(
1− 1k

πk

)
x′k

(
β̂a(t)− β̃(t)

)
, (15)

where 1k is the sample membership, so that it is not difficult to prove, under previous
assumptions and by using lemma A.4 in the Appendix, that

√
n (µ̂MA,d(t)− µ̃(t)) = op(1), t ∈ [0, T ]. (16)

3.3 Covariance function estimation under the sampling design

We undertake in this section a detailed study of the covariance function of estimator µ̂MA,d.
The covariance function is computed with respect to the sampling design p(·) and from rela-
tion (14), we can deduce that µ̂MA,d is a nonlinear function of Horvitz-Thompson estimators,
so the usual Horvitz-Thompson covariance formula given by (3) can not be used anymore.
Nevertheless, in light of relation (16), the covariance function of µ̂MA,d between two instants
r and t may be approximated by the covariance Covp(µ̃(r), µ̃(t)), which in turn is equal to
the Horvitz-Thompson covariance applied to the residuals Yk− Ỹk. Let us denote by γMA the
approximative covariance function of µ̂MA,d defined as follows

γMA(r, t) =
1

N2
Covp

(∑
k∈s

Yk(r)− Ỹk(r)
πk

,
∑
k∈s

Yk(t)− Ỹk(t)
πk

)

=
1

N2

∑
k∈U

∑
l∈U

(πkl − πkπl)
Yk(r)− Ỹk(r)

πk

Yl(t)− Ỹl(t)
πl

, r, t ∈ [0, T ]. (17)
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This approximation explains that model-assisted estimators will perform much better than
Horvitz-Thompson estimators if the residuals Yk(t)− Ỹk(t) are small compared to Yk(t). The
covariance function γMA(r, t) can be estimated by the Horvitz-Thompson variance estimator
for the estimated residuals Yk,d(t)− Ŷk,d(t),

γ̂MA,d(r, t) =
1

N2

∑
k,l∈s

πkl − πkπl
πkl

·
Yk,d(r)− Ŷk,d(r)

πk
·
Yl,d(t)− Ŷl,d(t)

πl
, r, t ∈ [0, T ], (18)

where Ŷk,d(t) = x′kβ̂a,d(t).
To prove the consistency of the covariance estimator γ̂MA,d(r, t), let us introduce additional
assumptions that involve higher-order inclusion probabilities as well as conditions on the
fourth order moments of the trajectories.

A6. We assume that limN→∞max(k,l,k′,l′)∈D4,n
|E{(1kl−πkl)(1k′l′−πk′l′)}| = 0 where Dt,N

is the set of all distinct t-tuples (i1, ..., it) from UN

A7. There are two positive constants C5 and C6 such that N−1
∑

U Yk(0)4 < C5 and
N−1

∑
{Yk(t)− Yk(r)}4 < C6|t− r|4β , for all (r, t) ∈ [0, T ]2

Condition (A6) has already been assumed by Breidt and Opsomer (2000) in a nonpara-
metric model-assisted context and in Cardot and Josserand (2011) for Horvitz-Thompson
estimators. It can be checked that is it fulfilled for simple random sampling without replace-
ment (SRSWOR) or stratified sampling with SRSWOR within each strata.

Proposition 3.3. Assume (A1)-(A7) hold and the sequence of discretization schemes sat-
isfy limN→∞maxi={1,..,dN−1} |ti+1 − ti| = o(1). Then, as N tends to infinity, we have for all
(r, t) ∈ [0, T ]2,

n Ep {|γ̂MA,d(r, t)− γMA(r, t)|} → 0

and

n Ep

{
sup
t∈[0,T ]

|γ̂MA,d(t, t)− γMA(t, t)|

}
→ 0.

Since nγMA(r, t) remains bounded, previous proposition tells us that γ̂MA,d is consistent
pointwise and the variance function estimator is uniformly convergent. Note also that the
condition on the number of discretization points is much weaker than in Proposition 3.2
because we do not give here rates of convergence. To obtain such rates, we would also need
to impose additional assumptions on the sampling design.

3.4 Asymptotic normality and confidence bands

A8. We assume that for each fixed value of t ∈ [0, 1],

{γMA(t, t)}−1/2 (µ̃(t)− µ(t)) → N (0, 1)

in distribution when N tends to infinity.

This pointwise assumption is required in order to get the asymptotic normality of the
functional estimator µ̂MA,d in the space of continuous functions. This assumption is satisfied
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for usual sampling designs (see e.g. Fuller (2009), Chapter 2.2). Note that using relation
(16), we can write for any fixed value t ∈ [0, T ],

µ̂MA,d(t)− µ(t) = µ̃(t)− µ(t) + op(n
−1/2),

and deduce that
√
n (µ̂MA,d(t)− µ(t)) is also pointwise asymptotically Gaussian when condi-

tions of Proposition 3.1 hold. Let us state now a much stronger result which indicates that
the convergence to a Gaussian distribution also occurs for the trajectories, in the space of
continuous functions.

Proposition 3.4. Assume (A1)-(A5) and (A8) hold. If the discretization scheme satisfies
limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1), we have when n tends to infinity

√
n {µ̂MA,d − µ} Z (19)

where  indicates the convergence in distribution in C[0, T ] with the uniform topology and Z
is a Gaussian process taking values in C[0, T ] with mean 0 and covariance function γZ(r, t) =
limn→+∞ nγMA(r, t).

We examine now the asymptotic coverage of confidence bands for µ of the form{[
µ̂MA,d(t)± c

σ̂(t)√
n

]
, t ∈ [0, T ]

}
, (20)

where c is a suitable number and σ̂(t) =
√
nγ̂MA,d(t, t).

