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Critical Rotation of an Annular Superfluid Bose Gas
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Laboratoire de physique des lasers, CNRS and Université Paris 13, 99 avenue J.-B. Clément, F-93430 Villetaneuse

(Dated: April 27, 2012)

We analyze the excitation spectrum of a superfluid Bose-Einstein condensate rotating in a ring
trap. We identify two important branches of the spectrum related to external and internal surface
modes that lead to the instability of the superfluid. Depending on the initial circulation of the
annular condensate, either the external or the internal modes become first unstable. This instability
is crucially related to the superfluid nature of the rotating gas. In particular we point out the
existence of a maximal circulation above which the superflow decays spontaneously, which cannot
be explained by invoking the average speed of sound.

PACS numbers: 03.75.Kk,47.37.+q

After the pioneering work on persistent flow in he-
lium [1], recent experimental success at producing circu-
lating superfluid flow of Bose gases in annular traps [2–
4] has focused interest on the issue of dissipation of this
macroscopic quantum state. In a superfluid this question
is crucially related to the existence of a critical velocity vc
above which excitations are generated. The critical veloc-
ity is determined by the Landau criterion [5]. Dissipation
occurs for a fluid velocity larger than vc. Symmetrically
a defect moving above vc generates excitations in a su-
perfluid at rest. This has been evidenced experimentally
in trapped Bose gases [6].

In a homogeneous weakly interacting Bose gas vc is
equal to the speed of sound [7]. This is not anymore
true if the system is inhomogeneous. For example, in an
infinite cylindrically symmetric tube with transverse har-
monic confinement, the critical velocity is lower than the
speed of sound [8]. In such a geometry, the first modes
excited at the critical velocity have been shown to be sur-
face modes [9] propagating along the tube and localized
symmetrically all around the surface of the cylinder.

In order to study superfluidity experimentally, it is nat-
ural to bind this system and investigate the stability of
a persistent flow in a ring geometry. A crucial difference
between a tube and a ring is the presence of a centrifugal
force arising from the non Galilean nature of rotation.
Moreover, the curvature of the annulus makes the inner
and the outer surfaces of the fluid not equivalent any-
more [10], see Fig. 1.

The ring geometry has recently attracted a lot of in-
terest. Many annular traps have been proposed [11–13]
and realized [2–4, 14, 15]. Studies of the superfluidity
include the observation of a persistent current [2], the
effect of a weak link [3, 16, 17], and the observation of a
stepwise dissipation of the circulation [4]. The ground-
state of the system in presence of rotation has been de-
termined theoretically [18–20]. Phase fluctuations in a
ring trap have also been investigated [21]. However the
determination of the critical, angular, velocity in a ring
is still an open question and is highly relevant to recent
experiments [3, 4, 15].
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FIG. 1. (Color online) Sketch of the system: a Bose gas
flowing with a circulation ℓ (dashed line) and a Thomas-Fermi
width 2R is held in a ring trap of radius r0. A defect rotating
counterflow at angular velocity Ω above the critical velocity
will induce dissipation.

In this Letter we determine the critical angular veloc-
ity in the sense of the Landau criterion for a Bose gas
trapped in a ring. We compute the Bogoliubov excita-
tion spectrum both for an initially non rotating gas in the
ground state, and for an initially circulating stationary
state. We show that the critical velocity is governed by
surface modes, like in the case of an infinite tube. How-
ever we find that there are now two distinct, non degen-
erate, families of surface excitations propagating either
at the inner or at the outer surface. The lowest of these
two branches gives the critical angular velocity. We give
a simple interpretation of these features by extending the
surface mode model [9] to the ring geometry. Our model
is in good agreement with the numerical calculations even
for an initially circulating state.

