
HAL Id: hal-00691834
https://hal.science/hal-00691834

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete exponential bayesian networks structure
learning for density estimation

Aida Jarraya, Philippe Leray, Afif Masmoudi

To cite this version:
Aida Jarraya, Philippe Leray, Afif Masmoudi. Discrete exponential bayesian networks structure learn-
ing for density estimation. International Conference on Intelligent Computing, 2012, Huangshan,
China. pp.?-?, �10.1007/978-3-642-31837-5_21�. �hal-00691834�

https://hal.science/hal-00691834
https://hal.archives-ouvertes.fr


Discrete exponential Bayesian networks structure 
learning for density estimation

Aida Jarraya1,2, Philippe Leray2, and Afif Masmoudi1

1 Laboratory of Probability and Statistics
Faculty of Sciences of Sfax, University of Sfax. Tunisia.

aidajarraya@yahoo.fr, afif.masmoudi@fss.rnu.tn

2 LINA Computer Science Lab UMR 6241
Knowledge and Decision Team, University of Nantes, France.

               philippe.leray@univ-nantes.fr

Abstract. Our  work  aims  at  developing  or  expliciting  bridges  between 
Bayesian  Networks  and Natural Exponential  Families,  by proposing discrete 
exponential Bayesian networks as a generalization of usual discrete ones. In this  
paper,  we  illustrate  the  use  of  discrete  exponential  Bayesian  networks  for 
Bayesian structure learning and density estimation. Our goal is to empirically 
determine in which contexts these models can be a good alternative to usual 
Bayesian networks for density estimation.

1 Introduction

Bayesian  networks  (BNs)  are  probabilistic  graphical  models  used  to  model  com- 
plex systems with variables of different natures. In the literature we find many works 
about discrete Bayesian network where the conditional distribution of each variable 
given its parents is a multinomial distribution. As initially proposed by [5], we are in-
terested  in  extending  this  conditional  distribution  to  natural  exponential  families 
(NEF) [1][9]. This idea has been used by [2] for instance with conjugate-exponential 
models, for Bayesian networks with latent variables. They concentrate their work on 
variational EM estimation needed because of latent variables, but they don't explicit  
the Bayesian estimators used and restrict their experiments to usual multinomial dis-
tributions. [12] also propose one great study of graphical models as exponential famil-
ies, showing that very specific structures of directed or undirected probabilistic graph-
ical models can be interpreted as an element of exponential family. Our work deals 
with the same general idea, developing or expliciting bridges between BNs and NEFs, 
dealing with discrete exponential BNs instead of usual discrete ones. We formally in-
troduced in [6] discrete exponential Bayesian networks (deBNs) with a specific prior 
family proposed by [4] and demonstrated that this prior is a generalization of Dirichlet 
priors usually considered with discrete BNs. We illustrate now the use of deBNs for 
Bayesian structure learning and density estimation. Our goal is to empirically determ-
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ine in which contexts deBNs can be a good alternative to usual BNs for density estim-
ation. The present paper is structured as follows. In section 2, we summarized our the-
oretical results concerning structure and parameter learning for discrete exponential 
BNs. Section 3 then describes our experimental protocol, evaluation criteria, and fi-
nally gives interpretations of results obtained in this context. Section 4 concludes our 
paper by giving some perspectives for future work.

2 Discrete exponential Bayesian network

Usually, the statistical model of a discrete BN is a multinomial distribution [11]. We 
described in [6] how to use discrete exponential families in a more general way. We 
summarized here the main points concerning the definition of discrete exponential 
BNs (deBNs), our proposal of Bayesian scoring function and parameter estimator.

2.1 Notations

A Bayesian network (BN) is defined as a set of variables X = {X1, …,Xn} with a net-
work structure G that encodes a set of conditional independence assertions about vari-
ables in X, and a set P of local probability distributions associated with each variable. 
Together, these components define the joint probability distribution for X. The net-
work structure G is a directed acyclic graph (DAG). Each X i denotes both the variable 
and its corresponding node in G, and Pa(Xi) the parents of node Xi in G. For BN 
learning, we assume that we have one dataset d = {x (1),…, x(M)} of size M where x(l) = 
{x1

(l), …, xn
(l)} is the lth sample and xi

(l)  is the value of variable Xi for this sample.