Given a confidence level 1 − α ∈]0, 1[, one way to build such confidence bands, that is
to say one way to find an adequate value for cα, is to perform simulations of a centered
Gaussian functions Ẑ defined on [0, T ] with mean 0 and covariance function nγ̂MA,d(r, t) and
then compute the quantile of order 1−α of supt∈[0,T ]

∣∣∣Ẑ(t)/σ̂(t)
∣∣∣ . In other words, we look for

a constant cα, which is in fact a random variable since it depends on the estimated covariance
function γ̂MA,d, such that

P
(
|Ẑ(t)| ≤ cα

σ̂(t)√
n
, ∀t ∈ [0, T ] | γ̂MA,d

)
= 1− α (21)

The asymptotic coverage of this simulation based procedure has been rigorously studied for
the Horvitz-Thompson estimators of the mean of sampled and noisy trajectories in Cardot
et al. (2012a) whereas Cardot et al. (2012b) have successfully employed this approach on
real load curves with model-assisted estimators. Next proposition, which can be seen as a
functional version of Slutsky’s lemma, provides a rigorous justification of this latter technique
:

Proposition 3.5. Assume (A1)-(A8) hold and the discretization scheme satisfies
limN→∞maxi={1,..,dN−1} |ti+1 − ti|2β = o(n−1).

Let Z be a Gaussian process with mean zero and covariance function γZ (as in Proposition
3.4). Let (ẐN ) be a sequence of processes such that for each N , conditionally on the estimator
γ̂MA,d defined in (18), ẐN is Gaussian with mean zero and covariance nγ̂MA,d. Suppose that
γZ(t, t) is a continuous function and inft γZ(t, t) > 0. Then, as N → ∞, the following
convergence holds uniformly in c,

P
(
|ẐN (t)| ≤ c σ̂(t), ∀t ∈ [0, T ]

∣∣ γ̂MA,d

)
→ P (|Z(t)| ≤ c σ(t), ∀t ∈ [0, T ]) ,

where σ̂(t) =
√
nγ̂MA,d(t, t) and σ(t) =

√
γZ(t, t).

As in Cardot et al. (2012a), it is possible to deduce from previous proposition that the
chosen value ĉα = cα(γ̂MA,d) provides asymptotically the desired coverage since it satisfies

lim
N→∞

P
(
µ(t) ∈

[
µ̂MA,d(t)± ĉα

σ̂(t)√
n

]
, ∀t ∈ [0, T ]

)
= 1− α.

9



4 Concluding remarks

We have made in this paper an asymptotic study of model-assisted estimators, via linear
regression models with functional response, when the target is the mean of functional data
with discrete observations in time. This work can be extended in many directions. For
example, one could consider more sophisticated regression models than model (4) such as non
linear or nonparametric models with functional response by adapting, in a survey sampling
context, models studied in the functional data analysis literature (see Chiou et al. (2004),
Cardot (2007), or Ferraty et al. (2011)). However, one important drawback of such more
sophisticated approaches is that they would require to know xk for all the units k in the
population.

Another direction for future investigation would be to consider noisy and possibly sparse
measurements in time. For the Horvitz-Thompson estimator, local polynomials are employed
in Cardot et al. (2012a) in order to first smooth the trajectories and it would certainly be
possible to adapt the techniques developed in this work to the model-assisted estimation
procedure.

Another promising direction for future research would be to adapt model-assisted esti-
mators for time-varying samples. When one works with large networks of sensors it can be
possible to consider a sequence of samples s(t) that evolve along time. A preliminary work
(see Degras (2012)), which focuses on Horvitz-Thompson estimators and stratified sampling
clearly shows that such time-varying samples can outperform sampling design that are fixed
in time.

A Proofs

Throughout the proofs we use the letter C to denote a generic constant whose value may
vary from place to place. We also denote by αk = 1k

πk
− 1, k ∈ U and by ∆kl = πkl − πkπl,

k, l ∈ U.

A.1 Some useful Lemmas

Note that the result showed in the first Lemma is sometimes stated as an assumption (see
e.g Robinson and Särndal (1983)). It is used to prove the convergence of the estimator of
the mean in terms of mean square error.

Lemma A.1. Let assumptions (A1), (A2) and (A4), (A5) hold. Then, there is a constant
C such that

n Ep
(
‖Ĝ−1a −G−1‖2

)
≤ C.

Proof . The proof follows the lines of (Bosq (2000), Theorem 8.4) and (Cardot et al. (2010),
Proposition 3.1). Using assumption (A5) and inequality (10), we have

‖Ĝ−1a −G−1‖ ≤ ‖Ĝ−1a ‖.‖Ĝa −G‖.‖G−1‖
≤ a−2‖Ĝa −G‖,

which implies

Ep
(
‖Ĝ−1a −G−1‖2

)
≤ a−4Ep

(
‖Ĝa −G‖2

)
. (22)
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To bound Ep
(
‖Ĝa −G‖2

)
, we use the following decomposition.

Ep
(
‖Ĝa −G‖2

)
= Ep

(
‖Ĝa −G‖21{Ĝa=Ĝ}

)
+ Ep

(
‖Ĝa −G‖21{Ĝa 6=Ĝ}

)
≤ Ep

(
‖Ĝ−G‖2

)
+ 2Ep

(
‖Ĝa − Ĝ‖21{Ĝa 6=Ĝ}

)
+ 2Ep

(
‖Ĝ−G‖21{Ĝa 6=Ĝ}

)
≤ 3Ep(‖Ĝ−G‖2) + 2Ep

(
‖Ĝa − Ĝ‖21{Ĝa 6=Ĝ}

)
. (23)

Next, we show that (see also Cardot et al. (2010), proof of Proposition 3.1),

Ep‖Ĝ−G‖22 = O(n−1) (24)

where || · ||2 is the trace norm defined by ‖A‖22 = tr(A′A). We have, with assumptions (A1),
(A2) and (A4) that,

Ep‖Ĝ−G‖22 =
1

N2
Ep

(∑
U

∑
U

αkαltr[xkx′kxlx
′
l]

)

≤ 1

N2

1

λ

∑
U

‖xkx′k‖22 + max
k 6=l
|∆kl|

1

N2λ2

∑
U

∑
U

‖xk‖2‖xl‖2

≤ 1

n

(
n

N

1

λ
+ nmax

k 6=l
|∆kl|

1

λ2

)
C2
2

≤ C

n
.

