N

N
N

HAL

open science

Why are under-constrained systems not that bad

Simon Thierry, Pascal Schreck, Pascal Mathis

» To cite this version:

Simon Thierry, Pascal Schreck, Pascal Mathis. Why are under-constrained systems not that bad. ADG
’10: 8th International Workshop on Automated Deduction in Geometry, 2010, Miinchen, Germany.

hal-00691837

HAL Id: hal-00691837
https://hal.science/hal-00691837

Submitted on 27 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00691837
https://hal.archives-ouvertes.fr

Why under-constrained systems are not that bad

Simon E.B. Thierry, Pascal Schreck, and Pascal Mathis

LSIIT, UMR CNRS
Université de Strasbourg
[simon.thierry,schreck,mathis]@unistra.fr

Abstract. Under-constrained geometric constraint systems are often
considered as mis-constrained systems which have to be corrected by
a completion mechanism. We expose here some works performed in our
team and where under-constrained systems are considered as a wish of
the designer or a step used in order to solve a well-constrained system.

1 Introduction

The main goal of the geometric constraint solving problem consists in yielding
objects declaratively specified by the means of both a geometric description in-
volving the characteristic entities of the object, like points, lines, planes or circles,
and the relations between these entities, also named geometric constraints.

The problematic of geometric constraint solving mainly arises in two fields
of computer science. The first one is the Computer Aided Education domain
(CAE), where problems from high school mathematical programs like the fol-
lowing one (see "Statement" below) have to be considered in the context of
dynamic geometry ([1,2]) or Computer Assisted Proof in geometry ([3-6]).

Statement. Let D; and Dy be two

given lines, A be a point on Dy, B be a M AX+BY=I
point on Dy and M any point. Construct

a line d passing through M and crossing A X By
D1 in point X and D- in point Y such

that distance AX + BY is equal to a . v b

given constant | (see the figure along-
side).

Although many features of this domain are interesting in order to have a
good understanding of the geometric constraint solving problematic, the focus
will not be put on this domain in this paper [7, §].

The second domain where geometric constraint solving has been more widely
studied is the Computer Aided Design and Drawing field (CAD) (see for instance
[9-16]). In this framework, the geometric entities and relations are given under
the form of a sketch on which the user imposes a dimensioning (cf. figure 1).
With the progress of computer science and the advent of CAD, technical de-
sign softwares enriched with functionalities that automatically solve this kind of
problems:

— the user draws a sketch using the graphical interface of the software,

— he/she then imposes a dimensioning with specific tools,

— a software module (called a solver) modifies the initial drawing so that it
satisfies the dimensioning.

14

<\i35 85

14

Fig. 1. A technical sketch (left) and a scaled solution (right) without its dimensioning.
The dimensioning is normalized and depicted by the arrows: straight arrows mean
distance constraints and curved arrows mean angular constraints.

The main differences between CAE and CAD contexts lie in the form of the
statements (literal vs pictorial) and the expected nature of their solutions:

— in CAE, one wants a way to construct all the solutions, i.e. a program or a
macro whose input is the position of the given entities and whose output is
the solutions,

— in CAD, the user only needs one drawing meeting the metric requirements
and close to the shape of the sketch.

The question of being able to yield all the solutions, even in CAD, is not as
meaningless as it seems at first sight. Indeed, it is difficult, and cumbersome, to
write down a non-ambiguous geometric specification describing a single object
and dimensioned sketches thus often define more than one object. For instance,
the specification of a triangle by the lengths of its three sides, generally defines
two triangles up to a displacement (also called a direct isometry or a rigid body
motion). In other words, when a vertex and an edge of the triangle are fixed,
there are two solutions for this particular geometric constraint system. With n
distance constraints between 2n — 3 points, there are 272 solutions. In the CAD
context, the solver should be able to select the more promising solution and /or to
provide a way to smartly browse the set of the solutions (called solution space).

A constraint system with a finite number of solutions is said well-constrained
and various studies have yet been done to select one solution and to browse
the solution space [12,17-20]. A constraint system with an infinite number of
solutions is said under-constrained, and this state has often been viewed as a
negative fact that the solver should detect and correct [21,22]. In fact, things
are a little bit more complicated since the under-constrainedness can be a user
desiderata, for instance in the case of a specification up to a direct isometry which
indeed leads to an infinite number of solutions, the exact location of a solution
being irrelevant, or in the case of the specification of a kinematic system, like a
pair of scissors.

To tackle under-constrained systems, the main piece of work is that of Joan-
Arinyo et al. [21,23]. First of all, they suggest that the main problems for
solving under-constrained geometric constraint systems (GCS) are three: com-
pletion (add constraints in such a way that the new GCS can be solved by
geometric constructions), well-constrained completion (add constraints to an
under-constrained GCS so that it becomes well-constrained), and optimal well-
constrained completion (add constraints so that the new GCS is well-constrained
and the set of equations to solve simultaneously is of minimal size). Second,
they propose an algorithm to address the first two problems, by incrementally
enriching the constraint graph with new constraints. Among the different pos-
sible completions, one needs to find the one that will allow a given geometric
solver to solve the completed system. To do this, they use the technique of s-tree
decomposition.

Prior to the work of Joan-Arinyo et al., Fudos and Hoffmann [24] proposed
a method called cluster formation method, which addresses problems 1 and 3.
Lee et al. [25] classify under-constrained sub-systems into simplified cases and
apply classification rules, both aspects being based on the graph of the GCS,
in order to deal with under-constrained systems. The work of Trombettoni et
al. [26] introduces an algorithm based on an analysis of the degrees of freedom to
solve under-constrained GCS. Zhang and Gao [27] proposed a method to address
the well-constrained completion problem which can then be used to decompose
under-constrained systems.

