
HAL Id: hal-00691837
https://hal.science/hal-00691837

Submitted on 27 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Why are under-constrained systems not that bad
Simon Thierry, Pascal Schreck, Pascal Mathis

To cite this version:
Simon Thierry, Pascal Schreck, Pascal Mathis. Why are under-constrained systems not that bad. ADG
’10: 8th International Workshop on Automated Deduction in Geometry, 2010, München, Germany.
�hal-00691837�

https://hal.science/hal-00691837
https://hal.archives-ouvertes.fr

Why under-
onstrained systems are not that badSimon E.B. Thierry, Pas
al S
hre
k, and Pas
al MathisLSIIT, UMR CNRSUniversité de Strasbourg[simon.thierry,s
hre
k,mathis℄�unistra.frAbstra
t. Under-
onstrained geometri

onstraint systems are often
onsidered as mis-
onstrained systems whi
h have to be
orre
ted bya
ompletion me
hanism. We expose here some works performed in ourteam and where under-
onstrained systems are
onsidered as a wish ofthe designer or a step used in order to solve a well-
onstrained system.1 Introdu
tionThe main goal of the geometri

onstraint solving problem
onsists in yieldingobje
ts de
laratively spe
i�ed by the means of both a geometri
 des
ription in-volving the
hara
teristi
 entities of the obje
t, like points, lines, planes or
ir
les,and the relations between these entities, also named geometri

onstraints.The problemati
 of geometri

onstraint solving mainly arises in two �eldsof
omputer s
ien
e. The �rst one is the Computer Aided Edu
ation domain(CAE), where problems from high s
hool mathemati
al programs like the fol-lowing one (see "Statement" below) have to be
onsidered in the
ontext ofdynami
 geometry ([1, 2℄) or Computer Assisted Proof in geometry ([3�6℄).Statement. Let D1 and D2 be twogiven lines, A be a point on D1, B be apoint on D2 and M any point. Constru
ta line d passing through M and
rossing
D1 in point X and D2 in point Y su
hthat distan
e AX + BY is equal to agiven
onstant l (see the �gure along-side). D1

D
2

A

B

X

Y

AX + BY = l
M

Although many features of this domain are interesting in order to have agood understanding of the geometri

onstraint solving problemati
, the fo
uswill not be put on this domain in this paper [7, 8℄.The se
ond domain where geometri

onstraint solving has been more widelystudied is the Computer Aided Design and Drawing �eld (CAD) (see for instan
e[9�16℄). In this framework, the geometri
 entities and relations are given underthe form of a sket
h on whi
h the user imposes a dimensioning (
f. �gure 1).With the progress of
omputer s
ien
e and the advent of CAD, te
hni
al de-sign softwares enri
hed with fun
tionalities that automati
ally solve this kind ofproblems:

� the user draws a sket
h using the graphi
al interfa
e of the software,� he/she then imposes a dimensioning with spe
i�
 tools,� a software module (
alled a solver) modi�es the initial drawing so that itsatis�es the dimensioning.

14

7 7

14

5

85 85Fig. 1. A te
hni
al sket
h (left) and a s
aled solution (right) without its dimensioning.The dimensioning is normalized and depi
ted by the arrows: straight arrows meandistan
e
onstraints and
urved arrows mean angular
onstraints.The main di�eren
es between CAE and CAD
ontexts lie in the form of thestatements (literal vs pi
torial) and the expe
ted nature of their solutions:� in CAE, one wants a way to
onstru
t all the solutions, i.e. a program or ama
ro whose input is the position of the given entities and whose output isthe solutions,� in CAD, the user only needs one drawing meeting the metri
 requirementsand
lose to the shape of the sket
h.The question of being able to yield all the solutions, even in CAD, is not asmeaningless as it seems at �rst sight. Indeed, it is di�
ult, and
umbersome, towrite down a non-ambiguous geometri
 spe
i�
ation des
ribing a single obje
tand dimensioned sket
hes thus often de�ne more than one obje
t. For instan
e,the spe
i�
ation of a triangle by the lengths of its three sides, generally de�nestwo triangles up to a displa
ement (also
alled a dire
t isometry or a rigid bodymotion). In other words, when a vertex and an edge of the triangle are �xed,there are two solutions for this parti
ular geometri

onstraint system. With ndistan
e
onstraints between 2n−3 points, there are 2n−2 solutions. In the CAD
ontext, the solver should be able to sele
t the more promising solution and/or toprovide a way to smartly browse the set of the solutions (
alled solution spa
e).

A
onstraint system with a �nite number of solutions is said well-
onstrainedand various studies have yet been done to sele
t one solution and to browsethe solution spa
e [12, 17�20℄. A
onstraint system with an in�nite number ofsolutions is said under-
onstrained, and this state has often been viewed as anegative fa
t that the solver should dete
t and
orre
t [21, 22℄. In fa
t, thingsare a little bit more
ompli
ated sin
e the under-
onstrainedness
an be a userdesiderata, for instan
e in the
ase of a spe
i�
ation up to a dire
t isometry whi
hindeed leads to an in�nite number of solutions, the exa
t lo
ation of a solutionbeing irrelevant, or in the
ase of the spe
i�
ation of a kinemati
 system, like apair of s
issors.To ta
kle under-
onstrained systems, the main pie
e of work is that of Joan-Arinyo et al. [21, 23℄. First of all, they suggest that the main problems forsolving under-
onstrained geometri

onstraint systems (GCS) are three:
om-pletion (add
onstraints in su
h a way that the new GCS
an be solved bygeometri

onstru
tions), well-
onstrained
ompletion (add
onstraints to anunder-
onstrained GCS so that it be
omes well-
onstrained), and optimal well-
onstrained
ompletion (add
onstraints so that the new GCS is well-
onstrainedand the set of equations to solve simultaneously is of minimal size). Se
ond,they propose an algorithm to address the �rst two problems, by in
rementallyenri
hing the
onstraint graph with new
onstraints. Among the di�erent pos-sible
ompletions, one needs to �nd the one that will allow a given geometri
solver to solve the
ompleted system. To do this, they use the te
hnique of s-treede
omposition.Prior to the work of Joan-Arinyo et al., Fudos and Ho�mann [24℄ proposeda method
alled
luster formation method, whi
h addresses problems 1 and 3.Lee et al. [25℄
lassify under-
onstrained sub-systems into simpli�ed
ases andapply
lassi�
ation rules, both aspe
ts being based on the graph of the GCS,in order to deal with under-
onstrained systems. The work of Trombettoni etal. [26℄ introdu
es an algorithm based on an analysis of the degrees of freedom tosolve under-
onstrained GCS. Zhang and Gao [27℄ proposed a method to addressthe well-
onstrained
ompletion problem whi
h
an then be used to de
omposeunder-
onstrained systems.This paper illustrates the interest of
onsidering under-
onstrained systemsnot as
onstraint systems to be �xed, but rather as systems to be solved as is,in asso
iation with tools able to browse the solution spa
e, or as intermediarysystems in a solving pro
ess. It is organized as follows. Se
tion 2 re
all somefundamental de�nitions and fa
ts of geometri