On the other hand,
Ep
(
‖Ĝa − Ĝ‖21{Ĝa 6=Ĝ}

)
≤ a2P(Ĝa 6= Ĝ)

since

‖Ĝa − Ĝ‖2 =

∥∥∥∥∥∥
p∑
j=1

[max(λj,n, a)− λj,n]vjnv
′
jn

∥∥∥∥∥∥
2

≤ sup
j=1,...,p

|max(λj,n, a)− λj,n|2

≤ a2.

Moreover, since a < λp =
∥∥G−1∥∥−1 and by Chebychev inequality, we can bound

P(Ĝa 6= Ĝ) = P(λpn < a)

≤ P
(
|λpn − λp| ≥

|λp − a|
2

)
,

≤ 4

(λp − a)2
Ep
(
|λpn − λp|2

)
≤ 4

(λp − a)2
Ep
(
‖Ĝ−G‖2

)
,

because it is known that the eigenvalue map is Lipschitzian for symmetric matrices (see
Bhatia (1997), Chapter 3). This means that for two p×p symmetric matrices A and B, with
eigenvalues λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) (resp. λ1(B) ≥ · · · ≥ λp(B)), we have

max
j∈{1,...,p}

|λj(A)− λj(B)| ≤ ‖A−B‖ .

11



Hence, for some constant C

Ep
(
‖Ĝa −G‖2

)
≤ 3Ep

(
‖Ĝ−G‖2

)
+ 2a2P(Ĝa 6= Ĝ)

≤ C

n
. (25)

Combining (22), (23), (24) and (25), the proof is complete. �

Lemma A.2. Under assumptions (A1), (A2) and (A4), there is a constant C such that, for
all n,

n Ep

∥∥∥∥∥ 1

N

∑
U

(
1k

πk
− 1

)
xk

∥∥∥∥∥
2

≤ C.

Proof . Expanding the square norm, we have

nEp

∥∥∥∥∥ 1

N

∑
U

αkxk

∥∥∥∥∥
2

= nEp

(
1

N2

∑
k∈U

∑
l∈U

αkαlx
′
kxl

)

≤ n

N2

∑
k∈U

∑
l∈U

∣∣∣∣ ∆kl

πkπl

∣∣∣∣x′kxl
≤

[
n

N

1

λ
+

1

λ2
nmax

k 6=l
|∆kl|

]
1

N

∑
k∈U
‖xk‖2

and the result follows with hypotheses (A1), (A2) and (A4). �

Lemma A.3. Under assumptions (A2)-(A5), we have

i) ‖β̃(t)− β̃(r)‖2 ≤ a−2C3C4|t− r|2β.

ii) ‖β̂a(t)− β̂a(r)‖2 ≤ a−2

λ2
C3C4|t− r|2β.

Proof For i), we just need to remark that, under hypotheses (A3), (A4) and (A5),

‖β̃(t)− β̃(r)‖2 =

∥∥∥∥∥G−1 1

N

∑
U

xk(Yk(t)− Yk(r)

∥∥∥∥∥
2

≤ ‖G−1‖2
(

1

N

∑
U

‖xk‖2
)(

1

N

∑
U

(Yk(t)− Yk(r))2
)

≤ a−2C4C3|t− r|2β.

The proof of point ii) is similar, but also requires the use of lower bounds on the first
order inclusion probabilities (assumption (A2)),

‖β̂a(t)− β̂a(r)‖2 =

∥∥∥∥∥Ĝ−1a 1

N

∑
U

1k

πk
xk(Yk(t)− Yk(r)

∥∥∥∥∥
2

≤ 1

λ2
‖Ĝ−1a ‖2

(
1

N

∑
U

‖xk‖2
)(

1

N

∑
U

(Yk(t)− Yk(r))2
)

≤ a−2
1

λ2
C4C3|t− r|2β.
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�

The following Lemma states the pointwise mean square convergence for any fixed value
of t ∈ [0, T ].

Lemma A.4. Suppose that assumptions (A1)-(A5) hold. Then, there is a positive constant
ζ1 such that, for all t ∈ [0, T ],

nEp
(
‖β̂a(t)− β̃(t)‖2

)
≤ ζ1.

Proof . The demonstration is similar to the proof of Lemma A.5 and is thus omitted. �

Lemma A.5. Suppose that assumptions (A1)-(A5) hold. Then, there is a positive constant
ζ2 such that

nEp
(
‖β̂a(t)− β̃(t)− β̂a(r) + β̃(r)‖2

)
≤ ζ2|t− r|2β.

Proof . A direct decomposition leads to

n‖β̂a(t)− β̃(t)− β̂a(r) + β̃(r)‖2

≤ n

∥∥∥∥∥(Ĝ−1a −G−1)
1

N

∑
U

1k

πk
xk(Yk(t)− Yk(r)) + G−1

1

N

∑
U

(
1k

πk
− 1

)
xk(Yk(t)− Yk(r))

∥∥∥∥∥
2

≤ 2A2
1N + 2A2

2N , (26)

where A2
1N = n‖Ĝ−1a −G−1‖2

∥∥∥ 1
N

∑
U

1k
πk
xk(Yk(t)− Yk(r))

∥∥∥2 and

A2
2N = n‖G−1‖2

∥∥∥ 1
N

∑
U αkxk(Yk(t)−Yk(r))

∥∥∥2.Using now assumptions (A2)-(A4) and Cauchy-
Schwarz inequality, we get

A2
1N ≤ n‖Ĝ−1a −G−1‖2

(
1

λ2
1

N

∑
U

‖xk‖2
)(

1

N

∑
U

(Yk(t)− Yk(r))2
)

≤ n‖Ĝ−1a −G−1‖2 1

λ2
C3C4|t− r|2β.