We consider a condensate confined in a ring shaped
trap, see Fig. 1, described by the Gross-Pitaevskii equa-
tion at zero temperature. For simplicity, we reduce the
problem to two dimensions (2D) in the plane of the ring.
The 2D ring still allows to identify the inner and the
outer surfaces and evidence their respective role. The
trapping annular potential is written as a harmonic po-
tential of frequency ωr centered at a radius ρ0. In the
following, we use the associated scales for energy (~ωr),
time (ω−1

r ) and length ar =
√

~/(Mωr), where M is the
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FIG. 2. (Color online) Excitation spectrum obtained from
Eq. (1) (see text for details), with ℓ = 0, r0 = 12 and g = 9000.
Only the lowest eleven branches are shown. The solid lines
are a guide to the eye to distinguish between the different
branches. A symmetric spectrum also exists for negative val-
ues of m. Solid lines: relation dispersion in the surface mode
model for the inner (blue) and outer (red) modes.

atomic mass. The 2D Gross-Pitaevskii equation reads:

i∂tψ =

(

−∆

2
+

1

2
(r − r0)

2 + g |ψ|2
)

ψ, (1)

where ψ = ψ(r, θ, t) is normalized to unity, ∆ = ∂2r +
∂r/r+ ∂2θ/r

2 is the Laplacian in polar coordinates (r, θ),
r0 = ρ0/ar is the dimensionless ring radius, g is the di-
mensionless interaction constant in 2D [22].
Using the rotational invariance of Eq. (1), we consider

solutions of the form:

ψ(r, θ, t) = e−i(µt−ℓθ)
[

ψℓ(r) + δψℓ
m(r, θ, t)

]

, (2)

where

δψℓ
m(r, θ, t) = uℓm(r)e−i(ωt−mθ) + vℓm(r)∗ei(ω

∗t−mθ).(3)

The stationary solution ψℓ(r) is a state of circulation ℓ
and chemical potential µ – which depends on ℓ – and δψℓ

m

is a small perturbation, parametrized by ℓ and m. ψℓ(r)
is not necessarily the ground state of the system but can
be realized experimentally using phase imprinting [3, 4].
We label as R =

√
2µ the half width of the radial density

distribution in the Thomas-Fermi approximation.
Linearizing Eq. (1), we solve the Bogoliubov-de Gennes

equations for uℓm(r) and vℓm(r) [23]. We get real fre-
quencies with a dispersion relation ω = ωℓ(m) for each
initial circulation ℓ. The lowest branch of the spec-
trum allows us to compute the critical angular velocity
Ωc(ℓ) = minm [ωℓ(m)/ |m|] for a given circulation ℓ.
Figure 2 shows a typical spectrum obtained from

Eq. (1) for a non circulating initial state (ℓ = 0). At small
m values, the lowest branch is linear, ω0(m) = mΩs, and
can be associated to rotating sound-like waves with an-
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FIG. 3. (Color online) Inverse of the critical angular veloc-
ity as a function of the ring radius r0, at fixed chemical po-
tential [25], as obtained from the full numerical calculation
(dots). Inset: critical angular velocity as a function of µ for
r0 = 40. In both graphs, the solid line is the model of Eq. (4)
with re = r0 +R.

gular velocity Ωs. At larger m values, this branch ex-
hibits a small negative curvature that makes the criti-
cal angular velocity smaller than the angular speed of
sound (Ωc(0) < Ωs). This is not surprising as it is al-
ready the case in a linear geometry for an inhomogeneous
gas [8, 24]. As m increases, the radial profile of the asso-
ciated density perturbation δρ0m(r) of the lowest energy
mode, where δρℓm(r) = 2Re

[

ψℓ(r)
∗

(

uℓm(r) + vℓm(r)∗
)]

,
is more and more localized on the outer radius, see
Fig. 4b. We thus expect that the mode corresponding to
the critical angular velocity will be correctly described
by a surface mode model.
Following the approach of ref. [9], we find the critical

velocity for a family of modes lying on the surface of a
condensate. Locally, the surface can be considered as a
plane and a surface excitation with wave vector k parallel
to this plane gives a critical linear velocity vc ≃