2.2 DeBN definition

A discrete exponential Bayesian network is defined as a Bayesian network where con-
ditional probability distributions are discrete natural exponential families (NEF).  Let 
F be a NEF, usually described by its parameters kk, =υ υ  and Ψ=Ψ υ . These  gen-
eral parameters allow us to describe any discrete exponential distribution (Poisson, 
Negative Binomial, ...).
     We suppose that Xi|Pai = j~P( ijµ , F). This conditional probability distribution can 

be expressed in an "exponential" way, where ijµ  parameters are mutually independent 
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For Bayesian estimation or structure learning, we also need to define a prior distribu-
tion for parameters ijµ  . In [6], we propose to choose the Π~  prior family introduced 
by [4] and demonstrated that this prior was a generalization of Dirichlet priors usually 
considered with discrete BNs. So ijµ  ~ ijij m,t

~Π  with
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where ijij m,tK~ is a normalizing constant depending on the considered NEF.

2.3 DeBN learning

As for their usual counterpart, deBN structure learning can be performed by using any 
heuristic method whose objective is the optimization of the marginal likelihood or one 
of its approximations. In the Bayesian estimation framework, we described in [6] the 
computation of this marginal likelihood for discrete exponential BN and a generalized 
scoring function gBD extending the Bayesian Dirichlet (BD) score to any NEF distri-
bution.
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     We also demonstrated that the Maximum a Posteriori (MAP) estimator of paramet-

er ijµ  is given by the following closed form : )
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2.4 DeBN examples: Poisson and Negative Binomial BNs

Let us apply these previous results to Poisson and Negative Binomial distributions. 
For the Poisson distribution, the normalizing constant is
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The score function gBD(d,G) is given by
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For the Negative Binomial Model, we get the following normalizing constant:



1t,
)1t()1mt(

)tmt(
K~ ij

ijijij

ijijij
m,t ijij

>
−Γ+Γ

+Γ
= . (7)

The score function gBD(d,G) is given by

∏ ∏
= = ∈

∈

−Γ∑+Γ+Γ

−+Γ+∑+Γ+Γn

1i

q

1j ijMh
)h(

iijijijij

ijijMh
)h(

iijijijijiji

ij

ij

)1t()xmt()1mt(

)1tN()1xmt()tmt(
)G(P (8)

3 Experimentations

3.1 Data

In order to evaluate the interest of using deBNs instead of usual BNs for density es-
timation, we carried out repetitive experiments in several contexts. In the first context, 
data  are  generated  from distributions  described  by usual  BNs  (dist=multi).  In  the 
second context,  data are generated from distributions described by Poisson deBNs 
(dist=poisson). In these contexts, we are able to control several parameters such as the 
number n of variables (n = 10, 20, 50) and the size M of generated datasets (M = 100,  
1.000, 10.000). The maximal cardinality K of our discrete variables is also controlled 
for usual BNs (K = 2, 3, 5) but measured in the generated samples for Poisson deBNs.
     Every dataset generation in such conditions is iterated 10x10 times, with 10 ran-
domly generated DAGs, and 10 random parameter values for each of these DAGs.

3.2 Models and algorithms used

Our  goal  is  comparing  performances  of  usual  discrete  BN models  (model=multi) 
versus Poisson deBN (model=poisson) learnt with the previous datasets. Prior para-
meters are chosen in their simplest form, 1ij =α , uniform Dirichlet coefficient, for dis-
crete BNs and tij = 1, mij = 0 for Poisson deBNs.
     Structure learning procedure used for optimizing the Bayesian scoring function is  
an usual greedy search procedure as proposed in [3]. In order to obtain more robust 
results, this greedy search is performed 10 times with different random initializations 
and the best result of the 10 runs is kept. Maximum A Posteriori estimation is used for  
parameter learning. Our various models and algorithms have been implemented in 
Matlab with BNT [10] and BNT Structure Learning Package [8].

3.3 Evaluation criteria

Accuracy evaluation of each model is estimated by the Kullback-Leibler (KL) diver-
gence between the "original" distribution described by the model used for generating 
a given dataset  and the "final" distribution obtained by the model learnt  from this 
dataset. For large numbers of variable configurations (greater than 105), an MCMC 
approximation is used with 105 random configurations.



     Comparison of both models is illustrated by plotting absolute values of KL ob-
tained by deBNs versus usual BNs for the same datasets. The fact that one model is 
better than the other can be observed with respect to the first diagonal (upper triangle : 
deBN is better,  versus  lower triangle : usual  BN is better).  In  order  to determine  
whether the observed differences are statistically significant,  we use the Wilcoxon 
paired signed rank test, with a significance level equal to 0.05, for the 100 experi-
ments performed for one given context (dist, n, M, K).