Using now Lemma A.1, we can bound

Ep(A2
1N ) ≤ C|t− r|2β, (27)

for some constant C. Now, with assumptions (A1)-(A5) and following the same arguments
as in the proof of lemma A.2, we also have

Ep(A2
2N ) ≤ n‖G−1‖2Ep

∥∥∥∥∥ 1

N

∑
U

αkxk(Yk(t)− Yk(r))

∥∥∥∥∥
2


≤
(
n

N

1

λ
+
nmaxk 6=l |∆kl|

λ2

)
C3C4a

−2|t− r|2β ≤ C|t− r|2β. (28)

for some positive constant C. Combining (26), (27) and (28), the result is proved.
�
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A.2 Proof of Proposition 3.1 and Proposition 3.2

The proof of Proposition 3.1 is omitted. It is analogous to the proof of Proposition 3.2, which
is given below. The different steps are similar to the proof of Proposition 1 in Cardot and
Josserand (2011).

Let us decompose, for t ∈ [0, T ],

sup
t∈[0,T ]

|µ̂MA,d(t)− µ(t)| ≤ sup
t∈[0,T ]

|µ̂MA,d(t)− µ̂MA,a(t)|+ sup
t∈[0,T ]

|µ̂MA,a(t)− µ(t)| (29)

and study each term at the right-hand side of the inequality separately.

Step 1. The interpolation error supt∈[0,T ] |µ̂MA,d(t)− µ̂MA,a(t)|.

Consider t ∈ [ti, ti+1[ and write

|µ̂MA,d(t)− µ̂MA,a(t)| ≤ |µ̂MA,a(ti)− µ̂MA,a(t)|+ |µ̂MA,a(ti+1)− µ̂MA,a(ti)|. (30)

Under assumptions (A2)-(A5) and using Lemma A.3, ii), we get

|µ̂MA,a(t)− µ̂MA,a(r)| ≤

∣∣∣∣∣ 1

N

∑
U

αkx
′
k(β̂a(t)− β̂a(r))

∣∣∣∣∣+
1

N

∑
s

|Yk(t)− Yk(r)|
πk

≤
(

1 +
1

λ

)√
C4‖β̂a(t)− β̂a(r)‖+

1

λ

(
1

N

∑
U

(Yk(t)− Yk(r))2
)1/2

≤
(
(1 + λ−1)C4a

−1 + 1
)
λ−1

√
C3|t− r|β.

So, there is a positive constant C such that

|µ̂MA,a(t)− µ̂MA,a(r)| ≤ C|t− r|β

and consequently,

|µ̂MA,d(t)− µ̂MA,a(t)| ≤ C[|ti − t|β + |ti+1 − ti|β]

≤ 2C|ti+1 − ti|β.

Hence, since by hypothesis, limN→∞maxi={1,...,dN−1} |ti+1 − ti|β = o(n−1/2), we have

sup
t∈[0,T ]

√
n|µ̂MA,d(t)− µ̂MA,a(t)| = o(1). (31)

Step 2. The estimation error supt∈[0,T ] |µ̂MA,a(t)− µ(t)|.

We use the following decomposition:

sup
t∈[0,T ]

|µ̂MA,a(t)− µ(t)| ≤ |µ̂MA,a(0)− µ(0)|+ supr,t∈[0,T ]|µ̂MA,a(t)− µ(t)− µ̂MA,a(r) + µ(r)|.

(32)

Writing,

µ̂MA,a(0)− µ(0) =
1

N

∑
U

αkYk(0)− 1

N

∑
U

αkŶk(0)

=
1

N

∑
U

αkYk(0)− 1

N2

∑
U

αkx
′
kĜ
−1
a

∑
s

xlYl(0)

πl
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we directly get, with hypothesis A1-A3 and with similar arguments as in the proof of Lemma
A.2, that for some constant C,

Ep (µ̂MA,a(0)− µ(0))2 ≤ C

n
. (33)

The second term at the right-hand side in (32) is dealt with maximal inequalities. More
exactly, we use corollary 2.2.5 in van der Vaart and Wellner (2000). Consider for this, the
Orlicz norm of some random variable X which is defined as follows

||X||ψ =
√

Ep(ψ(X)).

For the particular case ψ(u) = u2, the Orlicz norm is simply the well-known L2 norm,
||X||ψ =

√
Ep(X2). Let us introduce for (r, t) ∈ [0, T ]2, the semimetric d(r, t) defined by

d2(r, t) =
∥∥√n|µ̂MA,a(t)− µ(t)− µ̂MA,a(r)− µ(r)|

∥∥2
ψ

= nEp
(
|µ̂MA,a(t)− µ(t)− µ̂MA,a(r) + µ(r)|2

)
and consider D(ε, d), the packing number, which is defined as the maximum number of points
in [0, T ] whose distance between each pair is strictly larger than ε. Then, corollary 2.2.5 in
van der Vaart and Wellner (2000) states that there is a constant K > 0 such that∣∣∣∣∣

∣∣∣∣∣ sup
(r,t)∈[0,T ]2

√
n|µ̂MA,a(t)− µ(t)− µ̂MA,a(r)− µ(r)|

∣∣∣∣∣
∣∣∣∣∣
ψ

≤ K

∫ T

0
ψ−1(D(ε, d))dε. (34)

We show below that there is a constant C such that d2(r, t) ≤ C|t − r|2β and thus, since
β > 1/2, the integral at the right-hand side of (34) is finite.