onstraint solving. In parti
ularits �original sin� whi
h lies in the invarian
e under the a
tion of the isome-tries, makes under-
onstrained the majority of
onstraint systems en
ounteredin CAD. Se
tion 3 des
ribes a way to represent and to handle arti
ulated sys-tems. Se
tion 4 explains how the
onsideration of under-
onstrained systems ob-tained by relaxing some
onstraints may help in solving well-
onstrained system.We present here two examples: a de
omposition method based on the
ompu-tation of maximal rigid sub-system (here, rigid means well-
onstrained modulo

the isometries), and a method so-
alled quasi-de
omposition whi
h mixes formaland numeri
al resolution.2 Invarian
e under a global groupIn this se
tion, we formalize invarian
e under the a
tion of transformation groupsand show the interest of the multi-group point of view in the
ontext of geometri

onstraint solving.2.1 Geometri

onstraint systemsWe use the formalism of geometri

onstraint systems used in [28℄. We brie�yre
all here the main notions.A Geometri
 Constraint System (GCS) is a tuple S = (C, X, A) with C theset of
onstraints, X the set of unknowns and A the set of parameters. Given avaluation ρ of the parameters, a �gure of S is a valuation of the elements of X(i.e. a map from X to the
onsidered model, generally the Eu
lidean plane E2or the Eu
lidean spa
e E3) su
h that the interpretation of the
onstraints of Cis valid. The set of all �gures of S a

ording to ρ is denoted by Fρ(S), simply
F (S) when values of parameters are not important or F when no
onfusiono

ur. Then, S is well-
onstrained is F (S) is �nite, under-
onstrained if F (S) isin�nite.The joint operation is the semanti
al
ounterpart of system de
omposition.Under some
ompatibility
onditions, two �gures
an be joined. The joint of f1,de�ned on X1, and f2, de�ned on X2, is the �gure f1 ⊗ f2 whi
h maps x to
f1(x) if x ∈ X1 or to f2(x) if x ∈ X2. The
ompatibility
onditions are that forany x ∈ X1 ∩ X2, f1(x) = f2(x). The joint operation
an be extended to jointof �gure sets by
onsidering that F1 ⊗ F2 is the set of all �gures obtained bythe joint of two
ompatibles �gures f1 and f2, respe
tively in F1 and F2. Fig 2shows the joint of two �gure sets (the dotted line expresses symmetry in the toptriangle).The notion of boundary system plays a large part in de
omposition of sub-systems. A boundary system of a system S1, subsystem of S = S1 +S2,
ontainsall the information needed to retrieve the solutions of S2 whi
h are sub�gures of
F (S). We denote by F (S)|X2

the sub�gures of F (S) restri
ted to the unknownsset X2.The de�nition of boundary systems is semanti
al: let S = S1 + S2 be asystem with S1 = (C1, X1, A1) and S2 = (C2, X2, A2). A boundary system of S1with respe
t to system S2 is a system that we note BS2
(S1) = (Ce, Xe, Ae) with

Xe = X1 ∩ X2, Ae = A1 ∩ A2 and Ce su
h that F (BS2
(S1)) = F (S1)|(X1∩X2).Usually, Ce is
omputed by heuristi
s within a spe
i�
 geometri
 universe. Again,to
larify notations, when there is no ambiguity as to the system with respe
t towhi
h the boundary system is
omputed, it is denoted simply by B(S). Noti
ethat there may be several di�erent boundary systems, but they are all equivalentto ea
h other.

It
an be shown [28, result 2.3℄ that removing a subsystem S1 from system Sdoes not
hange the solutions of the remaining system if a boundary system of
S1 is added. In other terms, it proves the validity of bottom-up de
ompositionmethods: if the subsystem solvers are
orre
t (i.e. yield only �gures that satisfythe
onstraints) then the joint of the sub�gures will yield valid solutions.Let us illustrate this result on the example of Fig. 2: X2 is the set {P3, P4, P5}and F (S2)
ontains all triangles whose two segments are of the same length andangle between them is �xed to parameter a. We
an see that F (S)|X2

is thesubset of F (S2) where distan
e P3P5 of triangles is k1. F (S2)
arries trianglesthat are not involved in any solutions.The set X1 is {P1, P2, P3, P5}. Boundary variables are Xe = X1 ∩ X2 =
{P3, P5} and F (B(S1))
ontains all segments in Eu
lidean plane where length is
k1. Considering a
lassi
al signature, this set
an be synta
ti
ally expressed bythe system B(S1) = ({dist_pp(P3, P5, k1)}, {P3, P5}, {k1}).Thus, S2 + B(S1) restri
ts S2 to triangles where the distan
e of the segmentopposite angle P̂3P4P5 is k1. Noti
e that F (B(S2)) is just all possible segmentssin
e boundary variables of S2 are {P3, P5} and the distan
e between these twopoints is not set. Here, the relation is F (S)|X1

= F (B(S2)+S1) but the boundarysystem B(S2) does not bring relevant informations sin
e F (S)|X1
= F (S1). Thatmeans that removing S2 from S does not impa
t on X1.

aa

...
...

P

P

k

P
k

P

P

k

S = S + S S

k

S

f

F(S +S)F(S)

f
f

4

3

21

5

2

1

2

1

1 2

2

F(S)

1

3

21 1 2

1 2

Fig. 2. Joint of two sub�gures
b) F(S)/Translationsa) System S

Reflection

Rotation

...

c) F(S)/Rigid Motions d) F(S)/Isometries

k k

k

2
3

1

Fig. 3. Orbits of system S
onsidering dif-ferent transformations groups2.2 Transformation groupsA set of �gures F is invariant by a group of transformations G (or G-invariant)if for any �gure f ∈ F and any transformation ϕ ∈ G, ϕ(f) ∈ F . By extension,a
onstraint system S is said to be G-invariant if F (S) is so. For a group G

and a �gure f ∈ F , the set G.f = {f ′ | ∃ϕ ∈ G, ϕ(f) = f ′} is the orbit of
f . The set of orbits of F under the a
tion of G form a partition of F . Theasso
iated equivalen
e relation states that f and f ′ are equivalent if there existsa transformation ϕ ∈ G su
h that f = ϕ(f ′). The orbits are the equivalen
e
lasses of this relation. The set of all orbits of F under the a
tion of G is writtenas F/G and |F/G| denotes the number of orbits.Fig. 3a shows the very simple
onstraint system of a triangle where lengthof all three sides are given. Given values for parameters k1, k2 and k3, Fig. 3b,3
 and 3d represent the solution set F (S) with di�erent equivalen
e
lassesa

