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Abstract: This paper deals with discrete-time errors-in-variables model identification, where
output and input data are both perturbed by additive noises. The goal of this paper is to
show how instrumental variable techniques may handle this situation; more precisely, the focus
is put on instrumental variable methods having closed-form solutions. Several methods using
second- and high-order statistics are reviewed, and some improvements and new results are also
introduced. The discussions are illustrated by means of a numerical simulation.
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1. INTRODUCTION

System identification is an established field in the area of
system analysis and control. It aims at determining math-
ematical models for dynamical systems based on observed
inputs and outputs. Many solutions have been presented
for system identification of linear dynamic systems from
noise-corrupted output measurements. The identification
of models where uncertainties are present on both in-
put and output observations – called ‘errors-in-variables’
(EIV) models – have received far less attention. This type
of models plays an important role when the identification
purpose is the determination of the inner laws that de-
scribe the process, rather than the prediction of its future
behaviour. Numerous scientific disciplines use such errors-
in-variables models, including time series modelling, array
signal processing for direction-of-arrival estimation, blind
channel equalisation, multivariate calibration in analytical
chemistry, image processing, or environmental modelling
Van Huffel (2002).

Identification of EIV models has been an active domain
of research in the recent years (see the survey paper
Söderström (2007)). Among the ‘classical’ approaches for
EIV model identification, the instrumental variable (IV)
methods have not yet witnessed considerable interest.
An explanation can be that the asymptotic accuracy of
the basic IV method cannot reach the Cramér-Rao lower
bound Söderström (2007). However, there is a considerable
freedom in the choice of the instrument vector and many
ideas stem from the basic IV principle, e.g. iterative
methods Young (1970, 1984); Gilson and Van den Hof
(2005); Young et al. (2008); Thil et al. (2008b) or the use of
higher-order statistics Inouye and Tsuchiya (1991); Inouye
and Suga (1994); Thil et al. (2009).

The aim of this paper is first to enumerate the different
possibilities offered by IV-based methods to solve the EIV
model identification problem (with the focus on methods
having closed-form solutions) and offer a comparison be-
tween these IV-based methods; second to introduce a few
improvements and some new results.

The paper organised as follows. The problem is formally
stated in Section 2. In Sections 3–5, different IV variants
are exposed. Finally, before concluding, the performances
of the methods are assessed by means of a simulation
example in Section 6.

2. ERRORS-IN-VARIABLES MODEL

Consider a discrete-time, linear, time-invariant EIV sys-
tem. The data-generating system is given by:

S :


yo(t) = Go(q)uo(t)

u(t) = uo(t) + ũ(t)

y(t) = yo(t) + ỹ(t)

(1)

where q is the forward operator, Go(·) is the transfer oper-
ator of the ‘true’ system and ũ, ỹ are the input and output
noises, respectively. The system is then parameterised as
follows:

y(t) = G(q,θ) (u(t)− ũ(t)) + ỹ(t)

G(q,θ) = B(q−1,θ)/A(q−1,θ)

A(q−1,θ) = 1 + a1q
−1 + ...+ anaq

−na

B(q−1,θ) = b1q
−1 + ...+ bnb

q−nb

(2)

with na > nb and θT = [a1 . . . ana b1 . . . bnb
]. Equation

(2) can be rewritten as:

y(t) = ϕT(t)θ + v(t,θ) (3)

v(t,θ) = ỹ(t)− ϕ̃T(t)θ (4)

where the regression vector is given as:



ϕT(t) =
[
− y(t− 1) . . . − y(t− na)

u(t− 1) . . . u(t− nb)
]

(5)

and ϕ̃(t) is defined in a similar way to ϕ(t), but with u
and y being replaced by ũ and ỹ, respectively.

The problem of identifying this errors-in-variables model
is concerned with consistently estimating the parameter
vector θ from the noisy data {u(t), y(t)}Nt=1.