Let us first decompose

d2(r, t) ≤ 2d21(r, t) + 2d22(r, t) (35)

where
d21(r, t) = nEp(|µ̂MA,a(t)− µ̃(t)− µ̂MA,a(r) + µ̃(r)|2) (36)

and
d22(r, t) = nEp(|µ̃(t)− µ(t)− µ̃(r) + µ(r)|2). (37)

By assumptions (A2)-(A4) and Lemma A.5, we can bound, for some constant C,

d21(r, t) ≤ Ep

n
∥∥∥∥∥ 1

N

∑
U

αkxk

∥∥∥∥∥
2

‖β̂a(t)− β̃(t)− β̂a(r) + β̃(r)‖2


≤
(

1 +
1

λ

)2

C4ζ2|t− r|2β := C|t− r|2β. (38)

Considering now d2(r, t), we have

d22(r, t) = nEp

[
1

N

∑
U

αk

[
Yk(t)− Yk(r)− x′k(β̃(t)− β̃(r))

]]2
≤ 2Ep(A2

N ) + 2Ep(B2
N ) (39)

where A2
N = n

(
1
N

∑
U αk [Yk(t)− Yk(r)]

)2 and B2
N = n

(
1
N

∑
U αkx

′
k(β̃(t)− β̃(r))

)2
. With

hypotheses (A1)-(A3), one can easily obtain that there is a positive constant C such that

Ep(A2
N ) ≤ C|t− r|2β (40)
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and thanks to Lemma A.2 and to Lemma A.3, we can bound

Ep(B2
N ) ≤ Ep

n ∥∥∥∥∥ 1

N

∑
U

αkxk

∥∥∥∥∥
2
 ‖β̃(t)− β̃(r)‖2

≤ C|t− r|2β. (41)

Combining now (40) and (41) with (35) and (38), we get that

d2(r, t) ≤ C|t− r|2β, (42)

for some constant C.
Using now (42), it is clear that the packing number is bounded as follows D(ε, d) =

O(ε−1/β). Consequently, the integral at the right-hand side of (34) is finite when β > 1/2.
Inserting (33) and (34) in (32), the proof of step 2 is complete.

A.3 Proof of the consistency of the covariance function

We first prove that for any (r, t) ∈ [0, T ]2, the estimator γ̂MA,d(r, t) of the covariance function
converges to γMA(r, t).

Then we prove the uniform convergence of the variance estimator γ̂MA,d(t, t) by showing
its convergence in distribution to zero in the space of continuous functions. The proof is
decomposed into two classical steps (see Billingsley (1968)). We first show the pointwise
convergence, by considering the convergence of all finite linear combinations, and then we
check that the sequence is tight by bounding the increments.

Step 1. Pointwise convergence

We want to show, that for each (t, r) ∈ [0, T ]2, we have

nEp {| γ̂MA,d(r, t)− γMA(r, t) |} → 0, when N →∞.

Let us decompose

n(γ̂MA,d(r, t)− γMA(r, t)) = n(γ̂MA,d(r, t)− γ̂MA,a(r, t)) + n(γ̂MA,a(r, t)− γMA(r, t))

where γ̂MA,a(r, t) is defined by

γ̂MA,a(r, t) =
1

N2

∑
k,l∈s

∆kl

πkl

Yk(r)− Ŷk,a(r)
πk

·
Yl(t)− Ŷl,a(t)

πl

We study separately the interpolation and the estimation errors.

Interpolation error

Let us suppose that t ∈ [ti, ti+1[, r ∈ [ti′ , ti′+1[. We have n(γ̂MA,d(r, t)− γ̂MA,a(r, t)) ≤ A+B,
with

A =
n

N2

∑
k,l∈U

|∆kl|
πklπkπl

|(Yk,d(r)− Yk(r))(Yl,d(t)− Yl(t))

+(Yk,d(r)− Yk(r))(Yl(t)− Ŷl,d(t)) + (Yk(r)− Ŷk,d(r))(Yl,d(t)− Yl(t))|
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and

B =
n

N2

∑
k,l∈U

|∆kl|
πklπkπl

∣∣∣∣∣(Yk(r)− Ŷk,d(r))(Yl(t)− Ŷl,d(t))− (Yk(r)− Ŷk,a(r))(Yl(t)− Ŷl,a(t))
∣∣∣∣∣

=
n

N2

∑
k,l∈U

|∆kl|
πklπkπl

∣∣∣∣∣Yk(r)(Ŷl,a(t)− Ŷl,d(t)) + Yl(t)(Ŷk,a(r)− Ŷk,d(r)) + Ŷk,d(r)Ŷl,d(t)− Ŷk,a(r)Ŷl,a(t)

∣∣∣∣∣.
For t ∈ [ti, ti+1], we can write

|Yl,d(t)− Yl(t)| ≤ |Yl(ti)− Yl(t)|+ |Yl(ti+1)− Yl(ti)|

and
|Ŷl,a(t)− Ŷl,d(t)| ≤ |Ŷl,a(t)− Ŷl,a(ti)|+ |Ŷl,a(ti+1)− Ŷl,d(ti)|

We have that 1
N

∑
U (Yl,d(t)−Yl(t))2 ≤ C[|ti−t|2β+|ti+1−ti|2β] and 1

N

∑
U (Yl(t)−Ŷl,d(t))2 =

O(1). Thanks to Lemma A.3, we can bound

|Ŷl,a(ti)− Ŷl,a(t)| ≤ C4a
−1 1

λ
C

1/2
3 |ti − t|

β ≤ C4a
−1 1

λ
C

1/2
3 |ti+1 − ti|β.

Under the assumption on the grid of discretization points, one can get after some algebra
that

n|γ̂MA,d(r, t)− γ̂MA,a(r, t)| = o(1).

Estimation error

Consider now,

n(γ̂MA,a(r, t)− γMA(r, t)) =
n

N2

∑
k

∑
l

∆kl

πkπl

(
1kl

πkl
− 1

)
[Yk(t)− Ỹk(t)][Yl(r)− Ỹl(r)]

+
n

N2

∑
k

∑
l

∆kl

πkπl

1kl

πkl
[Yk(t)− Ỹk(t)][Ỹl(r)− Ŷl,a(r)]

+
n

N2

∑
k

∑
l

∆kl

πkπl

1kl

πkl
[Ỹk(t)− Ŷk,a(t)][Yl(r)− Ỹl(r)]

+
n

N2

∑
k

∑
l

∆kl

πkπl

1kl

πkl
[Ỹk(t)− Ŷk,a(t)][Ỹl(r)− Ŷl,a(r)]

:= A1(r, t) +A2(r, t) +A3(r, t) +A4(r, t). (43)

Let us define ẽk(t) = Yk(t)− Ỹk(t) and first show that Ep(A1(r, t)
2)→ 0 when N →∞.