ording to the transformations group
onsidered. In Fig. 3b transformationsare translations, thus number of orbits is in�nite. In Fig. 3
 transformations aredire
t isometries or rigid motions, so |F (S)/G| = 2. In the last
ase, Fig. 3d,there is only one orbit, all solutions are equivalent modulo isometries.When a
onstraint system is G-invariant, F (S)
an be
hara
terized by aset of orbit representatives Fr
ontaining one �gure per orbit. In other words,
F (S) = G.Fr. In the previous example, the set of solutions
an be de�ned by
F (S) = G.Fr with G the group of rigid motions and Fr a set
ontaining two�gures, one from ea
h orbit of F (S)/G.Those de�nitions allows to de�ne modulo
onstrainedness, a

ording to thenumber of orbits of the system for a given group: a geometri

onstraint system
S is said� under-
onstrained modulo G if |F (S)/G| is in�nite,� well-
onstrainedmodulo G (orG-well-
onstrained,G-w
 in short) if |F (S)/G|is positive and �nite,� over-
onstrained if S has no solutions.Thus, when G is in�nite, a G-well-
onstrained system is almost always under-
onstrained sin
e it has an in�nite number of solutions in ea
h orbit. Yet, sin
ethe position (or the s
ale, or the orientation) are often irrelevant for the designer,one
an
all this phenomenon under-
onstrainedness by abstra
tion.A key notion when it
omes to modulo
onstrainedness is that of referen
e.A referen
e for a system is a set of entities (or
oordinates of entities) su
hthat pinning down ea
h element of the referen
e leaves only a �nite number ofsolutions. For instan
e, a referen
e for a rigid triangle de�ned by the lengths ofits distan
es
ould be a point and a dire
tion from this point to another point.A
tually, a point and a dire
tion are a referen
e for any rigid system and one
an similarly de�ne possible referen
e types for every global group [28℄. In the
ase of an arti
ulated system, a referen
e an
hors ea
h rigid subsystem.Given a transformation group G and a G-well-
onstrained system S, let us
onsider a de
omposition of S under the form S = S1 + S2. S1 and S2 are both
G-well-
onstrained if and only if they share a referen
e. In other words, in theusual
ases either S1 or S2 is G-under-
onstrained and the use of a boundarysystem, whi
h has to be G-well-
onstrained, is mandatory.As said above, the joint operation is very useful for de
omposition methods.Considering transformation groups, the de�nition of the joint operation
an be

extended. Two �gures f1 and f2
an be G-joined if there exist two transforma-tions ϕ1 and ϕ2 in G su
h that ϕ1(f1) and ϕ2(f2)
an be joined. The G-joint of
f1 and f2, noted f1 ⊗G f2, is the set of all ϕ1(f1) ⊗ ϕ2(f2).Noti
e that a system
an be invariant under the a
tion of several groups.For instan
e, if a system is invariant by displa
ement, it is also invariant bytranslation and by rotation. More generally, one
an
onsider a bounded posetof groups and then show that invarian
e under the a
tion of a given group impliesinvarian
e under the a
tion of every in
luded group. The biggest invarian
e group(in terms of in
lusion) of a system is its well-
onstrainedness group.2.3 Interest of modulo
onstrainednessThere always exists a group G su
h that S is G-w
: the group of permutationsof the solution set. Of
ourse, expressing this group means knowing all solutionsof S, so this is not useful to solve or de
ompose. The interesting knowledge isthat of the well-
onstrainedness of a system (or of subsystems) modulo globalgroups, i.e. groups of transformation applying the same transformation on ea
hentity of the (sub)system.Classi
al solvers
onsider only GCS whi
h are invariant by displa
ements, i.e.applying a rigid motion to a solution yields another solution. We believe thatthis assumption weakens geometri

onstraint solvers.Indeed,
onsidering subsystem whi
h are invariant under other transforma-tion groups leads to more powerful de
omposition algorithms. S
hramm andS
hre
k [29℄ solve subsystems whi
h are invariant under the a
tions of similar-ities (rigid motions + s
alings). From this possibiliy, S
hre
k and Mathis [30℄dedu
e a de
omposition algorithm whi
h is able to solve geometri

onstraintsystems whi
h were not
onsidered as de
omposable before. Similarly, van derMeiden and Bronsvoort [31℄ extend
lassi
al
luster rewriting approa
hes by
onsidering, on top of rigid
lusters, two types of non-rigid
lusters: s
alable
lusters (i.e. sub-systems well-
onstrained modulo similarity, as in [30℄) and ra-dial
lusters (i.e. assemblies of sub-systems whi
h are well-
onstrained modulosimilarities but form a
luster whi
h is invariant under the a
tion of similaritybut not well-
onstrained modulo similarities).Moreover, it is important to realize that the user's intent is not always todesign a displa
ement-invariant obje
t. On one hand, the obje
t may be arti
-ulated. Arti
les des
ribing methods allowing to solve arti
ulated GCS are notmany and admit the weakness of their resolution power, whether they pro
eedby analysis of the degrees of freedom of rigid obje
t assemblies [32, 33℄ or byde
omposition into rigid sub-systems [34℄. On the se
ond hand, the obje
t mayalso not be invariant by some rotations. For instan
e, sket
hes drawn in the
on-text of ar
hite
tural design represent obje
ts whi
h are invariant by translationbut
annot rotate around x or y axes. Noti
e that very often, these systems orsubsystems
an be s
aled, when the ar
hite
t knows the relative distan
es butdoes not yet provide a �xed measure.

3 Arti
ulated systemsIn this subse
tion, we propose a method to parameterize an arti
ulated GCS,i.e. to �nd a referen
e for su
h a system. We do not address the
ompletionproblems exposed in [21℄ sin
e we do not add
onstraints to the system andmerely expli
it whi
h geometri
 entities should be an
hored for the system tohave a �nite number of solutions. By pro
eeding this way, we get a homogeneousparameterization method, whi
h
an handle a rigid system as well as an arti
u-lated system: in the �rst
ase, our method will sele
t a point and a dire
tion tobe pinned down, for instan
e.In this subse
tion, we
onsider geometri

onstraint systems whi
h are under-
onstrained modulo any global transformation group, i.e. it is not possible toyield a transformation group whi
h a
ts likewise on the whole system and forwhi
h the number of orbits is �nite. Eventhough they are under-
onstrained,many su
h systems de�ne �nal obje
ts as they are intended by the user. This isthe
ase of all arti
ulated obje
ts: a pair of s
issors, a desklamp, a
ar or anyroboti
 system.In order to solve these systems, three steps are needed:1. �nd a parameterization of the GCS, i.e. a referen
e,2. determine the possible values of the parameters,3. draw the solutions for given values of the parameters.We fo
us here on step 1 and use work des
ribed in the literature [17, 18℄for the other two steps. We present an in
remental algorithm to
ompute aparameterization of a GCS S = (C, X, A). The idea of this algorithm is to
onsume
onstraints one by one and
onsider a generi
 referen
e for the systemindu
ed by the new
onstraint. This generi
 referen
e is modi�ed a