2.1 Notations

As the input/output noises are additive, linear functions
of the measured signals can be broken down into two
parts, one made up of the noise-free signal contribution
(denoted with a ‘o’ subscript) and the other of the noises
contribution (denoted with the ‘˜’ sign). For conciseness’
sake, it is also convenient to define:

āT =
[
1 aT

]
= [1 a1 . . . ana ] (6)

bT = [b1 . . . bnb
] (7)

ȳT(t, n) =
[
y(t) yT(t, n)

]
(8)

yT(t, n) = [y(t− 1) . . . y(t− n)] (9)

uT(t, n) = [u(t− 1) . . . u(t− n)] (10)

For example, the regression vector can now be written as:

ϕT(t) =
[
− y(t, na) u(t, nb)

]
(11)

The following notations are used in the sequel for the
correlation vectors and matrices:

Rϕϕ = E
{
ϕ(t)ϕT(t)

}
rϕy = E{ϕ(t)y(t)} (12)

Lastly, an estimate of the parameter vector θ from N
samples of input/output data and its asymptotic version
are written as:

θ̂ −−−−→
N→∞

θ? (13)

2.2 Assumptions

The following assumptions are needed:

A1. The system (1) is asymptotically stable, and all the
system modes are observable and controllable;

A2. The signals uo, ũ and ỹ are stationary, ergodic and
zero-mean;

A3. The signals ũ and ỹ are assumed to be uncorrelated
with the input uo.

In system identification literature, it is usually assumed
(often implicitly) that the ‘true’ system belongs to the
considered model set, a situation referred to as S ∈ G?
Ljung (1999). However, this notation is not properly
suited for errors-in-variables models and some additional
notations must be introduced Thil et al. (2009); the whole
‘true’ system includes:

• the ‘true’ process Go and its associated model set
G? = {G(·,θ)};
• the ‘true’ noise processes H ũ

o , H ỹ
o and their associated

model set H? =
{(
H ũ(·,η), H ỹ(·,η)

)}
;

• the ‘true’ noise-free input process Huo
o and its associ-

ated model set E? = {Huo(·,η)};
where η is a vector gathering the parameters of the noise-
free input and noise models. In this paper it is assumed
that the ‘true’ process belongs to the model set and that
the noises’ models belong to the model set as well:

A4. Go ∈ G? and
(
H ũ

o , H
ỹ
o

)
∈ H?.

It is also supposed that:

A6. ũ is a white noise with a symmetric probability
density function (pdf);

A7. ỹ is a white noise with a symmetric pdf;
A8. uo has a skewed pdf.

The assumption of a symmetric pdf is rather mild (a
uniformly distributed or gaussian noise is a very common
assumption – with reason) and will prove useful when
using methods based on higher-order statistics (HOS).

3. CLASSIC (EXTENDED) IV

Let z(t) be a vector of instruments of dimension nz > na+
nb. An eXtended IV estimator of θ is given by Söderström
and Stoica (1983):

θ?xiv =
(
RT

zϕRzϕ

)−1
RT

zϕrzy (14a)

= θ +
(
RT

zϕRzϕ

)−1
rzv (14b)

For the estimator (14) to be unbiased, the vector of
instruments z(t) must be uncorrelated with the composite
error v(t,θ), while being ‘as correlated as possible’ with the
regression vector ϕ(t), so that the matrix to be inverted
in (14) is not ill-conditioned, which is summarised as:

rzv = 0 (15)

Rzϕ is nonsingular (16)

Remark 1
In the classic IV method, these two requirements are
generally contradictory: the delays used to obtain an in-
strument vector uncorrelated with the noise also decrease
the correlation between the regressor and the instrument
vector.

3.1 First approach: xivuu method

In the first approach the instrument vector contains de-
layed inputs only Söderström and Mahata (2002):

zT (t) = uT (t− d1, nzu) (17)

=
[
u(t− 1− d1) . . . u(t− nzu − d1)

]
(18)

Since ũ, ỹ and uo are uncorrelated:

rzv = E{z(t)v(t,θ)} (19)

= E
{
z(t)

(
˜̄y
T

(t, na)ā− ũT (t, nb)b
)}

(20)

= −E
{
ũ(t− d1, nzu)ũT (t, nb)

}
b (21)

Thus, if the delay is such that d1 > nb, the vector of
instruments z(t) satisfies (15).