This paper illustrates the interest of considering under-constrained systems
not as constraint systems to be fixed, but rather as systems to be solved as is,
in association with tools able to browse the solution space, or as intermediary
systems in a solving process. It is organized as follows. Section 2 recall some
fundamental definitions and facts of geometric constraint solving. In particular
its “original sin” which lies in the invariance under the action of the isome-
tries, makes under-constrained the majority of constraint systems encountered
in CAD. Section 3 describes a way to represent and to handle articulated sys-
tems. Section 4 explains how the consideration of under-constrained systems ob-
tained by relaxing some constraints may help in solving well-constrained system.
We present here two examples: a decomposition method based on the compu-
tation of maximal rigid sub-system (here, rigid means well-constrained modulo

the isometries), and a method so-called quasi-decomposition which mixes formal
and numerical resolution.

2 Invariance under a global group

In this section, we formalize invariance under the action of transformation groups
and show the interest of the multi-group point of view in the context of geometric
constraint solving.

2.1 Geometric constraint systems

We use the formalism of geometric constraint systems used in [28]. We briefly
recall here the main notions.

A Geometric Constraint System (GCS) is a tuple § = (C, X, A) with C' the
set of constraints, X the set of unknowns and A the set of parameters. Given a
valuation p of the parameters, a figure of S is a valuation of the elements of X
(i.e. a map from X to the considered model, generally the Euclidean plane Eo
or the Euclidean space E3) such that the interpretation of the constraints of C'
is valid. The set of all figures of S according to p is denoted by Fj,(S), simply
F(S) when values of parameters are not important or F' when no confusion
occur. Then, S is well-constrained is F'(S) is finite, under-constrained if F(S) is
infinite.

The joint operation is the semantical counterpart of system decomposition.
Under some compatibility conditions, two figures can be joined. The joint of f1,
defined on X;, and f;, defined on Xo, is the figure f; ® fo which maps x to
fi(z) if x € X1 or to fa(x) if x € Xa. The compatibility conditions are that for
any € X1 N Xs, fi(x) = fa(z). The joint operation can be extended to joint
of figure sets by considering that F; ® Fb is the set of all figures obtained by
the joint of two compatibles figures f1 and fs, respectively in F; and F5. Fig 2
shows the joint of two figure sets (the dotted line expresses symmetry in the top
triangle).

The notion of boundary system plays a large part in decomposition of sub-
systems. A boundary system of a system Sy, subsystem of S = S; + Ss, contains
all the information needed to retrieve the solutions of S which are subfigures of
F(S). We denote by F(S)|x, the subfigures of F(S) restricted to the unknowns
set Xo.

The definition of boundary systems is semantical: let S = S; + So be a
system with S; = (C1, X1, 41) and Sy = (Ca, X3, A2). A boundary system of S;
with respect to system Sy is a system that we note Bs, (S1) = (Ce, Xe, Ac) with
Xe = X1 n Xg, Ae = A1 n A2 and Ce such that F(BSQ(Sl)) = F(81)|(X10X2)-
Usually, C. is computed by heuristics within a specific geometric universe. Again,
to clarify notations, when there is no ambiguity as to the system with respect to
which the boundary system is computed, it is denoted simply by B(S). Notice
that there may be several different boundary systems, but they are all equivalent
to each other.

It can be shown [28, result 2.3] that removing a subsystem S; from system S
does not change the solutions of the remaining system if a boundary system of
S; is added. In other terms, it proves the validity of bottom-up decomposition
methods: if the subsystem solvers are correct (i.e. yield only figures that satisfy
the constraints) then the joint of the subfigures will yield valid solutions.

Let us illustrate this result on the example of Fig. 2: X5 is the set { P3, Py, Ps}
and F(Sz) contains all triangles whose two segments are of the same length and
angle between them is fixed to parameter a. We can see that F(S)|x, is the
subset, of F'(Sz) where distance P3Ps of triangles is k;. F(Sz) carries triangles
that are not involved in any solutions.

The set X; is {P1, P2, P5, Ps}. Boundary variables are X, = X; N Xy =
{Ps3, Ps} and F(B(S1)) contains all segments in Euclidean plane where length is
k1. Considering a classical signature, this set can be syntactically expressed by
the system B(S1) = ({dist_pp(Ps, Ps,k1)},{Ps, Ps},{k1}).

Thus, Sz + B(S1) restricts Sy to triangles where the distance of the segment
opposite angle Pg/Rl\Pg, is k1. Notice that F'(B(Sz)) is just all possible segments
since boundary variables of Sz are {P;, Ps} and the distance between these two
points is not set. Here, the relation is F(S)|x, = F(B(S2)+S1) but the boundary
system B(S2) does not bring relevant informations since F(S)|x, = F(S1). That
means that removing Sy from S does not impact on Xj.

Rotalon

p : ‘ ‘
R j A /<aj>\ ks Reflection
B T B i
: K 3 !
S=§+$% $

a) SystemS b) F(&/Tranéa\lons
i =) AN o
F(%)D . F(S) ®F(§*§) 77&&% 7

¢) F(S/Rigid Motions d) F(S)/Isometries

Fig. 2. Joint of two subfigures
Fig. 3. Orbits of system S considering dif-

ferent transformations groups

2.2 Transformation groups

A set of figures F' is invariant by a group of transformations G (or G-invariant)
if for any figure f € F and any transformation ¢ € G, ¢(f) € F. By extension,
a constraint system S is said to be G-invariant if F(S) is so. For a group G

and a figure f € F, the set G.f = {f' | Jp € G,p(f) = f'} is the orbit of
f- The set of orbits of F' under the action of G form a partition of F. The
associated equivalence relation states that f and f’ are equivalent if there exists
a transformation ¢ € G such that f = ©(f’). The orbits are the equivalence
classes of this relation. The set of all orbits of F' under the action of G is written
as F/G and |F/G| denotes the number of orbits.