ording towhat the system shares with the system generated by the previously
onsumed
onstraints.3.1 Parameterization algorithmThe referen
e is
omputed under the form of a dire
ted a
y
li
 graph (DAG).The orientation of the DAG indi
ates whi
h parts of the order in whi
h thedi�erent parts of the referen
e must be an
hored. When there are several dis-
onne
ted subsytems, we
onsider several DAGs. Together with the DAGs
omethe
onstru
tion rules whi
h indi
ate how to build entities of the system withparts of the referen
e as arguments.Algorith 1 gives the general pro
ess of the algorithm. At ea
h iteration, a new
onstraint c is taken into a

ount, whi
h will be added to the already
onstru
tedsystem S′, initially empty. During the addition of c, we start by
omputing thesystem indu
ed by c, Sc and the boundary system B of Sc with regard to S′.Several
ases o

ur:1. B is empty,2. B
ontains only geometri
 entities

3. B
ontains
onstraints
on
erning geometri
 entities from dis
onne
ted sub-systems4. B
ontains
onstraints
on
erning several geometri
 entities from a subsys-tem
Algorithm 1 In
remental parameterization algorithminput: S = (C, X, A), a geometri

onstraint systemoutput: R, a referen
e for S (DAG)1: let S ′ = be an empty GCS and R an empty DAG2: for all c ∈ C do3: let Sc be the GCS indu
ed by c and rc its referen
e4: let B = (CB, XB , AB) be the boundary of Sc with regard to S ′5: if B is empty then6: R← R + rc //
ase 17: else if CB is empty then8: R← R + (rc −XB) //
ase 29: else10: if no two entities of XB belong to a same
onne
ted
omponent of the
onstraint graph of S ′ then11: remove the referen
e of all
on
erned
onne
ted
omponents ex
ept one//
ase 312: add part of rc as in
ase 213: add ea
h previously removed referen
e as in
ase 214: else15:
ompute the boundary system of the
onne
ted
omponent
ontainingseveral entities
on
erned by c //
ase 416: if it
ontains the same
onstraint then17: if the metri
 is the same, then the
onstraint is redundant, else itover
onstrains the system endif18: else19: attempt to dete
t rigidi�
ation and to
orre
t R using geometri

onstru
tion rules20: end if21: end if22: end if23: if c was dete
ted as over-
onstraining or redundant then24: output an error/warning message25: else26: S ′ ← S ′ + Sc27: end if28: end for

Case 1 : empty boundaryIf the boundary is empty, it means the geometri
 entities
on
erned by the new
onstraint do not yet appear in S′: a new
onne
ted
omponent is
reated byadding Sc and rc
an be added as is.Case 2 : only entities in the boundaryIf the boundary
ontains only entities, it means the new
onstraint only partially
on
erns entities of S′ and the already
omputed referen
e R does not needmodi�
ations. rc is
omputed and we remove from it entities whi
h are in theboundary, already given by S′. For instan
e, if the new
onstraint is a point-point distan
e, rc
onsists in one point and one/two dire
tions, a

ording to thedimension of the geometri
 universe. If one of these points is already in S′, thenonly the dire
tions are added to R.Case 3 : the boundary
ontains a
onstraint between dis
onne
tedsubsystemsIf B
ontains the added
onstraint but the
on
erned entities are not in the same
onne
ted
omponent of the
onstraint graph, it means that the new
onstraintslinks two independent subsystems S1 and S2 (or more in
ase of non-binary
onstraints but for the sake of
larity, we here
onsider there are only two sub-systems). In this
as, we �rst add Sc to one of these systems, say S1 (the
hoi
eis made through a heuristi
, ours being to
hoose the system with the biggestreferen
e), thus
omputing the addition to the referen
e as in
ase 2.Then, we �reverse� the referen
e DAG of S2 so that its base parameter is theentity
on
erned by c. Conne
ting this DAG is then easy as one simply removesthe base parameter to make both DAG
ompatible.Reversing the DAG is performed by
onsidering a temporary DAG, initiallyempty, and by �adding� the boundaries of ea
h rigid subsystem in the right order.Case 4 : the boundary
ontains a
onstraint between two entities ofa same subsystemThis
ase o

urs either when a
losed
hain is
reated or when a redundant
onstraint is added. The latter is dete
ted by
omputing the boundary of S′with regard to Sc. If it also
ontains c we dete
t a redundan
y (if the metri
sare
onsistent) or an over-
onstrainedness.If the
onstraint is not redundant, we
onsider
lassi
al
onstru
tion rules to
orre
t the DAG. These
lassi
al
onstru
tion rules are, for instan
e �if a pointis
on
erned by two/three distan
e
onstraints in 2D/3D, it
an be
onstru
tedby interse
tion of the
orresponding
ir
les/spheres�. These rules allow us toremove elements from the referen
e DAG when needed. For instan
e,
onsidera three-bars arti
ulated obje
t and the addition of a
onstraint
losing it. Oneof the extremities of the three-bars obje
t will be
onsidered as built using a

onstru
tion rule, thus removing the part of the referen
e that previously allowedits
onstru
tion. The new DAG
ontains a point and two dire
tions, so as to buildtwo of the bars. The rest of the system depends entirely on these bars.The rigidi�
ation of a subsystem
an be dete
ted: when the parameters of a
onstru
tion rule are all in the same rigid subsystem, the
onstru
ted elementsextend this rigid subsystem.It may happen that no
onstru
tion rule
an be found. For instan
e,
on-sider one of the K3,3 systems of �gure 4: until the last
onstraint is added, ouralgorithm works �ne. The last
onstraint rigidi�es the system but we
annotdete
t it sin
e no geometri
 rule applies. In this parti
ular
ase, we
onsiderthe
orresponding subsystem as rigid eventhough we
annot yield a
onstru
tionplan and use a reparameterization method (see se
tion 4.3) for whi
h we alreadyknow the
onstraint to remove.3.2 Limits of this algorithmAn important limit of this algorithm lies in the fa
t that some rigid systems areonly identi�ed through the heuristi

onsisting in
onsidering that a system with4 degrees of freedom be
omes rigid if we add a new non redundant
onstraint.Mathemati
al theorems
ould tri
k the algorithm.Algorithm 1 yields only one referen
e for a given system. This spe
i�
 refer-en
e may not be the one the user wants and we do not yet have a way to providea referen
e with several mandatory elements in it: only the base parameter
anbe
hosen, by using the reversal method. Even then, the
ost of this reversal isheavy, sin
e it
onsists in adding the boundaries of ea
h rigid subsystem, thusrestarting the
onstru
tion of non-rigid
losed
hains from s
rat
h. Also, this al-gorithm
onsiders assemblies of rigid subsystems, and
annot take into a