3.2 Second approach: xivyu method

Let us define an instrument vector containing delayed
inputs and delayed outputs as Thil et al. (2008b):

zT (t) =
[
− yT (t− d2, nzy ) uT (t− d3, nzu)

]
(22)

Since ũ, ỹ and uo are uncorrelated:

rzv = E{z(t)v(t,θ)} (23)

= E

{
−ỹ(t− d2, nzy )˜̄y

T
(t, na)ā

−ũ(t− d3, nzu)ũT (t, nb)b

}
(24)

If the delays satisfy d2 > na + 1 and d3 > nb, the vector
of instruments z(t) satisfies (15).



The autocorrelation of y(t) should be higher than the
cross-correlation between u(t) and y(t). Thus, in this ap-
proach the correlation between the regressor and the in-
strument vector should be increased, which should improve
the conditioning of the matrix Rzϕ; in turn, the xivyu
method should yield more accurate estimates than the
xivuu method.

4. HOS-BASED METHODS

The freedom inherent to IV methods is such that one
can actually obtain higher-order statistics (HOS) methods
from the simple IV principle. Only a few methods have
been developed Inouye and Tsuchiya (1991); Chen and
Chen (1994); Thil et al. (2008a), all of which have been
showed to stem from the same set of equations in Thil et al.
(2009). Before exposing the unified method, let us recall a
few of the numerous properties of higher-order cumulants.
For a more complete treatment see e.g. Brillinger (1981);
Mendel (1991).

The third-order cumulants of stationary signals x1, x2, x3
are defined and written as:

Cx1x2x3
(τ1, τ2) = E{x1(t)x2(t+ τ1)x3(t+ τ2)} (25)

= Cx1x2x3
(τ ) (26)

where τ denotes [τ1, τ2].

4.1 Properties of HOS

The properties used in the sequel are:

P1. Multilinearity: cumulants are linear with respect to
each of their arguments;

P2. Additivity: if two random vectors are independent,
then the cumulant of their sum equals the sum of
their cumulants;

P3. The third-order cumulant of a random variable with
a symmetric pdf is equal to zero.

From assumptions A3, A6, A7, A8 and using properties
P2, P3, the following holds:

Cuuy(τ ) = Cu0u0y0
(τ ) + Cũũỹ(τ ) = Cu0u0y0

(τ )

Cuuu(τ ) = Cu0u0u0
(τ ) + Cũũũ(τ ) = Cu0u0u0

(τ )

The third-order (cross-)cumulants of the input and output
signals are thus insensitive to symmetrically distributed
noises. Note that this result is still valid for the third-order
(cross-)cumulant of any combination of input and output
signals.

The so-called third-order cumulant-based extended instru-
mental variable method (tocxiv) can now be reviewed.

4.2 The tocxiv method

The EIV model can be shown to satisfy the following third-
order cumulants equation Thil et al. (2008a):

Cuuy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cuuu(τ ) (27)

which can be expressed in a linear regression form as:

Cuuy(τ ) = ϕT
uuy(τ )θ (28)

where:

ϕT
uuy(τ )=

[
− Cuuy(τ1, τ2− 1) . . . − Cuuy(τ1, τ2− na)

Cuuu(τ1, τ2) . . . Cuuu(τ1, τ2− nb)
]

(29)

Due to the properties of third-order cumulants, this equa-
tion is (asymptotically) noise-free. After having chosen a
cumulant slice and avoided the use of third-order cumu-
lants with large time-lags, the parameter vector is obtained
by solving the following system of equations in a least
squares sense. Written in a compact matrix form it yields
(see Thil et al. (2008a, 2009)):

C = ΦTθ (30)

The tocxiv estimator is then given as:

θ?tocxiv =
(
ΦΦT

)−1
ΦC (31)

Again, two versions of this method will be tested: the
tocxivuuy method (using (27)), and the tocxivyyy method
using the following equation (see Thil et al. (2009)):

Cyyy(τ ) =
B(q−1,θ)

A(q−1,θ)
Cyyu(τ ) (32)

It is yet unclear which equation should be used. Exploring
how the properties of the system and the signals influence
this choice is a difficult task and an interesting topic for
future research.