√
2µ1/6

in our dimensionless units, for the critical wave vector
kc ≃ 0.89 ×

√
2µ1/6 [9]. In our ring shaped geometry

we identify the critical angular velocity as Ωc = vc/re,
where re is the radius at which the excitation is local-
ized. Within the surface mode model, the critical angular
velocity is then:

Ωc =

√
2µ1/6

re
(4)

and corresponds to a critical excitation mc = kcre, where
re ≃ r0 + R (resp. r0 − R) for an excitation lying on
the outer (resp. inner) surface of the condensate. The
dispersion relations of the inner and outer surface modes
are plotted as solid lines on Fig. 2. For an initial state
ℓ = 0, the inner mode belongs to a higher branch and
thus does not determine the critical velocity.
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FIG. 4. (Color online) Upper panel: lower branch of the ex-
citation spectrum for m < 0, r0 = 12, g = 9000 and initial
states with increasing circulation, ℓ = 0, 6, 11, 12, 13, 15. In-
set: full spectrum for ℓ = 11. Lower panel: radial density
profiles of the condensate (black solid line), sound-like mode
(ℓ = 0, m = −1, green dash-dotted line, scaled ×3 for clar-
ity), outer surface mode (ℓ = 0, m = −34, blue dashed line)
and inner surface mode (ℓ = 15, m = −14, red dotted line).

Figure 3 shows a comparison of the full numerical cal-
culation of the critical velocity with the surface mode
model. The model of Eq. (4) is in good agreement with
the numerical calculation and can thus be used to get
an estimation of the critical velocity. We note that the
agreement with the numerical calculation is better for
larger µ, as shown on the inset of Fig. 3, since the exci-
tation is sufficiently localized on the surface [9].

We now turn to the more complex situation of an ini-
tial state with given circulation ℓ, as obtained experimen-
tally in recent experiments [3, 4]. Figure 4a shows the
lower branch of the excitation spectrum for initial states
with increasing circulation. As expected, for ℓ > 0, the
spectrum becomes asymmetric, excitations with m < 0
propagating against the superflow having lower energies
than those with m > 0, see Fig. 4a inset. One striking
feature of this spectrum is that for a sufficiently large
ℓ, the critical velocity is associated with a branch that
crosses the outer surface mode branch. The radial pro-
file δρmℓ (r) shows that these modes are located at the
inner surface of the ring (see Fig. 4b). Hence, depending
on the initial circulation, the most probable mechanism
for dissipation implies either external or internal modes.
Interestingly, the phase profile of the perturbation dis-
plays anti-vortex patterns on the outer surface for exter-
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FIG. 5. (Color online) Critical angular velocity versus ini-
tial state circulation, as obtained from the numerical solu-
tion (dots), for r0 = 20 and g = 15000. Inset: slope of the
critical velocity for inner (blue squares) and outer (red dots)
modes versus the ring radius, at fixed chemical potential [25].
For both graphs, the lines are the predictions of Eq. (5), for
re = r0 +R (solid line) and re = r0 −R (dashed line).

nal modes and vortex patterns on the inner surface for
internal modes. This supports the idea that these modes
are precursors of (anti) vortex nucleation.
This result can be understood by extending the surface

mode model to an initial state with circulation. It is im-
portant to remark that due to the superfluid nature of the
condensate flow, the local velocity at the inner surface is
larger than the one at the outer surface. In the frame co-
rotating with one of these surfaces, where the condensate
surface is at rest, the result of the surface mode model
still holds. In the laboratory frame, the critical angular
velocity is then shifted by the angular velocity of the co-
rotating frame: Ωr = ℓ/r2e , which depends on the surface
considered, and may be written:

Ωc(ℓ) =

√
2µ1/6

re
− ℓ

r2e
. (5)