Ep(A1(r, t)
2) = Ep

 n2
N4

∑
k,l

∑
k′,l′

∆kl

πkπl

(
1kl

πkl
− 1

)
∆k′l′

πk′πl′

(
1k′l′

πk′l′
− 1

)
ẽk(t)ẽl(r)ẽk′(t)ẽl′(r)


= Ep

[
n2

N4

∑
k

∑
k′

1− πk
πk

(
1k

πk
− 1

)
1− πk′
πk′

(
1k′

πk′
− 1

)
ẽk(t)ẽk(r)ẽk′(t)ẽk′(r)

]

+2Ep

 n2
N4

∑
k

∑
k′,l′:k′ 6=l′

1− πk
πk

(
1k

πk
− 1

)
∆k′l′

πk′πl′

(
1k′l′

πk′l′
− 1

)
ẽk(t)ẽk(r)ẽk′(t)ẽl′(r)


+Ep

 n2
N4

∑
k,l:k 6=l

∑
k′,l′:k′ 6=l′

∆kl

πkπl

(
1kl

πkl
− 1

)
∆k′l′

πk′πl′

(
1k′l′

πk′l′
− 1

)
ẽk(t)ẽl(r)ẽk′(t)ẽl′(r)


:= a1 + a2 + a3. (44)

17



The hypotheses on the moments of the inclusion probabilities and Lemma A.6 give us

a1 ≤
(
n2

N3

1

λ3
+
n2

N2

maxk 6=k′ |∆kk′ |
λ4

)
ζ4

as well as

a3 ≤
(nmaxk 6=l |∆kl|)2

λ4λ∗2
max

(k,l,k′,l′)∈D4,n

|Ep{(1kl − πkl)(1k′l′ − πk′l′)}|ζ5

so that a1 → 0 and a3 → 0 when N → ∞. Then, the Cauchy-Schwarz inequality allows us
to get that a2 → 0 when N →∞ and Ep(A1(r, t)

2)→ 0 when N →∞.
Let us show now that Ep(|A4(r, t)|) → 0 when N → ∞. Let us define ̂̃ek(t) = Ỹk(t) −

Ŷk,a(t) = x′k(β̃(t)− β̂a(t)). With Lemma A.4, and assumptions (A1)-(A5), we have

Ep(|A4(r, t)|) ≤ nEp

(
1

N2

∑
k

∑
l

|∆kl|
πkπl

1

πkl
‖xk‖‖xl‖‖β̃(t)− β̂a(t)‖‖β̃(r)− β̂a(r)‖

)

≤ 1

n

[
n

λ2N
+
nmaxk 6=l |∆kl|

λ2λ∗

]
C4ζ1

so that Ep(|A4(r, t)|)→ 0 when N →∞.
In a similar way, we can bound Ep(|A2(r, t)|) as follows,

Ep(|A2(r, t)|) ≤
n

N2

∑
k

∑
l

|∆kl|
πkπl

1

πkl
Ep|ẽk(t)̂̃el(r)|

≤ n

N2

∑
k

∑
l

|∆kl|
πkπl

‖xl‖
πkl
|Yk(t)− Ỹk(t)| · Ep(‖β̃(r)− β̂a(r)‖)

≤
( √

n

λ2N
+

√
nmaxk 6=l |∆kl|

λ2λ∗

)
C

1/2
4 ζ

1/2
1

1

N

∑
k

|Yk(t)− Ỹk(t)|.

Thus, there is constant C such that,

Ep(|A2(r, t)|) ≤
C√
n

and Ep(|A2(r, t)|)→ 0 when N →∞. We can show in a similar way that Ep(|A3(r, t)|)→ 0
when N →∞.

Finally, we have that for all (r, t) ∈ [0, T ]2,

nEp {| γ̂MA,a(r, t)− γMA(r, t) |} → 0, when N →∞. (45)

Step 2. Uniform convergence of the variance estimator

The pointwise convergence of the variance function proved in previous step clearly implies the
convergence of all finite linear combinations : for all p ∈ {1, 2, . . .}, for all (c1, . . . , cp) ∈ Rp
and for all (t1, . . . , tp) ∈ [0, T ]p, we have

p∑
`=1

c` n (γ̂MA,a(t`, t`)− γMA(t`, t`)) → 0 (46)

in probability as N tends to infinity. Thus, we deduce with the Cramer-Wold device that the
vector n (γ̂MA,a(t1, t1)− γMA(t1, t1), . . . , γ̂MA,a(tp, tp)− γMA(tp, tp)) converges in distribution
to 0 (in Rp).
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We need now to prove that the sequence of random functions γ̂MA,a(t, t) is tight in C[0, T ]
by using a bound on its increments. Let us introduce the following criterion,

d2γ(t, r) = n2Ep(|γ̂MA,a(t, t)− γMA(t, t)− γ̂MA,a(r, r) + γMA(r, r)|2).

To conclude we show in the following that d2γ(t, r) ≤ C|t − r|2β for a constant C and all
(r, t) ∈ [0, T ]2. Using (43), the distance is decomposed into four parts.