5. BIAS COMPENSATED IV

The idea of compensating the IV bias has been used in
Yang et al. (1993) and more recently in Ekman (2005);
Ekman et al. (2006) and Thil et al. (2008b). Since only
the methods having a closed-form solution are studied in
this paper, the method presented in Ekman (2005); Ekman
et al. (2006) is not reviewed here: indeed, while it can
be seen as an extension of the IV method, it relies on a
numerical optimisation to estimate the parameters.

5.1 The bciv method

Define a vector of instruments leading to a biased estimate
of θ:

zT(t) =
[
xT(t, na) uT(t, nb)

]
(33)

where x(t, na) is chosen such that x̃(t, na) is uncorrelated
with ỹ(t, na). The biased instrumental variable (BIV)
estimator of θ is then given by:

θ?biv = R−1zϕrzy = θ +R−1zϕrzv (34)

We have:

rzv = −λeũ
[
0na×na

0na×nb

0nb×na
Inb×nb

]
θ = −λeũMθ (35)

Thus finally:

θ?biv = R−1zϕrzy = θ − λeũR−1zϕMθ (36)

If an estimate of the input noise variance λeũ is available,
then the bias of the estimator (34) can be subtracted to
obtain a consistent estimate of θ:

θ?bciv = θ?biv + λeũR
−1
zϕMθ (37)

Estimation of λeũ The key problem to solve now is the
estimation of λeũ . To achieve this, the idea is to use the
correlation between the composite noise v(t,θ) and the
‘residual’ r, defined as:

r1(t,θ) = x̄T(t, na)ā− uT(t, nb)b (38)

where x̄(t, na) is chosen such that ˜̄x(t, na) is uncorrelated
with ˜̄y(t, na). Then:



J1(θ) = E{r1(t,θ)v(t,θ)} (39)

= āTE
{

˜̄x(t, na)˜̄y
T

(t, na)
}
ā

+ bTE
{
ũ(t, nb)ũ

T(t, nb)
}
b (40)

= λeũb
Tb (41)

If an estimate of b is available, then an estimate of the
input noise variance is obtained as:

λ̂eũ =
J1(θ̂)

b̂Tb̂
(42)

5.2 The fbciv method

The input noise estimation may be improved by using a
filtered version of (42) as suggested in Thil et al. (2008b).

Define a moving average filter F (q−1) as:

F (q−1) =

nf∑
k=−nf

fkq
−k, f0 = 1 (43)

Note that in Thil et al. (2008b) this filter was assumed
to be causal, while here it is not. A second residual is
introduced:

r2(t,θ) = x̄T(t, na)ā− bTuf (t, nb) (44)

where uf (t, nb) = F (q−1)u(t, nb). Then, if x̄(t, na) is
chosen such that ˜̄x(t, na) is uncorrelated with ˜̄y(t, na):

J2(θ) = E{r2(t,θ)v(t,θ)} (45)

= āTE
{

˜̄x(t, na)˜̄y
T

(t, na)
}
ā

+ bTE
{
ũf (t, nb)ũ

T(t, nb)
}
b (46)

= λeũb
TMF b (47)

where MF is the following Tœplitz matrix (assuming that
|nf | > nb − 1):

MF =


f0 f1 . . . fnb−1
f−1 f0 . . . fnb−2

...
. . .

. . .
...

f−nb+1 . . . . . . f0

 (48)

Hence, if an estimate of b is available, then an estimate of
the input noise variance is obtained as:

λ̂eũ =
J2(θ̂)

b̂TMF b̂
(49)

5.3 The bciv algorithm

1. Initialization: θ̂bciv(0) = θ̂biv
2. Iteration until convergence:

2.1. Estimation of λeũ using (42) or (49)

2.2. Computation of θ̂bciv(i+ 1)

θ̂bciv(i+ 1) = θ̂biv + λ̂eũ(i)R̂−1zϕMθ̂bciv(i)

Remark 2
• Depending on the choice for x̄(t, na), equations (42)
and (49) will be valid for several delays starting
from a minimal value. The algorithms tested in the
numerical simulations therefore use several values of
the delay to improve the variance estimation.