Fig. 3a shows the very simple constraint system of a triangle where length
of all three sides are given. Given values for parameters k1, ko and k3, Fig. 3b,
3c and 3d represent the solution set F'(S) with different equivalence classes
according to the transformations group considered. In Fig. 3b transformations
are translations, thus number of orbits is infinite. In Fig. 3¢ transformations are
direct isometries or rigid motions, so |F(S)/G| = 2. In the last case, Fig. 3d,
there is only one orbit, all solutions are equivalent modulo isometries.

When a constraint system is G-invariant, F'(S) can be characterized by a
set of orbit representatives F,. containing one figure per orbit. In other words,
F(S) = G.F,. In the previous example, the set of solutions can be defined by
F(S) = G.F, with G the group of rigid motions and F, a set containing two
figures, one from each orbit of F(S)/G.

Those definitions allows to define modulo constrainedness, according to the
number of orbits of the system for a given group: a geometric constraint system
S is said

— under-constrained modulo G if |F(S)/G| is infinite,

— well-constrained modulo G (or G-well-constrained, G-wc in short) if | F/(S) /G|
is positive and finite,

— over-constrained if S has no solutions.

Thus, when G is infinite, a G-well-constrained system is almost always under-
constrained since it has an infinite number of solutions in each orbit. Yet, since
the position (or the scale, or the orientation) are often irrelevant for the designer,
one can call this phenomenon under-constrainedness by abstraction.

A key notion when it comes to modulo constrainedness is that of reference.
A reference for a system is a set of entities (or coordinates of entities) such
that pinning down each element of the reference leaves only a finite number of
solutions. For instance, a reference for a rigid triangle defined by the lengths of
its distances could be a point and a direction from this point to another point.
Actually, a point and a direction are a reference for any rigid system and one
can similarly define possible reference types for every global group [28]. In the
case of an articulated system, a reference anchors each rigid subsystem.

Given a transformation group G and a G-well-constrained system S, let us
consider a decomposition of S under the form § = S; + S3. 1 and Sy are both
G-well-constrained if and only if they share a reference. In other words, in the
usual cases either S; or Sy is G-under-constrained and the use of a boundary
system, which has to be G-well-constrained, is mandatory.

As said above, the joint operation is very useful for decomposition methods.
Considering transformation groups, the definition of the joint operation can be

extended. Two figures f; and f> can be G-joined if there exist two transforma-
tions ¢1 and @9 in G such that p1(f1) and ¢2(f2) can be joined. The G-joint of
f1 and fo, noted f1 ®¢ fa2, is the set of all v1(f1) ® 2(fa).

Notice that a system can be invariant under the action of several groups.
For instance, if a system is invariant by displacement, it is also invariant by
translation and by rotation. More generally, one can consider a bounded poset
of groups and then show that invariance under the action of a given group implies
invariance under the action of every included group. The biggest invariance group
(in terms of inclusion) of a system is its well-constrainedness group.

2.3 Interest of modulo constrainedness

There always exists a group G such that S is G-wc: the group of permutations
of the solution set. Of course, expressing this group means knowing all solutions
of S, so this is not useful to solve or decompose. The interesting knowledge is
that of the well-constrainedness of a system (or of subsystems) modulo global
groups, i.e. groups of transformation applying the same transformation on each
entity of the (sub)system.

Classical solvers consider only GCS which are invariant by displacements, i.e.
applying a rigid motion to a solution yields another solution. We believe that
this assumption weakens geometric constraint solvers.

Indeed, considering subsystem which are invariant under other transforma-
tion groups leads to more powerful decomposition algorithms. Schramm and
Schreck [29] solve subsystems which are invariant under the actions of similar-
ities (rigid motions + scalings). From this possibiliy, Schreck and Mathis [30]
deduce a decomposition algorithm which is able to solve geometric constraint
systems which were not considered as decomposable before. Similarly, van der
Meiden and Bronsvoort [31] extend classical cluster rewriting approaches by
considering, on top of rigid clusters, two types of non-rigid clusters: scalable
clusters (i.e. sub-systems well-constrained modulo similarity, as in [30]) and ra-
dial clusters (i.e. assemblies of sub-systems which are well-constrained modulo
similarities but form a cluster which is invariant under the action of similarity
but not well-constrained modulo similarities).

Moreover, it is important to realize that the user’s intent is not always to
design a displacement-invariant object. On one hand, the object may be artic-
ulated. Articles describing methods allowing to solve articulated GCS are not
many and admit the weakness of their resolution power, whether they proceed
by analysis of the degrees of freedom of rigid object assemblies [32,33] or by
decomposition into rigid sub-systems [34]. On the second hand, the object may
also not be invariant by some rotations. For instance, sketches drawn in the con-
text of architectural design represent objects which are invariant by translation
but cannot rotate around x or y axes. Notice that very often, these systems or
subsystems can be scaled, when the architect knows the relative distances but
does not yet provide a fixed measure.

3 Articulated systems

In this subsection, we propose a method to parameterize an articulated GCS,
i.e. to find a reference for such a system. We do not address the completion
problems exposed in [21] since we do not add constraints to the system and
merely explicit which geometric entities should be anchored for the system to
have a finite number of solutions. By proceeding this way, we get a homogeneous
parameterization method, which can handle a rigid system as well as an articu-
lated system: in the first case, our method will select a point and a direction to
be pinned down, for instance.

In this subsection, we consider geometric constraint systems which are under-
constrained modulo any global transformation group, i.e. it is not possible to
yield a transformation group which acts likewise on the whole system and for
which the number of orbits is finite. Eventhough they are under-constrained,
many such systems define final objects as they are intended by the user. This is
the case of all articulated objects: a pair of scissors, a desklamp, a car or any
robotic system.

In order to solve these systems, three steps are needed:

1. find a parameterization of the GCS, i.e. a reference,
. determine the possible values of the parameters,
3. draw the solutions for given values of the parameters.