Let us define φkl(t, r) = ẽk(t)ẽl(t) − ẽk(r)ẽl(r) and first consider d2A1
= Ep(|A1(t, t) −

A1(r, r)|2). We have

d2A1
= Ep

[
n2

N4

∑
k

∑
k′

1− πk
πk

(
1k

πk
− 1

)
1− πk′
πk′

(
1k′

πk′
− 1

)
φkk(t, r)φk′k′(t, r)

]

+2Ep

 n2
N4

∑
k

∑
k′,l′:k′ 6=l′

1− πk
πk

(
1k

πk
− 1

)
∆k′l′

πk′πl′

(
1k′l′

πk′l′
− 1

)
φkk(t, r)φk′l′(t, r)


+Ep

 n2
N4

∑
k,l:k 6=l

∑
k′,l′:k′ 6=l′

∆kl

πkπl

(
1kl

πkl
− 1

)
∆k′l′

πk′πl′

(
1k′l′

πk′l′
− 1

)
φkl(t, r)φk′l′(t, r)


:= b1 + b2 + b3

Thanks to Lemma A.8, we get

b1 ≤
(
n2

N3

1

λ3
+
n2

N2

maxk 6=k′ |∆kk′ |
λ4

)
1

N

∑
k

|φkk(t, r)|2

≤ C|t− r|2β (47)

and

b3 ≤
(nmaxk 6=l |∆kl|)2

λ4λ∗2
max

(k,l,k′,l′)∈D4,n

|Ep{(1kl − πkl)(1k′l′ − πk′l′)}|

 1

N2

∑
k,l

|φkl(t, r)|

2

≤ C|t− r|2β. (48)

Cauchy-Schwarz inequality together with bounds (47) and (48) allows us to get b2 ≤
C|t− r|2β so that

d2A1
≤ C|t− r|2β. (49)

Let us bound now d2A2
= Ep(|A2(t, t) − A2(r, r)|2) and define φ̃kl(t, r) = ẽk(t)̂̃el(t) −

ẽk(r)̂̃el(r). Thanks to Lemma A.9, we get

d2A2
≤ 2n2

N2λ4
Ep

(
1

N

∑
k

φ̃kk(t, r)

)2

+
2n2 maxk 6=l |∆kl|2

λ4λ∗2
Ep

 1

N2

∑
k,l

|φ̃k,l(t, r)|

2

≤ C|t− r|2β (50)

Let us study now the last term, d2A4
= Ep(|A4(t, t) − A4(r, r)|2) and define ̂̃φkl(t, r) =̂̃ek(t)̂̃el(t)− ̂̃ek(r)̂̃el(r). Thanks to Lemma A.7, we have

d2A4
≤ 2n2

N2λ4
Ep

(
1

N

∑
k

̂̃
φkk(t, r)

)2

+
2n2 maxk 6=l |∆kl|2

λ4λ∗2
Ep

 1

N2

∑
k,l

|̂̃φk,l(t, r)|
2

≤ C|t− r|2β. (51)
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Finally, we can deduce, with inequalities (43), (49), (50) and (51), that

d2γ(t, r) = n2Ep(|γ̂MA,a(t, t)− γMA(t, t)− γ̂MA,a(r, r) + γMA(r, r)|2)
≤ C|t− r|2β. (52)

The end of the proof is a direct application of Theorem 12.3 of Billingsley (1968). Since
β > 1/2, the sequence n(γ̂MA,a(t, t) − γMA(t, t)) is tight in C([0, T ]) and converges in dis-
tribution to 0. The proof is complete with a direct application of the definition of weak
convergence in C([0, T ]) considering the bounded and continuous "sup" functional. �

A.4 Proofs related to the asymptotic normality and the confidence bands

The steps of the proof of Proposition 3.4 are similar to the steps of proof of Proposition 3.3.
We first examine the finite combinations and invoke the Cramer-Wold device. Then we prove
the tightness thanks to inequalities on the increments.

Let us first deal with the interpolation error, which is negligible under the assumption on
the grid of discretization points, as shown in (31).

Then, in light of (15), Lemma A.2 and Lemma A.4, we clearly have that, for each value
of t,

√
n (µ̂MA,a(t)− µ̃(t)) = op(1),

and consequently, as n tends to infinity,
√
n (µ̂MA,a(t)− µ(t)) → N (0, γZ(t, t)) in distribution,

where the covariance-function of µ̃, which defined in (17), satisfies limN→∞ nγMA = γZ .
If we now consider p distinct discretization instants 0 ≤ t1 < t2 . . . < tp ≤ 1, it is

immediate to check that for any vector c ∈ Rp,
√
n
(∑p

j=1 cj(µ̃(tj)− µ(tj))
)
→ N (0, σ2c )

where

σ2c =

p∑
j=1

p∑
`=1

cjc`γZ(tj , t`).

Indeed, by linearity, there exists a vector of random weights (w1, . . . , wN ) which does not
depend on time t such that

µ̃(t) =
∑
k∈U

wkYk(t),

and
∑p

j=1 cjµ̃(tj) =
∑

k∈U wk

(∑p
j=1 cjYk(tj)

)
also satisfies a CLT, with asymptotic variance

σ2c , under the moment conditions (A7). Thus, any finite linear combination is asymptotically
Gaussian and we can conclude that the vector

√
n (µ̃(t1)− µ(t1), . . . , µ̃(tp)− µ(tp)) is asymp-

totically Gaussian with the Cramer-Wold device.
It remains to check the tightness of the functional process and this is a direct consequence

of (35) and (42). Indeed, denoting by Zn(t) =
√
n (µ̂MA,a(t)− µ(t)) , there is a constant C

such that, for all (r, t) ∈ [0, T ]2,

Ep
(

[Zn(t)− Zn(r)]2
)
≤ C |t− r|2β ,

and, since β > 1/2, the sequence Zn is tight in C[0, T ], in view of Theorem 12.3 of Billingsley
(1968).

�
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We prove now Proposition 3.5, the last result of the paper. The proof consists in showing
the weak convergence of the sequence of distributions (ẐN ) to the law of Z in C([0, T ]).

For any vector of p points 0 ≤ t1 < . . . < tp ≤ T, the finite dimensional conver-
gence of the distribution of the Gaussian vector (ẐN (t1), . . . , ẐN (tp)) to the distribution
of (Z(t1), . . . , Z(tp)) is an immediate consequence of the uniform convergence of the covari-
ance function stated in Proposition 3.3. We can conclude with Slutsky’s Lemma noting that
for any (c1, . . . , cp) ∈ Rp,

p∑
j=1

p∑
`=1

cjc`γ̂MA,d(tj , t`) →
p∑
j=1

p∑
`=1

cjc`γMA(tj , t`) in probability. (53)

Now, we need to check the tightness of (ẐN ) in C([0, T ]). Given γ̂MA,d, we have for
(r, t) ∈ [0, T ]2,

Ep
[(
ẐN (t)− ẐN (r)

)2
| γ̂MA,d

]
= n (γ̂MA,d(t, t)− 2γ̂MA,d(r, t) + γ̂MA,d(r, r))

and after some algebra, we obtain thanks to Assumption (A2) that

Ep
[(
ẐN (t)− ẐN (r)

)2
|γ̂MA,d

]
≤ C

N

∑
k∈U

[
(Yk,d(t)− Yk,d(r))2 +

(
Ŷk,d(t)− Ŷk,d(r)

)2]
.