The result of Eq. (5) is the sum of two contributions: the
first one arises from the surface mode model, whereas
the second one is due to the superfluid rotation of the
condensate itself. These two terms depend with different
power laws on the excited mode radius re and this feature
explains the transition between inner and outer surface
excitations observed in Fig. 4a.
Figure 5 shows the critical angular velocity as a func-

tion of the initial state circulation ℓ. The curves exhibit
a piecewise linear dependence on the circulation. The
two slopes correspond respectively to modes lying on the
outer or inner surface. The critical angular velocity and
these slopes are compared to the surface mode model.
The agreement is good except for small radii where the
centrifugal term 1/r in the Laplacian plays an impor-
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tant role especially in the case of the inner mode. At
large values of r0 the difference between inner and outer
modes becomes less pronounced as the system resembles
more and more an infinite tube, where these modes are
degenerate.
To interpret the data we define two thresholds. The

first threshold ℓ1 = µ1/6(r20 − R2)/(
√
2r0) is obtained

when Eq. (5) gives the same value for re = r0 ± R. It
corresponds to the frontier between the domains where ei-
ther the inner or the outer modes govern dissipation. We
find that above a second threshold ℓ2 =

√
2µ1/6(r0 −R),

for which the critical angular velocity vanishes, the sys-
tem is unstable, in the sense that the computed spectra
contain negative energies. Any static perturbation of the
system thus triggers dissipation and circulation becomes
highly unstable. It is important to point out that the
value of ℓ2 is related to the velocity of the surface mode,
not to the speed of sound.
From a practical point of view, this sets an upper limit

on the circulation that can be imprinted for a given ring
radius and chemical potential. Therefore, even if the ring
geometry is adapted to study the persistent flow of a su-
perfluid, it can bear only a limited amount of circulation.
Within this model we can make predictions for the

superflow stability in recent experiments. In the presence
of static defects, the superflow will be unstable for ℓ >
ℓ2. We compute this maximum allowed circulation for a
stable flow with the experimental parameters of ref. [3],
namely r0 = 10 and µ = 10.9, and find ℓ2 ≃ 11. We
may wonder if our 2D model applies to 3D experiments.
The surface mode model depends only on the force at the
surface [9]. For a harmonically trapped BEC, this force
is fully determined by the Thomas-Fermi radius and the
oscillation frequency. A 2D model is thus expected to
compare well to a 3D experiment with the same Thomas-
Fermi radius (or chemical potential).
Our results enlighten the recent work of ref. [16] where

a dynamical simulation of a circulating annular Bose-
Einstein condensate in presence of a static weak link
shows a dissipation mechanism based on two critical bar-
rier heights, associated to a vortex anti-vortex annihila-
tion. Our work shows indeed that a static defect can
induce dissipation by first coupling to an inner surface
mode, allowing a vortex to nucleate. The excitation of
the outer surface mode requires a stronger excitation.
In conclusion we have computed the Bogoliubov spec-

trum of circulating annular Bose gases and obtained ana-
lytical expressions for the critical angular velocity based
on a surface mode model. We have pointed out the role of
inner and outer modes in the determination of the critical
angular velocity. We have discussed the implications of
these results to explain the dissipation of a persistent flow
and have shown that the circulation is unstable above a
given threshold. In fact, the Landau argument [5] is quite
subtle in a ring geometry. Indeed, as shown in this Let-
ter, we find different results for the motion of a defect in

a superfluid at rest or for a circulating superfluid flowing
through a static defect. In the former case outer surface
modes are always excited first while in the latter case the
inner surface modes dominate. This suggests that in an
annular geometry the notion of local speed of sound, as-
sociated with modes centered at the peak density, is not
the most relevant to discuss superfluidity.
Further work will include a numerical study of the dy-

namics of an annular Bose gas in presence of static and
rotating defects to further investigate the critical velocity.
In particular we expect that engineering the shape of a
perturbation may help to selectively excite only the criti-
cal mode and thus more precisely control the system. An
interesting point would be to examine the possibility of
inducing a circulation by selectively exciting this mode.
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