ountsubsystems whi
h are well-
onstrained modulo other groups than the rigid mo-tions. A promising tra
k for these drawba
ks lies in �ow-based methods [35℄, butthere is a risk that their use only makes worse the problems of the
ombinatorialheuristi
 mentioned above, espe
ially for the dete
tion of over-
onstrainedness.Another tra
k is a parallel use of the witness method [36�38℄.4 De
omposition and under-
onstrainednessDe
omposing
onstraint systems into sub-system is an avatar of the �divide and
onquer� paradigm whi
h leads to several methods whose goal is to make thegeometri
 solvers more powerful. For instan
e, we
an
ite
ylindri
al de
om-position, Gröbner bases
omputation, König-Hall de
omposition, maximal �owbased methods, de
omposition into tri
onne
ted
omponents, geometri
 knowl-edge based systems,
lusters, et
.As mentioned above, under-
onstrainedness is often a
onsequen
e of thede
omposition pro
ess when its deal with invarian
e under the a
tion of a globalgroup (
onsider, for instan
e, the notion of virtual bond used into the Owende
omposition). We will see in the next se
tions, two example of methods whereunder-
onstrainedness is part of the de
omposition pro
ess itself.

4.1 De
omposition and solvingLet us re
all more pre
isely what
onstraint systems de
omposition means: givena
onstraint system S, sear
h a system S′ su
h that :� S′ is semanti
ally equivalent to S,� S′ is the union of two or more simpler systems
• whi
h are well-
onstrained modulo some global group,
• and not redu
ed to their boundary,� solving S′ by using a joint operation is easier, and yields the solutions for SThe more powerful de
omposition methods
ome from the algebrai
 elimina-tion theory [39℄. Indeed given an algebrai
 system, they are able to yield one orseveral algebrai
 systems under triangular form. After that, ea
h equation has tobe solved using algebrai
 method, like Lebesgue's method, or numeri
al method.But the exponential
omplexity of algebrai
 formal method disqualify them forproblems of pra
ti
al use.This is why, in CAD,
ombinatorial methods are
onsidered. We give herethe example of the so-
alled propagation of degrees of freedom (DOF propaga-tion) whi
h is perhaps the more basi
 de
omposition method. Starting from areferen
e, the method tries to iteratively add to the system S1 an unknown xand
onstraints de�ning x until S1 is equal to S. More pre
isely, this methodtranslates a
onstraint system S into a
onstraint hyper-graph H = (V, E) wherethe vertexes
orrespond to the unknowns labeled by their degree of freedom,roughly speaking their number of
oordinates, and the hyper-edges
orrespondto the
onstraints labeled by their degree of restri
tion roughly speaking thenumber of real equations subtended by the
onstraint. The forward
hainingversion of the method
an be summarized by algorithm 2. At the end of thispro
ess, S1
orresponds to a subsystem whi
h is stru
turally well-
onstrained,and L des
ribes a way to de
ompose S1. The algorithm is said su

essful when

S = S1. This method yields a simple planing method where the unknowns areta
king into a

ount one after the other.This DOF propagation method is based on a lo
al appli
ation of the Lamanprin
iple and �nd a well-
onstrained subsystem S′ of S. This subsystem is max-imal a

ording to this method. Unfortunately, DOF propagation is not powerful,even in 2D. Indeed, sometimes S′ is redu
ed to a single
onstraint regardless the
hosen referen
e and the method fails to perform an interesting de
omposition(see, for instan
e, the K3,3 problem above). Moreover, like most of the
ombi-natorial solvers, this method is tri
ked by dependen
es indu
ed by geometri
altheorems. for instan
e, it is unable to dete
t that a triangle
onstrained by threeangle
onstraints is over-
onstrained.The W-de
omposition method is also based on the
omputation of a maxi-mal subsystem well-
onstrained modulo the displa
ements. Based on the witnessnotion (see ...), it is not tri
ked by unwanted dependen
es, and it is mu
h morepowerful than
ombinatorial methods in
omputing well-
onstrained subsystems.

Algorithm 2 Simple DOF propagation int he
ase of all geometri
 entities haveDOF 2, and ea
h edge represents a
onstraint with DOC 1input: G, the
onstraint (hyper)-)graph
orresponding to Soutput: L an ordered list of vertexes of G1: L is the list of the visited vertexes,2: S1 is the list of the visited edges3: L =
hoose vertexes of G
orresponding to a referen
e4: S1 = the
onstraints joining the
hosen vertexes5: repeat6:
hoose edges {e1, . . . em}
orresponding to {c1, . . . cm}, su
h that- they are not in S1,- they have all the same unknow x as extremity,- they other extremities are in L,- dof(x) = Σidor(ci)7: if su
h edges exist then8: add x to L and,9: add {e1, . . . em} to S110: end if11: until no more edges
an be
hosen4.2 W-de
ompositionThe idea of applying the notion of witness in GCS to CAD/CAM problems
omes from D. Mi
helu

i. It was explained in several pla
es, in
luding the 2006ADG workshop [37℄.Considering a witness allows to �nd a maximal rigid sub-system (MRS) ofa
onstraint system (see [36, 37℄). Applying this method to a rigid
onstraintsystem S yields whole system S, but
onsidering an under
onstrained subsys-tem of S, some rigid parts of S
an be retrieved: the W-de
omposition is ade
omposition method based on this fa
t.The basi
 idea of W-de
omposition is then to remove
onstraints from S,giving system S′, and see if S′
an be broken into non-trivial MRSs, i.e. MRSswhi
h are not limited to their boundary. If it does, then we use W-de
ompositionon ea
h non-trivial MRS. Algorithm 3 gives the pseudo-
ode of the algorithm.E�
ien
y of the exe
ution depends on the
hoi
e of the removed
onstraint.In the worst
ase, all
onstraints are tested: 2×n−3 uses of the MRS algorithmare made, thus the
omplexity is O(n4).It must be noti
ed that W-de
omposition does not fail be
ause of the
on-ne
tivity of the
onstraint graph: For instan
e, Fig. 5a gives an example of a4-
onne
ted
onstraint graph whi
h is W-de
omposable, no matter what is in-side the inner blue part as long as it is rigid. Moreover, W-de
omposition is notbased on a bottom-up
omputation, like methods with
lusters, and su

eeds inde
omposing the systems
orreponding to the graphs of Fig. 4 and Fig. 5b whi
hare not de
omposable by
lassi
al
ombinatorial methods.W-de
omposition is a mixture of
ombinatorial and numeri
al random meth-ods. It is obviously not as powerful than algebrai
 methods, for instan
e it fails