[\

We focus here on step 1 and use work described in the literature [17, 18]
for the other two steps. We present an incremental algorithm to compute a
parameterization of a GCS & = (C, X, A). The idea of this algorithm is to
consume constraints one by one and consider a generic reference for the system
induced by the new constraint. This generic reference is modified according to
what the system shares with the system generated by the previously consumed
constraints.

3.1 Parameterization algorithm

The reference is computed under the form of a directed acyclic graph (DAG).
The orientation of the DAG indicates which parts of the order in which the
different parts of the reference must be anchored. When there are several dis-
connected subsytems, we consider several DAGs. Together with the DAGs come
the construction rules which indicate how to build entities of the system with
parts of the reference as arguments.

Algorith 1 gives the general process of the algorithm. At each iteration, a new
constraint c is taken into account, which will be added to the already constructed
system &', initially empty. During the addition of ¢, we start by computing the
system induced by ¢, S. and the boundary system B of S, with regard to S’.
Several cases occur:

1. B is empty,
2. B contains only geometric entities

3. B contains constraints concerning geometric entities from disconnected sub-

systems

4. B contains constraints concerning several geometric entities from a subsys-

tem

Algorithm 1 Incremental parameterization algorithm

input: § = (C, X, A), a geometric constraint system
output: R, a reference for S (DAG)

1

11:

12:
13:
14:
15:

16:
17:

18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:

2
3
4
5:
6:
7-
8
9
0

10:

let S’ = be an empty GCS and R an empty DAG

for all c € C' do

let S¢ be the GCS induced by ¢ and r. its reference
let B = (Cp, XB, Ag) be the boundary of S, with regard to &’
if B is empty then
R«— R+rc //case 1
else if Cz is empty then
R«— R+ (rc — XB) //case 2
else
if no two entities of X3 belong to a same connected component of the
constraint graph of S’ then
remove the reference of all concerned connected components except one
//case 8
add part of r. as in case 2
add each previously removed reference as in case 2
else
compute the boundary system of the connected component containing
several entities concerned by ¢ //case 4
if it contains the same constraint then
if the metric is the same, then the constraint is redundant, else it
overconstrains the system endif
else
attempt to detect rigidification and to correct R using geometric
construction rules
end if
end if
end if
if ¢ was detected as over-constraining or redundant then
output an error/warning message
else
S —8+S8.
end if
end for

Case 1 : empty boundary

If the boundary is empty, it means the geometric entities concerned by the new
constraint do not yet appear in 8’: a new connected component is created by
adding S, and r. can be added as is.

Case 2 : only entities in the boundary

If the boundary contains only entities, it means the new constraint only partially
concerns entities of &’ and the already computed reference R does not need
modifications. r. is computed and we remove from it entities which are in the
boundary, already given by &’. For instance, if the new constraint is a point-
point distance, r. consists in one point and one/two directions, according to the
dimension of the geometric universe. If one of these points is already in S’, then
only the directions are added to R.

Case 3 : the boundary contains a constraint between disconnected
subsystems

If B contains the added constraint but the concerned entities are not in the same
connected component of the constraint graph, it means that the new constraints
links two independent subsystems S; and Sy (or more in case of non-binary
constraints but for the sake of clarity, we here consider there are only two sub-
systems). In this cas, we first add S, to one of these systems, say S; (the choice
is made through a heuristic, ours being to choose the system with the biggest
reference), thus computing the addition to the reference as in case 2.

Then, we “reverse” the reference DAG of Sy so that its base parameter is the
entity concerned by c¢. Connecting this DAG is then easy as one simply removes
the base parameter to make both DAG compatible.

Reversing the DAG is performed by considering a temporary DAG, initially
empty, and by “adding” the boundaries of each rigid subsystem in the right order.

Case 4 : the boundary contains a constraint between two entities of
a same subsystem

This case occurs either when a closed chain is created or when a redundant
constraint is added. The latter is detected by computing the boundary of &’
with regard to S.. If it also contains ¢ we detect a redundancy (if the metrics
are consistent) or an over-constrainedness.

If the constraint is not redundant, we consider classical construction rules to
correct the DAG. These classical construction rules are, for instance “if a point
is concerned by two/three distance constraints in 2D /3D, it can be constructed
by intersection of the corresponding circles/spheres”. These rules allow us to
remove elements from the reference DAG when needed. For instance, consider
a three-bars articulated object and the addition of a constraint closing it. One
of the extremities of the three-bars object will be considered as built using a

construction rule, thus removing the part of the reference that previously allowed
its construction. The new DAG contains a point and two directions, so as to build
two of the bars. The rest of the system depends entirely on these bars.

The rigidification of a subsystem can be detected: when the parameters of a
construction rule are all in the same rigid subsystem, the constructed elements
extend this rigid subsystem.

It may happen that no construction rule can be found. For instance, con-
sider one of the K3 3 systems of figure 4: until the last constraint is added, our
algorithm works fine. The last constraint rigidifies the system but we cannot
detect it since no geometric rule applies. In this particular case, we consider
the corresponding subsystem as rigid eventhough we cannot yield a construction
plan and use a reparameterization method (see section 4.3) for which we already
know the constraint to remove.

3.2 Limits of this algorithm

An important limit of this algorithm lies in the fact that some rigid systems are
only identified through the heuristic consisting in considering that a system with
4 degrees of freedom becomes rigid if we add a new non redundant constraint.
Mathematical theorems could trick the algorithm.

Algorithm 1 yields only one reference for a given system. This specific refer-
ence may not be the one the user wants and we do not yet have a way to provide
a reference with several mandatory elements in it: only the base parameter can
be chosen, by using the reversal method. Even then, the cost of this reversal is
heavy, since it consists in adding the boundaries of each rigid subsystem, thus
restarting the construction of non-rigid closed chains from scratch. Also, this al-
gorithm considers assemblies of rigid subsystems, and cannot take into account
subsystems which are well-constrained modulo other groups than the rigid mo-
tions. A promising track for these drawbacks lies in flow-based methods [35], but
there is a risk that their use only makes worse the problems of the combinatorial
heuristic mentioned above, especially for the detection of over-constrainedness.
Another track is a parallel use of the witness method [36-38].