(54)

Let us first study the term
∑

k∈U (Yk,d(t)− Yk,d(r))2 in previous inequality and without
loss of generality suppose that t > r. To check the continuity of the trajctories, we only need
to consider points r and t that are close to each other. If t and r belong to the same interval,
say [ti, ti+1], then it is easy to check, with Assumption (A4) that

1

N

∑
k∈U

(Yk,d(t)− Yk,d(r))2 =
(t− r)2

(ti+1 − ti)2
1

N

∑
k∈U

(Yk(ti+1)− Yk(ti))2

≤ C(t− r)2β. (55)

If we suppose now that r ∈ [ti−1, ti] and t ∈ [ti, ti+1], then we have

|Yk,d(t)− Yk,d(r)|
t− r

≤ max

(
|Yk(ti+1)− Yk(ti)|

ti+1 − ti
,
|Yk(ti)− Yk(ti−1)|

ti − ti−1

)
≤ |Yk(ti+1)− Yk(ti)|

ti+1 − ti
+
|Yk(ti)− Yk(ti−1)|

ti − ti−1
(56)

and using the same decomposition as in (55), we directly get that
∑

k∈U (Yk,d(t)− Yk,d(r))2 ≤
C(t−r)2β. The second term at the right-hand side of inequality (54) is dealt with similar argu-

ments and the decomposition used in the proof of Lemma A.3, so that 1
N

∑
k∈U

(
Ŷk,d(t)− Ŷk,d(r)

)2
≤

C|t− r|2β.
Thus, the trajectories of the Gaussian process are continuous on [0, T ] whenever β > 0

(see e.g Theorem 1.4.1 in Adler and Taylor (2007)) and the sequence (ẐN ) converges weakly
to Z in C([0, T ]) equipped with the supremum norm.

Using again Proposition 3.3, we have, uniformly in t, σ̂Z(t) = σZ(t)+op(1), where σ̂2Z(t) =
nγ̂MA,d(t, t). Since, by hypothesis σ2Z(t) = γZ(t, t) is a continuous function and inft γZ(t, t) >

0, we get with Slutsky’s lemma that (ẐN/σ̂Z) converges weakly to Z/σZ in C([0, T ]). By
definition of the weak convergence in C([0, T ]) and the continuous mapping theorem, we also
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deduce that the real random variable M̂N = supt∈[0,T ] |ẐN (t)|/σ̂Z(t) converges in distribution
to M = supt∈[0,T ] |Z(t)|/σZ(t), so that for each c ≥ 0,

P

(
sup
t∈[0,T ]

|ẐN (t)|/σ̂Z(t) ≤ c

)
→ P

(
sup
t∈[0,T ]

|Z(t)|/σZ(t) ≤ c

)
.

Note finally, that under the previous hypotheses on γZ (see e.g. Pitt and Tran (1979)),
the real random variable M = supt∈[0,T ] (|Z(t)|/σZ(t)) has an absolutely continuous and
bounded density function so that the convergence holds uniformly in c (see e.g. Lemma 2.11
in van der Vaart (1998)). �

A.5 Some useful lemmas

We state here without any proof some results that are needed for the study of the convergence
of the covariance function. They rely on applications of the Cauchy-Schwarz inequality and
on the assumptions on the moments of the trajectories and the inclusion probabilities.

Lemma A.6. Assume (A2)-(A5) and (A7) hold. There are two constants ζ4 and ζ5 such
that

1

N

∑
U

ẽk(t)
2ẽk(r)

2 ≤ ζ4

and
1

N2

∑
U

∑
U

ẽk(t)
2ẽl(r)

2 ≤ ζ5,

where ẽk(t) = Yk(t)− Ỹk(t).

Lemma A.7. Assume (A2)-(A5) and (A7) hold. There are 2 constants ζ6 and ζ7 such that

Ep

(
1

N

∑
k

̂̃
φk,k(t, r)

2

)
≤ ζ6|t− r|2β

and

Ep

 1

N2

∑
k,l

̂̃
φk,l(t, r)

2

≤ ζ7[|t− r|2β

where ̂̃φk,l(t, r) = ̂̃ek(t)̂̃el(t)− ̂̃ek(r)̂̃el(r) and ̂̃ek(t) = Ỹk(t)− Ŷk,a(t).

Lemma A.8. Assume (A2)-(A5) and (A7) hold. There is two constant constant ζ8 and ζ9
such that

1

N

∑
k

φ2k,k(t, r) ≤ ζ8|t− r|2β

and  1

N2

∑
k,l

φk,l(t, r)

2

≤ ζ9|t− r|2β

where φk,l(t, r) = ẽk(t)ẽl(t)− ẽk(r)ẽl(r) and ẽk(t) = Yk(t)− Ỹk(t).
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Lemma A.9. Assume (A2)-(A5) and (A7) hold. There a two constants ζ10 and ζ11such that

Ep

(
1

N

∑
k

φ̃k,k(t, r)
2

)
≤ ζ10|t− r|2β

and

Ep

 1

N2

∑
k,l

φ̃k,l(t, r)

2

≤ ζ11|t− r|2β.

where φ̃k,l(t, r) = ẽk(t)̂̃el(t)− ẽk(r)̂̃el(r), ẽk(t) = Yk(t)− Ỹk(t) and ̂̃ek(t) = Ỹk(t)− Ŷk,a(t).
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