• The algorithms using (42) to obtain the input vari-
ance estimate are referred to as bciv. The vector

x(t, na) is chosen such that x̃(t, na) is uncorrelated
with ỹ(t, na). Two examples of such a vector are:
· u(t− d, na) with d > nb + 1
· y(t− d, na) with d > na + 1

The corresponding algorithms are denoted bcivuu and
bcivyu respectively.

• The algorithms using (49) are denoted fbciv, for
‘Filtered Bias Compensated Instrumental Variable’.

5.4 Consistency and convergence analysis

The asymptotic convergence of the iterative algorithms is
discussed below. In the discussion equation (42) is used,
but the developments are valid for equation (49) as well. It
should also be noted that the algorithms can diverge when
used with a finite number of data (see, e.g., the numerical
example section).

When N = ∞ and at the ith iteration of the algorithm,
equation (42) becomes:

λ?eũ(i) =
J1(d,θ?bciv(i))

b?,Tbciv(i)b
?
bciv(i)

(50)

= λeũ
b?,Tbciv(i)b

?
bciv(i)

b?,Tbciv(i)b
?
bciv(i)

(51)

= λeũ (52)

Thus:

∀i ∈ N∗, λ̂eũ(i) −−−−→
N→∞

λeũ (53)

It is then possible to write:

θ?bciv(i+ 1) = θ?biv + λeũR
−1
zϕMθ?bciv(i) (54)

Define K = λeũR
−1
zϕM . We have:

Rzϕ = E
{
z(t)ϕT(t)

}
(55)

= E
{(
zo(t) + z̃(t)

)(
ϕT

o (t) + ϕ̃T(t)
)}

(56)

= E
{
zo(t)ϕT

o (t)
}

+ E
{
z̃(t)ϕ̃T(t)

}
(57)

= E
{
zo(t)ϕT

o (t)
}

+ λeũM (58)

Therefore, provided the cross-covariance matrix of zo and
ϕo is positive definite, the spectral radius of the matrix
K is strictly less than unity. It implies that K defines a
contraction mapping; the fixed point theorem guarantees
the convergence of the iterative scheme (see Banach (1922)
for a historical reference, or e.g. Ortega and Rheinboldt
(2000)).

Lastly, when i→∞ equation (54) leads to:

θ?bciv =
(
I − λeũR−1zϕM

)−1
θ?biv = θ (59)

the last equality being obtained using (36).

6. NUMERICAL SIMULATIONS

The goal of the numerical simulations is to compare
the methods studied in the previous sections and assess
the validity of the discussions. The following system is
considered:

Go(q) =
q−1 + 0.5q−2

1− 1.5q−1 + 0.7q−2
(60)

The noise-free input is defined as Söderström and Mahata
(2002):

uo(tk) =
1

1− 0.2q−1 + 0.5q−2
euo

(tk) (61)



where euo
is a white noise source following a χ2 distribu-

tion. The input/output noises are white gaussian noises
whose variances are set to λeũ = 0.36 and λeỹ = 4 to
obtain a signal-to-noise ratio (SNR) equal to about 15 dB
on both input and output, with:

SNR = 10 log10

(
Pxo

Px̃

)
(62)

where Px represents the average power of the signal x.
The system parameters are estimated on the basis of a
data set of length N = 5000; a Monte Carlo simulation of
nmc = 200 runs is performed.