4 Decomposition and under-constrainedness

Decomposing constraint systems into sub-system is an avatar of the “divide and
conquer” paradigm which leads to several methods whose goal is to make the
geometric solvers more powerful. For instance, we can cite cylindrical decom-
position, Grobner bases computation, Kénig-Hall decomposition, maximal flow
based methods, decomposition into triconnected components, geometric knowl-
edge based systems, clusters, etc.

As mentioned above, under-constrainedness is often a consequence of the
decomposition process when its deal with invariance under the action of a global
group (consider, for instance, the notion of virtual bond used into the Owen
decomposition). We will see in the next sections, two example of methods where
under-constrainedness is part of the decomposition process itself.

4.1 Decomposition and solving

Let us recall more precisely what constraint systems decomposition means: given
a constraint system S, search a system S’ such that :

— &’ is semantically equivalent to S,
— &’ is the union of two or more simpler systems

e which are well-constrained modulo some global group,
e and not reduced to their boundary,

— solving &’ by using a joint operation is easier, and yields the solutions for S

The more powerful decomposition methods come from the algebraic elimina-
tion theory [39]. Indeed given an algebraic system, they are able to yield one or
several algebraic systems under triangular form. After that, each equation has to
be solved using algebraic method, like Lebesgue’s method, or numerical method.
But the exponential complexity of algebraic formal method disqualify them for
problems of practical use.

This is why, in CAD, combinatorial methods are considered. We give here
the example of the so-called propagation of degrees of freedom (DOF propaga-
tion) which is perhaps the more basic decomposition method. Starting from a
reference, the method tries to iteratively add to the system S; an unknown x
and constraints defining z until S; is equal to S. More precisely, this method
translates a constraint system S into a constraint hyper-graph H = (V, E) where
the vertexes correspond to the unknowns labeled by their degree of freedom,
roughly speaking their number of coordinates, and the hyper-edges correspond
to the constraints labeled by their degree of restriction roughly speaking the
number of real equations subtended by the constraint. The forward chaining
version of the method can be summarized by algorithm 2. At the end of this
process, S corresponds to a subsystem which is structurally well-constrained,
and L describes a way to decompose S;. The algorithm is said successful when
S = &;. This method yields a simple planing method where the unknowns are
tacking into account one after the other.

This DOF propagation method is based on a local application of the Laman
principle and find a well-constrained subsystem S’ of S. This subsystem is maz-
imal according to this method. Unfortunately, DOF propagation is not powerful,
even in 2D. Indeed, sometimes S’ is reduced to a single constraint regardless the
chosen reference and the method fails to perform an interesting decomposition
(see, for instance, the K33 problem above). Moreover, like most of the combi-
natorial solvers, this method is tricked by dependences induced by geometrical
theorems. for instance, it is unable to detect that a triangle constrained by three
angle constraints is over-constrained.

The W-decomposition method is also based on the computation of a maxi-
mal subsystem well-constrained modulo the displacements. Based on the witness
notion (see ...), it is not tricked by unwanted dependences, and it is much more
powerful than combinatorial methods in computing well-constrained subsystems.

Algorithm 2 Simple DOF propagation int he case of all geometric entities have
DOF 2, and each edge represents a constraint with DOC 1

input: G, the constraint (hyper)-)graph corresponding to S
output: L an ordered list of vertexes of G

1: L is the list of the visited vertexes,

2: Sy is the list of the visited edges
3: L = choose vertexes of G corresponding to a reference
4: S1 = the constraints joining the chosen vertexes
5
6

: repeat

choose edges {e1,...em} corresponding to {ci,...cm}, such that
- they are not in Si,
- they have all the same unknow x as extremity,
- they other extremities are in L,
- dof(x) = X;dor(c;)

7 if such edges exist then

8: add z to L and,

9: add {ei1,...em} to S1

0 end if

1: until no more edges can be chosen

4.2 W-decomposition

The idea of applying the notion of witness in GCS to CAD/CAM problems
comes from D. Michelucci. It was explained in several places, including the 2006
ADG workshop [37].

Considering a witness allows to find a maximal rigid sub-system (MRS) of
a constraint system (see [36,37]). Applying this method to a rigid constraint
system S yields whole system &, but considering an underconstrained subsys-
tem of S, some rigid parts of S can be retrieved: the W-decomposition is a
decomposition method based on this fact.

The basic idea of W-decomposition is then to remove constraints from S,
giving system &', and see if S’ can be broken into non-trivial MRSs, i.e. MRSs
which are not limited to their boundary. If it does, then we use W-decomposition
on each non-trivial MRS. Algorithm 3 gives the pseudo-code of the algorithm.

Efficiency of the execution depends on the choice of the removed constraint.
In the worst case, all constraints are tested: 2 x n — 3 uses of the MRS algorithm
are made, thus the complexity is O(n*).

It must be noticed that W-decomposition does not fail because of the con-
nectivity of the constraint graph: For instance, Fig. 5a gives an example of a
4-connected constraint graph which is W-decomposable, no matter what is in-
side the inner blue part as long as it is rigid. Moreover, W-decomposition is not
based on a bottom-up computation, like methods with clusters, and succeeds in
decomposing the systems correponding to the graphs of Fig. 4 and Fig. 5b which
are not decomposable by classical combinatorial methods.