3.4 Results and interpretations

Our preliminary results described in Figure 1 concern n = 10. As we can see, when 
data are generated from Poisson distributions (results in magenta), our Poisson deBNs 
are logically better models than usual BNs. When data are generated from multinomi-
al distributions (results in blue), results depend on the sample size M. When M is high 
(M = 10.000, third figure on the right),  usual BNs are better models than Poisson 
deBNs. When the sample size decreases (M = 1000), usual BNs and deBNs give sim-
ilar results. With a small sample size (M = 100), deBNs are better than usual BNs. All 
these results are confirmed by Wilcoxon tests. By comparing results for M = 1.000 
with respect to the maximum variable cardinality K (not described right now in the 
figure), we can observe than deBNs and usual BNs give similar results for K = 3 but 
the situation changes if K increases. For K = 6, deBN give better results than BNs.
These intermediate results need to be completed with other values of n and K, but we 
can already observe than deBNs seems to be a good alternative to usual BNs in sever-
al contexts. If we compare Poisson deBNs and usual BNs, the first ones have less free 
parameters than the others and this number of parameters is less dependent of the 
value of K. So when the sample size M is low or when the value of K is high, deBN 
are a good compromise for density estimation.

Fig.  1. Comparison of KL divergence obtained by Poisson deBNs versus usual BNs for the 
same datasets (upper triangle : deBN is better, versus lower triangle : usual BN is better) with 
respect  to  dataset  size  (M  =  100,  1.000,  10.000)  and  data  original  distribution 
(dist=poisson vs. multinomial) for n = 10.



4 Conclusion and perspectives

In this paper, we have developed the concept of discrete exponential Bayesian net-
work (deBN) previously, described in [6], for Bayesian structure learning and density 
estimation. Experiments described here show us that Poisson deBNs can be a good al-
ternative to usual BNs for density estimation when the sample size is low or when the  
maximum variable cardinality is high, because of the reduced number of parameters 
used by deBNs. These experiments could be extended to other discrete NEF distribu-
tions such as the Negative Binomial one, or continuous distributions. For each distri -
bution, we need to propose a better way to deal with a priori parameters such as tij and 
mij for Poisson distribution, in order to obtain Bayesian scoring functions verifying the 
Markov equivalence  property (like BDe scoring  function  for  usual  discrete  BNs). 
Probabilistic inference algorithms also have to be extended for these distributions, 
which seems to be not so difficult for any exponential distribution as shown in [7] for 
hybrid BNs with conditional Gaussian distributions.

References

1. Barndorff-Nielsen, O.: Information and Exponential  families  in Statistical Theory.  John 
Wiley (1978)

2. Beal,  M.,  Ghahramani,  Z.:  The  variational  bayesian  EM  algorithm  for  incomplete  
data:with application to scoring graphical model structures. Bayesian Statistics 7, 453-464 
(2003)

3. Chickering, D., Geiger, D., Heckerman, D.: Learning bayesian networks: Search methods 
and experimental results. In: Proceedings of Fifth Conference on Artificial Intelligence and 
Statistics. pp. 112-128 (1995)

4. Consonni, G.,  Veronese,  P.:  Conjugate priors for  exponential  families  having quadratic 
variance functions. J. Amer. Statist. Assoc 87, 1123-1127 (1992)

5.  Geiger, D., Heckerman, D., King, H., Meek, C.: Stratified exponential families: graphical 
models and model selection. Annals of Statistics 29, 505-529 (2001)

6. Jarraya, A., Leray, P., Masmoudi, A.: Discrete exponential bayesian networks: an exten-
sion of bayesian networks to discrete natural exponential families. In: 23 rd IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI'2011). pp. 205-208. Boca 
Raton, Florida, USA (2011)

7. Lauritzen, S.L., Jensen, F.: Stable local computation with conditional Gaussian distribu-
tions. Statistics and Computing 11(2), 191-203 (Apr 2001)

8. Leray, P., Francois, O.: BNT structure learning package: Documentation and experiments. 
Tech. rep., Laboratoire PSI (2004)

9.  Letac, G.: Lectures on natural exponential families and their variance functions. No. 50 in 
Monograph. Math., Inst. Mat. Pura Aplic. Rio (1992)

10. Murphy, K.: The bayesnet toolbox for matlab. In: Computing Science and Statistics: Pro-
ceedings of Interface. vol. 33 (2001)

11. Studeny, M.: Mathematical aspects of learning bayesian networks: Bayesian quality criter-
ia.  Research  Report  2234,  Institute  of  Information  Theory  and  Automation,  Prague 
(December 2008)

12. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational in-
ference. Foundations and Trends in Machine Learning 1(1-2), 1-305 (2008)


	1 Introduction
	2 Discrete exponential Bayesian network
	2.1 Notations
	2.2 DeBN definition
	2.3 DeBN learning
	2.4 DeBN examples: Poisson and Negative Binomial BNs

	3 Experimentations
	3.1 Data
	3.2 Models and algorithms used
	3.3 Evaluation criteria
	3.4 Results and interpretations

	4 Conclusion and perspectives
	References