In all the iterative algorithms the same stop criterion is
used, that is:∥∥θ̂(i+ 1)− θ̂(i)

∥∥∥∥θ̂(i)
∥∥ < 10−3 or i > 50 (63)

where ‖ · ‖ is the Euclidian norm and θ̂(i) the estimate
obtained at the ith iteration. Hence, if an algorithm has
not converged before 50 iterations, it is automatically
stopped. Two different filters are used in the fbciv method.
The first is causal while the second is not:

F1(q) = 1 + q−1 + q−2 (64)

F2(q) = q1 + 1 + q−1 (65)

The corresponding algorithms are denoted fbcivc and
fbcivnc (for causal and non-causal).

The estimates of the parameter vector and the input noise
variance are given in Table 1. Besides, since some methods
do not always converge before 50 iterations, the Table 1
also contains ‘Convce’, the percentage of simulations for
which the algorithms have converged. Finally, Table 1 also
contains the normalized root mean square error, defined
as:

NRMSE =

√√√√ 1

nmc

nmc∑
i=1

∥∥θ̂(i)− θo
∥∥2∥∥θo∥∥2 (66)

It should be noted that when there are two numbers in the
NRMSE column, the first is calculated using all the runs,
while for the second only the runs in which the algorithms
have converged have been taken into account.

6.1 Discussion

A first observation is that all of the methods give consistent
and accurate results, even in an EIV framework – at least
on this example.

The methods using delayed input and delayed outputs
in the instrument vector are more accurate than those
using only delayed inputs, showing the importance of
having a good correlation between the instruments and
the regressor (compare e.g. xivuu and xivyu).

Regarding bias compensated IV methods, bcivuu and bcivyu
both give good results. However, the fact that they do not
always converge is problematic. This is in all likelihood
due to the poor estimation of the input noise variance
λeũ . The filtered version, fbciv, greatly increase the quality
of this estimation, which in turn leads to no convergence
deficiency and accurate parameter estimates. In particular
the fbcivnc method, which uses a non-causal filter, yields

the lower NRMSE. An interesting topic for future work is
to derive an optimal filter to be used in these algorithms.

A byproduct of this example is also the comparison be-
tween second-order and higher-order statistics techniques.
It can be seen that the HOS-based methods yield results
comparable to the second-order techniques in terms of
NRMSE. Remember that the HOS-based methods would
still be applicable with no change if the noises were to be
coloured, contrary to the second-order methods.

7. CONCLUSION

In this paper, different analytical IV methods for EIV
model identification have been reviewed. Three approaches
have been considered: the classical extended IV solution
using delayed versions of the input/output data as instru-
ments, the bias compensated IV method and higher-order
statistics techniques.

Although relaying on simple linear regressions, all of
the methods give consistent and accurate results on the
example considered in the numerical simulation. This fact
gives an idea of the potential of IV techniques, even in an
EIV framework. Of course, no definitive conclusion can be
drawn from one example only; future work on the subject
will include a thorough theoretic study and comparisons
between IV and non-IV methods, on several examples.
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xivuu −1.4976
±0.0001

0.6978
±0.0001

0.9939
±0.0018

0.5010
±0.0009

− − 0.304

xivyu −1.4997
±0.0001

0.6996
±0.0001

0.9976
±0.0010

0.5004
±0.0007

− − 0.243

bcivuu −1.5011
±0.0006

0.6998
±0.0007

0.9977
±0.0006

0.5012
±0.0008

0.7654
±0.6141

73.5% 0.624(0.238)

bcivyu −1.5018
±0.0002

0.6997
±0.0001

1.0001
±0.0004

0.4991
±0.0002

0.7409
±0.5926

77.5% 0.368(0.147)

fbcivc −1.4983
±0.0001

0.6995
±0.0001

1.0068
±0.0012

0.5040
±0.0004

0.4555
±0.1212

100% 0.239

fbcivnc −1.4999
±0.0001

0.6996
±0.0001

0.9963
±0.0008

0.4989
±0.0003

0.3251
±0.0604

100% 0.202

tocivuuy −1.4897
±0.0001

0.6900
±0.0001

0.9938
±0.0008

0.5092
±0.0010

− − 0.269

tocivyyy −1.4941
±0.0002

0.6956
±0.0001

0.9722
±0.0037

0.5040
±0.0010

− − 0.416

Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.
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