W-decomposition is a mixture of combinatorial and numerical random meth-
ods. It is obviously not as powerful than algebraic methods, for instance it fails

Algorithm 3 W-decomposition

Input: a rigid GCS S with
its constraint graph G = (V, E) and
a witness W of &

Output: a list of rigid subsystems

1: repeat

2: Delete a constraint e

3: Identify MRSs of (V, E/{e}) using a witness

4: while each MRS is equivalent to its boundary do

5: Choose another constraint e and identify MRSs of (V, E/{e})
6: end while

T

boundary

until all constraints are tested or there is a MRS which is not equivalent to its

8: if no MRS bigger than its boundary is found then
9: return list [G] //G is W-indecomposable

10: else

11: remove all the constraints included in non-trivial MRSs

12: insert the boundary of all non-trivial MRSs in the system

13: reintroduce constraint e in the system //this gives a rigid constraint system
14: recursively W-decompose the resulting system

15: recursively W-decompose all previously identified MRSs

16: return the concatenation of the lists obtained in the last two lines

17: end if

Fig. 4. 2D systems where edges represent
point-point distances; a: 3-connected con-
straint graph made of two K3 3 graphs con-
nected with 3 constraints; b and c: graphs
obtained by replacing MRSs identified by
algorithm 3 by their boundary with respec-
tively edges e1 and ez removed.

2D

Fig. 5. examples for the W-
decomposition: each vertex is a point
and each edge represents a distance con-
straint. a: W-decomposable 4-connected
GCS (the blue subsystem is rigid); b:
W-indecomposable system; c: there are
W-indecomposable systems with
arbitrary number of points.

an

in decomposing all the systems depicted in Fig. 5c. But, we feel that it owns one
of the best ratio decopmposition power/efficiency for constraint systems coming
from CAD.

4.3 Quasi-decomposition

We now outline a work about decomposition which was already presented at an
ADG workshop and published in [40, 41]. This method use an under-constrained
system which is built on the fly and is considered in some sense as an articulated
system whose some solutions are browsed through a numerical method. Roughly
speaking, the idea beyond the first step of the method consists in examining
why the decomposition method fails, and, in relaxing some constraints to make
it succeed.

It is useful to come back to the DOF propagation and to notice that the failure
of the method does not necessarily implies that system S is miss-constrained.
More precisely, assuming that system S; is well-constrained, the case dof(x) <
X;dor(c;) (which makes fail the algorithm 2 at line 6, fourth item) implies that
the whole system S is over-constrained: in other words, there is a bug in the
designer specification. But the method could as well fail, even if system S is
well-constrained, if for all unknowns x not in Sy, dof(x) > X;dor(c;): consider
for instance the K3 3 graph given at Fig. 4.

Then, recall that decomposition of system S implies to compute a system
S’ semantically equivalent to S and under the form of the union of smaller
subsystems. Relaxing the equivalence condition between S and S’ leads to a more
flexible scheme which we call quasi-decomposition: given a constraint system S,
search for a system S’ such that :

— S and 8§’ do not necessarily have the same solutions but are “similar" in
some sense

— &' is decomposable,

— there is a way to transform any solution for &’ into a solution for S and one
hopes that any solution for S can be obtained like that.

This scheme was used by the adaptation of the homotopy method to CAD
problems (see [42]). But it was also used, in a different way, by Gao et al. in
the case where S is “quasi" decomposable with respect to the DOF propagation
method.

Exploiting the decomposition failures to modify a system Whatever the
decomposition method used, when an irreducible constraint system S is consid-
ered, some room for manceuvre can be obtained by forgetting some constraints of
S, what gives an under-constrained system, say S;. Making S; well-constrained
while keeping flexibility can be done in two ways: transforming some unknowns
into parameters [43], or adding constraints with parameters [44]. Obviously, the
latter way is more general since transforming unknown x into parameter p re-
sults in adding equation x = u. In this case, parameterized constraints are added

to the system, and we can make their parameters vary in compensation of the
missing constraints.

More formally, we have the following scheme (for the sake of simplicity, we
consider the replacement of a single constraint):

c(xi, ..., zp)
S=(enilar...zy) 0 mhi0)
em(T1 ..., 2p)

gives system S; by forgetting, for instance, ¢;,:

iz, ..., xp)
Si=(... s{x, ., xp s 0)

Cm,1($1 cee 7:Cp)

which gives by adding constraint d with parameter k:

cl(xl,...,xp)
S = () iz, .t {k})
d(z1,...xps k)

or, in short, 8" = S —¢p (21, ... xp +d(21, . .. 2p; k). The addition of one or more
parameters imposes S’ to be formally solved and the question arises of choosing
the constraints to be forgotten such that &’ is formally solvable.

The answer of this question is strongly related to the nature of the formal
solver used. For instance, in [44], the authors assume that their formal solver can
solve any geometric construction problem with one unknown object and then,
they use a systematic search of the constraints to be eliminated. This ensures
that the remaining system is solvable and a minimal number of constraints is
discarded. But this brute force algorithm is not usable anymore when there are
more than two constraints to remove and when the solver is not able to formally
solve any construction problem with one unknown.

The backward chaining consists in choosing the less constrained object of the
system, call it x;,: an heuristic choice is made in the case where there are several
such objects. We call the neighborhood of z;, the set of all constraints involving
x;, and we note it N(z;,). Assuming that all the other objects are known, the
formal solver is employed to construct x;, by using constraints in N (z;,):

— if the solver fails to determine z;, then
e try another few constrained object,
e if the solver fails in any case, then try to add some heuristically chosen
parametric constraints d;;
— if the solver succeeds to formally determine z;, from its neighbors, two cases
can occur:
o if all constraints of N(x;,) are used, the chaining process can continue
o if some constraints of N(z;,), say ¢}, are not used, then keep them apart.