Algorithm 3 W-de
ompositionInput: a rigid GCS S withits
onstraint graph G = (V, E) anda witness W of SOutput: a list of rigid subsystems1: repeat2: Delete a
onstraint e3: Identify MRSs of (V, E/{e}) using a witness4: while ea
h MRS is equivalent to its boundary do5: Choose another
onstraint e and identify MRSs of (V, E/{e})6: end while7: until all
onstraints are tested or there is a MRS whi
h is not equivalent to itsboundary8: if no MRS bigger than its boundary is found then9: return list [G℄ //G is W-inde
omposable10: else11: remove all the
onstraints in
luded in non-trivial MRSs12: insert the boundary of all non-trivial MRSs in the system13: reintrodu
e
onstraint e in the system//this gives a rigid
onstraint system14: re
ursively W-de
ompose the resulting system15: re
ursively W-de
ompose all previously identi�ed MRSs16: return the
on
atenation of the lists obtained in the last two lines17: end if
PSfrag repla
ements

e1

e2 ab
Fig. 4. 2D systems where edges representpoint-point distan
es; a: 3-
onne
ted
on-straint graph made of two K3,3 graphs
on-ne
ted with 3
onstraints; b and
: graphsobtained by repla
ing MRSs identi�ed byalgorithm 3 by their boundary with respe
-tively edges e1 and e2 removed.
PSfrag repla
ements a b
Fig. 5. 2D examples for the W-de
omposition: ea
h vertex is a pointand ea
h edge represents a distan
e
on-straint. a: W-de
omposable 4-
onne
tedGCS (the blue subsystem is rigid); b:W-inde
omposable system;
: there areW-inde
omposable systems with anarbitrary number of points.

in de
omposing all the systems depi
ted in Fig. 5
. But, we feel that it owns oneof the best ratio de
opmposition power/e�
ien
y for
onstraint systems
omingfrom CAD.4.3 Quasi-de
ompositionWe now outline a work about de
omposition whi
h was already presented at anADG workshop and published in [40, 41℄. This method use an under-
onstrainedsystem whi
h is built on the �y and is
onsidered in some sense as an arti
ulatedsystem whose some solutions are browsed through a numeri
al method. Roughlyspeaking, the idea beyond the �rst step of the method
onsists in examiningwhy the de
omposition method fails, and, in relaxing some
onstraints to makeit su

eed.It is useful to
ome ba
k to the DOF propagation and to noti
e that the failureof the method does not ne
essarily implies that system S is miss-
onstrained.More pre
isely, assuming that system S1 is well-
onstrained, the
ase dof(x) <
Σidor(ci) (whi
h makes fail the algorithm 2 at line 6, fourth item) implies thatthe whole system S is over-
onstrained: in other words, there is a bug in thedesigner spe
i�
ation. But the method
ould as well fail, even if system S iswell-
onstrained, if for all unknowns x not in S1, dof(x) > Σidor(ci):
onsiderfor instan
e the K3,3 graph given at Fig. 4.Then, re
all that de
omposition of system S implies to
ompute a system
S′ semanti
ally equivalent to S and under the form of the union of smallersubsystems. Relaxing the equivalen
e
ondition between S and S′ leads to a more�exible s
heme whi
h we
all quasi-de
omposition: given a
onstraint system S,sear
h for a system S′ su
h that :� S and S′ do not ne
essarily have the same solutions but are �similar" insome sense� S′ is de
omposable,� there is a way to transform any solution for S′ into a solution for S and onehopes that any solution for S
an be obtained like that.This s
heme was used by the adaptation of the homotopy method to CADproblems (see [42℄). But it was also used, in a di�erent way, by Gao et al. inthe
ase where S is �quasi" de
omposable with respe
t to the DOF propagationmethod.Exploiting the de
omposition failures to modify a system Whatever thede
omposition method used, when an irredu
ible
onstraint system S is
onsid-ered, some room for man÷uvre
an be obtained by forgetting some
onstraints of
S, what gives an under-
onstrained system, say S1. Making S1 well-
onstrainedwhile keeping �exibility
an be done in two ways: transforming some unknownsinto parameters [43℄, or adding
onstraints with parameters [44℄. Obviously, thelatter way is more general sin
e transforming unknown x into parameter µ re-sults in adding equation x = µ. In this
ase, parameterized
onstraints are added

to the system, and we
an make their parameters vary in
ompensation of themissing
onstraints.More formally, we have the following s
heme (for the sake of simpli
ity, we
onsider the repla
ement of a single
onstraint):
S = (















c1(x1, . . . , xp)
. . .
cm−1(x1 . . . , xp)
cm(x1 . . . , xp)

; {x1, . . . , xp}; ∅)gives system S1 by forgetting, for instan
e, cm:
S1 = (







c1(x1, . . . , xp)
. . .
cm−1(x1 . . . , xp)

; {x1, . . . , xp}; ∅)whi
h gives by adding
onstraint d with parameter k:
S′ = (















c1(x1, . . . , xp)
. . .
cm−1(x1 . . . , xp)
d(x1, . . . xp; k)

; {x1, . . . , xp}; {k})or, in short, S′ = S − cm(x1, . . . xp +d(x1, . . . xp; k). The addition of one or moreparameters imposes S′ to be formally solved and the question arises of
hoosingthe
onstraints to be forgotten su
h that S′ is formally solvable.The answer of this question is strongly related to the nature of the formalsolver used. For instan
e, in [44℄, the authors assume that their formal solver
ansolve any geometri

onstru
tion problem with one unknown obje
t and then,they use a systemati
 sear
h of the
onstraints to be eliminated. This ensuresthat the remaining system is solvable and a minimal number of
onstraints isdis
arded. But this brute for
e algorithm is not usable anymore when there aremore than two
onstraints to remove and when the solver is not able to formallysolve any
onstru
tion problem with one unknown.The ba
kward
haining
onsists in
hoosing the less
onstrained obje
t of thesystem,
all it xi0 : an heuristi

hoi
e is made in the
ase where there are severalsu
h obje
ts. We
all the neighborhood of xi0 the set of all
onstraints involving
xi0 and we note it N(xi0). Assuming that all the other obje
ts are known, theformal solver is employed to
onstru
t xi0 by using
onstraints in N(xi0):� if the solver fails to determine xi0 then

• try another few
onstrained obje
t,
• if the solver fails in any
ase, then try to add some heuristi
ally
hosenparametri

onstraints dj ;� if the solver su

eeds to formally determine xi0 from its neighbors, two
ases
an o

ur:
• if all
onstraints of N(xi0) are used, the
haining pro
ess
an
ontinue
• if some
onstraints of N(xi0), say c′l, are not used, then keep them apart.