Algorithm 4 The algorithm applying one step of a “one step” transactional
expert system

input : B, base of unused constraints

Se, a transactional expert system

S1, the constraint system to be analyzed
output : ok, a boolean

B, the modified base of constraints

S1, the modified constraint system
1: 1 = extract_obj dof(B) // unknowns list

2: ok = false
3: (continue,o,r,B+,B-) = try(B, Se, S1)
4: // try to apply a rule removing r degrees of
5: // freedom from o, adding facts in B+ and
6: // removing facts in B- (B is unchanged)
7: while continue do
8: x = current_ DOF(o,1)
9: if x+r > dof(o) then
10: continue = false
11: store all the supernumerary constraints
12: else
13: if x+r = dof(o) then
14: B = update(B,B+,B-)
15: continue = false, ok = true
16: S1 = update_sys(S1, B)
17: else
18: 1 = update_list(1, (0,x+r))
19: B = update(B,B+,B-)
// try another rule/object
20: (continue,o,r,B+,B-) = try(B,Se,S1)
21: end if
22: end if
23: end while
24: done

25: return (ok, B, S1)

The system S’ to be considered is S — 37, ¢j + >, d; (see Alg. 4)

Conversely, the forward chaining strategy consists in letting the knowledge
based solver act on the constraint system. When the solver fails to determine
one unknown because some constraints are missing, then it tries to add some
parametric constraints d; in order to continue. At the end, when all the unknowns
are solved, there are some constraints ¢; which have not been used since system
S was well-constrained: these constraints must be forgotten. Once again, the
system S’ to be considered is S — >, ¢j + > d;.

This way, the resolvability of S’ by the formal solver is ensured. In principle,
as many constraints were removed as ones were added (more precisely, we should
consider the degree of restriction of the constraints): we call syntactic distance
between S and S’ the number of removed constraints. The heuristics used in the
previous strategies aim at minimizing this distance, that is, at modifying S as
little as possible.

Solving Let d be the syntactic distance between S and §’. S’ is a parametric
constraint system with d parameters k1, ...kq and p unknowns z,...x,. Since
S’ is formally solvable in our framework, we can use its solutions which are
functions f; : (k1,...kq) — zi(k1,...kq) where i =1,...p.

In addition, S and &’ differ by d constraints. More precisely, most solutions
of &’ do not satisfy the removed constraints cf,...c}. But, we can search for
values for the parameters k; which satisfy these constraints. In fact, we just have
to solve the system Ss:

Cll(fl(kla---kd),---,fp(k1,...kd))

I T XY

whose unknowns are {k1, ... kq} and without parameters. Thus, Ss can be solved
numerically. It is then clear that if (vq,...v4) is a solution for Sa, then

(fl(vlvn-vd)v"'fp(vl;--~Ud))

is a solution for S. On certain conditions about the added constraints d;, it can
be proved that if S; is well-constrained, all the solutions can be obtained this
way if both solvers are complete.

Some difficulties arise when a numerical solver is used to solve system Ss but
it is beyond the scope of this paper. Interested readers may refer to [41].

a{kla---kd}a@

5 Conclusion

We explained in this paper why under-constrained systems are useful in CAD:
they naturally appear when constraint systems are invariant modulo an infinite
group of transformations, but they also are an ingredient of some decomposition
methods.

Moreover, from the final user point of view, it is quite frustrating, when there
are an infinite number of solutions, not to see any of them. This occurs when the
user wants to specify an articulated object or when in an incremental process of
design, the user wants to see the evolution of the solutions. This is why, we think
that solvers should be able to deal with under-constrained systems by proposing
some particular solutions for the current system, by giving tools for browsing
infinite space of solutions. These features could make way for a new generation
of CAD softwares, more easily accessible to non-expert users. We are currently
working on a prototype taking these points into account.

References

1. Laborde, C.: Integration of technology in the design of geometry tasks with Cabri-
geometry. International Journal of Computers for Mathematical Learning 6(3)
(2002) 283-317

2. Kortenkamp, U., Richter-Gebert, J.: The Interactive Geometry Software Cin-
derella.2. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

3. Heyting, A.: Axioms for intuitionistic plane affine geometry. In L. Henkin, P.S.,
Tarski, A., eds.: The axiomatic Method, with special reference to Geometry and
Physics, Amsterdam, North-Holland (1959) 160-173

4. Dehlinger, C., Dufourd, J.F., Schreck, P.: Higher-order intuitionistic formalization
and proofs in Hilbert’s elementary geometry. In: 3rd International Workshop on
Automated Deduction in Geometry, Springer, LNAT 2061 (2000) 306-323

5. Narboux, J.: A decision procedure for geometry in Coq. In: TPHOL’04: Proceed-
ings of the 2006 conference on Theorem Proving and Higher Order Logic. Volume
3223 of LNCS., Springer-Verlag (2004) 225-240

6. Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s
Theorem in Coherent Logic. Journal of Automated Reasoning 40(1) (2008) 61-85

7. Schreck, P.: Automatisation des constructions géométriques a la régle et au compas.
PhD thesis, Université Louis Pasteur, Strasbourg 1 (January 1993)

8. Schreck, P.: Robustness in CAD geometric construction. In: IV’01: Proceedings
of the fifth International Conference on Information Visualisation, London, UK,
IEEE Computer Society (2001) 111-116

9. Aldefeld, B.: Variations of geometries based on a geometric-reasoning method.
Computer-Aided Design 20(3) (1988) 117-126

10. Dufourd, J.F., Mathis, P., Schreck, P.: Geometric construction by assembling solved
subfigures. Artificial Intelligence 99(1) (1998) 73-119

11. Ait-Aoudia, S., Jegou, R., Michelucci, D.: Reduction of constraint systems. In:
Proceedings of the Compugraphics Conference. (1993) 83-92

12. Bouma, W., Fudos, I., Hoffmann, C., Cai, J., Paige, R.: A geometric constraint
solver. Computer-Aided Design 27(6) (1995) 487-501

13. Owen, J.: Algebraic solution for geometry from dimensional constraints. In:
SMA’91: Proceedings of the 1st ACM Symposium of Solid Modeling and
CAD/CAM Applications, ACM Press (1991) 397-407

14. Hoffmann, C., Lomonosov, A., Sitharam, M.: Geometric constraint decomposition.
In Briiderlin, B., Roller, D., eds.: Geometric Constraint Solving and Applications.
Springer (1998) 170-195

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Jermann, C., Trombettoni, G., Neveu, B., Rueher, M.: A constraint programming
approach for solving rigid geometric systems. In: Proceedings of the 6th Interna-
tional Conference on Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science, Springer-Verlag (2000) 233-248

Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of geometric
constraint systems: a survey. IJICGA 16(5,6) (2006) 379-414

Luzon, M.V., Soto-Riera, A., Galvez, J.F., Joan-Arinyo, R.: Searching the solution
space in constructive geometric constraint solving with genetic algorithms. Applied
Intelligence 22(2) (2005) 109-124

Sitharam, M., Arbree, A., Zhou, Y., Kohareswaran, N.: Solution space navigation
for geometric constraint systems. ACM Transactions on Graphics 25(2) (2006)
194-213

Villard, C., Schreck, P., Dufourd, J.F.: Sketch-based pruning of a solution space
within a formal geometric constraint solver. Artificial Intelligence Journal 124(1)
(2000) 139-159

van der Meiden, H., Broonsvort, W.: An efficient method to determine the in-
tended solution for a system of geometric constraints. International Journal of
Computational Geometry and Applications 15(3) (2005) 279-298

Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., Vilaplana-Pasta, J.: Transforming
an under-constrained geometric constraint problem into a well-constrained one.
In: SMA’03: Proceedings of the eighth ACM symposium on Solid modeling and
applications, New York, NY, USA, ACM Press (2003) 3344

Gao, H., Sitharam, M.: Combinatorial classification of 2D un-
derconstrained systems (2005) Available on the web at the URL:
http://www.cise.ufl.edu/ sitharam/under.pdf.

Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., Vilaplana-Pasto, J.: Revisiting
decomposition analysis of geometric constraint graphs. Computer-Aided Design
36(2) (2004) 123-140

Fudos, I., Hoffmann, C.M.: A graph-constructive approach to solving systems of
geometric constraints. ACM Transactions on Graphics 16(2) (1997) 179-216

Lee, K.Y., Kwon, O.H., Lee, J.Y., Kim, T.W.: A hybrid approach to geometric
constraint solving with graph analysis and reduction. Advances in Engineering
Software 34(2) (2003) 103-113

Trombettoni, G., Wilczkowiak, M.: GPDOF" a fast algorithm to decompose under-
constrained geometric constraints: Application to 3D modeling. International Jour-
nal of Computational Geometry and Applications 16(5-6) (2006) 479-511

Zhang, G.F., Gao, X.S.: Well-constrained completion for under-constrained prob-
lems. International Journal of Computational Geometry and Applications 16(5,6)
(2006) 461-478

Mathis, P., Thierry, S.E.B.: A formalization of geometric constraint systems and
their decomposition. Formal Aspects of Computing Online first (2010)

Schreck, P., Schramm, E.: Using the invariance under the similarity group to solve
geometric constraint systems. Computer-Aided Design 38(5) (2006) 475-484
Schreck, P., Mathis, P.: Geometrical constraint system decomposition: a multi-
group approach. International Journal of Computational Geometry and Applica-
tions 16(5,6) (2006) 431-442

van der Meiden, H.A., Bronsvoort, W.F.: A non-rigid cluster rewriting approach to
solve systems of 3D geometric constraints. Computer-Aided Design 42(1) (2010)
36-49

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Kramer, G.A.: Using degrees of freedom analysis to solve geometric constraint
systems. In: SMA’91: Proceedings of the 1st ACM Symposium of Solid Modeling
and CAD/CAM Applications, ACM Press (1991) 371-378

Kramer, G.A.: A geometric constraint engine. Artificial Intelligence 58(1-3) (1992)
327-360

Thierry, S., Mathis, P., Schreck, P.: Towards an homogeneous handling of under-
constrained and well-constrained systems of geometric constraints. In: SAC’0T:
Proceedings of the 2007 ACM Symposium on Applied Computing, Seoul, Korea,
ACM Press (2007) 773-777

Latham, R., Middleditch, A.: Connectivity analysis : a tool for processing geometric
constraints. Computer-Aided Design 28(11) (1996) 917-928

Michelucci, M., Foufou, S.: Geometric constraint solving: The witness configuration
method. Computer-Aided Design 38(4) (2006) 284-299

Michelucci, M., Foufou, S.: Detecting all dependences in systems of geometric
constraints using the witness method. In: ADG ’06: Proceedings of the sixth
international workshop on Automated Deduction in Geometry. Volume 4869 of
Lecture Notes in Artificial Intelligence., Pontavedra, Spain, Springer (2007) 98—
112

Michelucci, D., Foufou, S.: Interrogating witnesses for geometric constraint solving.
In: SMA ’09: Proceedings of the SIAM/ACM joint conference on Geometric and
Physical Modeling, San Francisco, California, USA, ACM (2009) 343-348

Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry. Volume 185 of Grad-
uate Texts in Mathematics. Springer (1998)

Fabre, A., Schreck, P.: Combining symbolic and numerical solvers to simplify inde-
composable systems solving. In: SAC’08: Proceedings of the 2008 ACM symposium
on Applied computing, Fortaleza, Ceara, Brazil, ACM Press (2008) 1838—-1842
Fabre, A.: Contraintes géométriques en dimension 3. PhD thesis, Université Louis
Pasteur, Strasbourg 1 (november 2006)

Lamure, H., Michelucci, D.: Solving geometric constraints by homotopy. IEEE
Transactions on Visualization and Computer Graphics 2(1) (1996) 28-34

Gao, X.S., Hoffmann, C., Yang, W.Q.: Solving spatial basic geometric constraint
configurations with locus intersection. In: SMA’02: Proceedings of the 7th ACM
Symposium on Solid Modelling and Applications, Saarbriicken, ACM Press (2002)
95-104

Gao, X.S., Hoffmann, C., Yang, W.Q.: Solving spatial basic geometric constraint
configurations with locus intersection. Computer-Aided Design 36(2) (2004) 111-
122