Algorithm 4 The algorithm applying one step of a �one step� transa
tionalexpert systeminput : B, base of unused
onstraintsSe, a transa
tional expert systemS1, the
onstraint system to be analyzedoutput : ok, a booleanB, the modi�ed base of
onstraintsS1, the modi�ed
onstraint system1: l = extra
t_obj_dof(B) // unknowns list2: ok = false3: (
ontinue,o,r,B+,B-) = try(B, Se, S1)4: // try to apply a rule removing r degrees of5: // freedom from o, adding fa
ts in B+ and6: // removing fa
ts in B- (B is un
hanged)7: while
ontinue do8: x =
urrent_DOF(o,l)9: if x+r > dof(o) then10:
ontinue = false11: store all the supernumerary
onstraints12: else13: if x+r = dof(o) then14: B = update(B,B+,B-)15:
ontinue = false, ok = true16: S1 = update_sys(S1, B)17: else18: l = update_list(l, (o,x+r))19: B = update(B,B+,B-)// try another rule/obje
t20: (
ontinue,o,r,B+,B-) = try(B,Se,S1)21: end if22: end if23: end while24: done25: return (ok, B, S1)

The system S′ to be
onsidered is S −
∑

l c′l +
∑

j dj (see Alg. 4)Conversely, the forward
haining strategy
onsists in letting the knowledgebased solver a
t on the
onstraint system. When the solver fails to determineone unknown be
ause some
onstraints are missing, then it tries to add someparametri

onstraints dj in order to
ontinue. At the end, when all the unknownsare solved, there are some
onstraints c′l whi
h have not been used sin
e system
S was well-
onstrained: these
onstraints must be forgotten. On
e again, thesystem S′ to be
onsidered is S −

∑

l c
′

l +
∑

j dj .This way, the resolvability of S′ by the formal solver is ensured. In prin
iple,as many
onstraints were removed as ones were added (more pre
isely, we should
onsider the degree of restri
tion of the
onstraints): we
all synta
ti
 distan
ebetween S and S′ the number of removed
onstraints. The heuristi
s used in theprevious strategies aim at minimizing this distan
e, that is, at modifying S aslittle as possible.Solving Let d be the synta
ti
 distan
e between S and S′. S′ is a parametri

onstraint system with d parameters k1, . . . kd and p unknowns x1, . . . xp. Sin
e
S′ is formally solvable in our framework, we
an use its solutions whi
h arefun
tions fi : (k1, . . . kd) 7→ xi(k1, . . . kd) where i = 1, . . . p.In addition, S and S′ di�er by d
onstraints. More pre
isely, most solutionsof S′ do not satisfy the removed
onstraints c′1, . . . c

′

d. But, we
an sear
h forvalues for the parameters ki whi
h satisfy these
onstraints. In fa
t, we just haveto solve the system S2:






c′1(f1(k1, . . . kd), . . . , fp(k1, . . . kd))
. . .
c′d(f1(k1, . . . kd), . . . , fp(k1, . . . kd))

, {k1, . . . kd}, ∅whose unknowns are {k1, . . . kd} and without parameters. Thus, S2
an be solvednumeri
ally. It is then
lear that if (v1, . . . vd) is a solution for S2, then
(f1(v1, . . . vd), . . . fp(v1, . . . vd))is a solution for S. On
ertain
onditions about the added
onstraints dj , it
anbe proved that if S1 is well-
onstrained, all the solutions
an be obtained thisway if both solvers are
omplete.Some di�
ulties arise when a numeri
al solver is used to solve system S2 butit is beyond the s
ope of this paper. Interested readers may refer to [41℄.5 Con
lusionWe explained in this paper why under-
onstrained systems are useful in CAD:they naturally appear when
onstraint systems are invariant modulo an in�nitegroup of transformations, but they also are an ingredient of some de
ompositionmethods.

Moreover, from the �nal user point of view, it is quite frustrating, when thereare an in�nite number of solutions, not to see any of them. This o

urs when theuser wants to spe
ify an arti
ulated obje
t or when in an in
remental pro
ess ofdesign, the user wants to see the evolution of the solutions. This is why, we thinkthat solvers should be able to deal with under-
onstrained systems by proposingsome parti
ular solutions for the
urrent system, by giving tools for browsingin�nite spa
e of solutions. These features
ould make way for a new generationof CAD softwares, more easily a

essible to non-expert users. We are
urrentlyworking on a prototype taking these points into a

ount.Referen
es1. Laborde, C.: Integration of te
hnology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathemati
al Learning 6(3)(2002) 283�3172. Kortenkamp, U., Ri
hter-Gebert, J.: The Intera
tive Geometry Software Cin-derella.2. Springer-Verlag New York, In
., Se
au
us, NJ, USA (2007)3. Heyting, A.: Axioms for intuitionisti
 plane a�ne geometry. In L. Henkin, P.S.,Tarski, A., eds.: The axiomati
 Method, with spe
ial referen
e to Geometry andPhysi
s, Amsterdam, North-Holland (1959) 160�1734. Dehlinger, C., Dufourd, J.F., S
hre
k, P.: Higher-order intuitionisti
 formalizationand proofs in Hilbert's elementary geometry. In: 3rd International Workshop onAutomated Dedu
tion in Geometry, Springer, LNAI 2061 (2000) 306�3235. Narboux, J.: A de
ision pro
edure for geometry in Coq. In: TPHOL'04: Pro
eed-ings of the 2006
onferen
e on Theorem Proving and Higher Order Logi
. Volume3223 of LNCS., Springer-Verlag (2004) 225�2406. Bezem, M., Hendriks, D.: On the Me
hanization of the Proof of Hessenberg'sTheorem in Coherent Logi
. Journal of Automated Reasoning 40(1) (2008) 61�857. S
hre
k, P.: Automatisation des
onstru
tions géomètriques à la règle et au
ompas.PhD thesis, Université Louis Pasteur, Strasbourg 1 (January 1993)8. S
hre
k, P.: Robustness in CAD geometri

onstru
tion. In: IV'01: Pro
eedingsof the �fth International Conferen
e on Information Visualisation, London, UK,IEEE Computer So
iety (2001) 111�1169. Aldefeld, B.: Variations of geometries based on a geometri
-reasoning method.Computer-Aided Design 20(3) (1988) 117�12610. Dufourd, J.F., Mathis, P., S
hre
k, P.: Geometri

onstru
tion by assembling solvedsub�gures. Arti�
ial Intelligen
e 99(1) (1998) 73�11911. Ait-Aoudia, S., Jegou, R., Mi
helu

i, D.: Redu
tion of
onstraint systems. In:Pro
eedings of the Compugraphi
s Conferen
e. (1993) 83�9212. Bouma, W., Fudos, I., Ho�mann, C., Cai, J., Paige, R.: A geometri

onstraintsolver. Computer-Aided Design 27(6) (1995) 487�50113. Owen, J.: Algebrai
 solution for geometry from dimensional
onstraints. In:SMA'91: Pro
eedings of the 1st ACM Symposium of Solid Modeling andCAD/CAM Appli
ations, ACM Press (1991) 397�40714. Ho�mann, C., Lomonosov, A., Sitharam, M.: Geometri

onstraint de
omposition.In Brüderlin, B., Roller, D., eds.: Geometri
 Constraint Solving and Appli
ations.Springer (1998) 170�195

15. Jermann, C., Trombettoni, G., Neveu, B., Rueher, M.: A
onstraint programmingapproa
h for solving rigid geometri
 systems. In: Pro
eedings of the 6th Interna-tional Conferen
e on Prin
iples and Pra
ti
e of Constraint Programming, Le
tureNotes in Computer S
ien
e, Springer-Verlag (2000) 233�24816. Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: De
omposition of geometri

onstraint systems: a survey. IJCGA 16(5,6) (2006) 379�41417. Luzón, M.V., Soto-Riera, A., Gálvez, J.F., Joan-Arinyo, R.: Sear
hing the solutionspa
e in
onstru
tive geometri

onstraint solving with geneti
 algorithms. AppliedIntelligen
e 22(2) (2005) 109�12418. Sitharam, M., Arbree, A., Zhou, Y., Kohareswaran, N.: Solution spa
e navigationfor geometri

onstraint systems. ACM Transa
tions on Graphi
s 25(2) (2006)194�21319. Villard, C., S
hre
k, P., Dufourd, J.F.: Sket
h-based pruning of a solution spa
ewithin a formal geometri

onstraint solver. Arti�
ial Intelligen
e Journal 124(1)(2000) 139�15920. van der Meiden, H., Broonsvort, W.: An e�
ient method to determine the in-tended solution for a system of geometri

onstraints. International Journal ofComputational Geometry and Appli
ations 15(3) (2005) 279�29821. Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., Vilaplana-Pasta, J.: Transformingan under-
onstrained geometri

onstraint problem into a well-
onstrained one.In: SMA'03: Pro
eedings of the eighth ACM symposium on Solid modeling andappli
ations, New York, NY, USA, ACM Press (2003) 33�4422. Gao, H., Sitharam, M.: Combinatorial
lassi�
ation of 2D un-der
onstrained systems (2005) Available on the web at the URL:http://www.
ise.u�.edu/ sitharam/under.pdf.23. Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., Vilaplana-Pasto, J.: Revisitingde
omposition analysis of geometri

onstraint graphs. Computer-Aided Design36(2) (2004) 123�14024. Fudos, I., Ho�mann, C.M.: A graph-
onstru
tive approa
h to solving systems ofgeometri

onstraints. ACM Transa
tions on Graphi
s 16(2) (1997) 179�21625. Lee, K.Y., Kwon, O.H., Lee, J.Y., Kim, T.W.: A hybrid approa
h to geometri

onstraint solving with graph analysis and redu
tion. Advan
es in EngineeringSoftware 34(2) (2003) 103�11326. Trombettoni, G., Wil
zkowiak, M.: GPDOF: a fast algorithm to de
ompose under-
onstrained geometri

onstraints: Appli
ation to 3D modeling. International Jour-nal of Computational Geometry and Appli
ations 16(5-6) (2006) 479�51127. Zhang, G.F., Gao, X.S.: Well-
onstrained
ompletion for under-
onstrained prob-lems. International Journal of Computational Geometry and Appli
ations 16(5,6)(2006) 461�47828. Mathis, P., Thierry, S.E.B.: A formalization of geometri

onstraint systems andtheir de
omposition. Formal Aspe
ts of Computing Online �rst (2010)29. S
hre
k, P., S
hramm, E.: Using the invarian
e under the similarity group to solvegeometri

onstraint systems. Computer-Aided Design 38(5) (2006) 475�48430. S
hre
k, P., Mathis, P.: Geometri
al
onstraint system de
omposition: a multi-group approa
h. International Journal of Computational Geometry and Appli
a-tions 16(5,6) (2006) 431�44231. van der Meiden, H.A., Bronsvoort, W.F.: A non-rigid
luster rewriting approa
h tosolve systems of 3D geometri

onstraints. Computer-Aided Design 42(1) (2010)36�49

32. Kramer, G.A.: Using degrees of freedom analysis to solve geometri

onstraintsystems. In: SMA'91: Pro
eedings of the 1st ACM Symposium of Solid Modelingand CAD/CAM Appli
ations, ACM Press (1991) 371�37833. Kramer, G.A.: A geometri

onstraint engine. Arti�
ial Intelligen
e 58(1-3) (1992)327�36034. Thierry, S., Mathis, P., S
hre
k, P.: Towards an homogeneous handling of under-
onstrained and well-
onstrained systems of geometri

onstraints. In: SAC'07:Pro
eedings of the 2007 ACM Symposium on Applied Computing, Seoul, Korea,ACM Press (2007) 773�77735. Latham, R., Middledit
h, A.: Conne
tivity analysis : a tool for pro
essing geometri

onstraints. Computer-Aided Design 28(11) (1996) 917�92836. Mi
helu

i, M., Foufou, S.: Geometri

onstraint solving: The witness
on�gurationmethod. Computer-Aided Design 38(4) (2006) 284�29937. Mi
helu

i, M., Foufou, S.: Dete
ting all dependen
es in systems of geometri

onstraints using the witness method. In: ADG '06: Pro
eedings of the sixthinternational workshop on Automated Dedu
tion in Geometry. Volume 4869 ofLe
ture Notes in Arti�
ial Intelligen
e., Pontavedra, Spain, Springer (2007) 98�11238. Mi
helu

i, D., Foufou, S.: Interrogating witnesses for geometri

onstraint solving.In: SMA '09: Pro
eedings of the SIAM/ACM joint
onferen
e on Geometri
 andPhysi
al Modeling, San Fran
is
o, California, USA, ACM (2009) 343�34839. Cox, D.A., Little, J., O'Shea, D.: Using algebrai
 geometry. Volume 185 of Grad-uate Texts in Mathemati
s. Springer (1998)40. Fabre, A., S
hre
k, P.: Combining symboli
 and numeri
al solvers to simplify inde-
omposable systems solving. In: SAC'08: Pro
eedings of the 2008 ACM symposiumon Applied
omputing, Fortaleza, Ceara, Brazil, ACM Press (2008) 1838�184241. Fabre, A.: Contraintes géométriques en dimension 3. PhD thesis, Université LouisPasteur, Strasbourg 1 (november 2006)42. Lamure, H., Mi
helu

i, D.: Solving geometri

onstraints by homotopy. IEEETransa
tions on Visualization and Computer Graphi
s 2(1) (1996) 28�3443. Gao, X.S., Ho�mann, C., Yang, W.Q.: Solving spatial basi
 geometri

onstraint
on�gurations with lo
us interse
tion. In: SMA'02: Pro
eedings of the 7th ACMSymposium on Solid Modelling and Appli
ations, Saarbrü
ken, ACM Press (2002)95�10444. Gao, X.S., Ho�mann, C., Yang, W.Q.: Solving spatial basi
 geometri

onstraint
on�gurations with lo
us interse
tion. Computer-Aided Design 36(2) (2004) 111�122

