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RÉSUMÉ :
Les applications orientées données bénéficient d’un parallélisme de donnée intrinsèque qu’il est nécessaire d’exploiter pour

réduire leur temps d’exécution. Ces dernières années, des grilles de données ont été développées pour permettre le traite-
ment et l’analyse de volumes de données imposants produits par diverses disciplines scientifiques. Ces infrastructures à grande
échelle sont néanmoins soumises à une utilisation intensive et l’efficacité y est d’une extrême importance. Ce papier traite de
l’optimisation des gestionnaires de workflow utilisés pour déployer des applications complexes orientées données sur les grilles.
Pour ce type d’applications, nous montrons comment mieux exploiter le parallélisme de données que cela n’est fait dans la plu-
part des gestionnaires de workflow existant. Nous présentons la conception d’un prototype qui implémente notre solution et nous
montrons qu’il fournit une accélération significative en montrant des résultats sur une application réaliste de traitement d’images
médicales.

MOTS CLÉS :
Grille, workflow

ABSTRACT:
Data-intensive applications benefit from an intrinsic data parallelism that should be exploited on parallel systems to lower

execution time. In the last years, data grids have been developed to handle, process, and analyze the tremendous amount of data
produced in many scientific areas. Although very large, these grid infrastructures are under heavy use and efficiency is of utmost
importance. This paper deals with the optimization of workflow managers used for deploying complex data-driven applications
on grids. In that kind of application, we show how to better exploit data parallelism than currently done in most existing workflow
managers. We present the design of a prototype implementing our solution and we show that it provides a significant speed-up
w.r.t existing solutions by exemplifying results on a realistic medical imaging application.

KEY WORDS :
Grid, workflow



An optimized workflow enactor for data-intensive
grid applications

Tristan Glatard, Johan Montagnat, Xavier Pennec

Abstract—Data-intensive applications benefit from an
intrinsic data parallelism that should be exploited on
parallel systems to lower execution time. In the last
years, data grids have been developed to handle, process,
and analyze the tremendous amount of data produced
in many scientific areas. Although very large, these grid
infrastructures are under heavy use and efficiency is of
utmost importance. This paper deals with the optimization
of workflow managers used for deploying complex data-
driven applications on grids. In that kind of application, we
show how to better exploit data parallelism than currently
done in most existing workflow managers. We present the
design of a prototype implementing our solution and we
show that it provides a significant speed-up w.r.t existing
solutions by exemplifying results on a realistic medical
imaging application.

I. C  
This work aims at enacting an efficient and data-

driven grid-enabled workflow. We consider complex
data-intensive applications for which data grids have
been developed and that benefit from a workflow
management system to handle the computations
involved.
We are especially targeting application workflows

including several successive steps of significant
duration and made up from generic components.
We are moreover focusing on data-intensive appli-
cations which are characterized by the iteration of
the same workflow on many input data sets. This
kind of application can be found in the medical
imaging field, where applications processing large
image databases through a complete sequence of
generic treatments are very common [1].
In this paper, we consider that a workflow is a

set of services interconnected with data dependency
links. We are referring to the service-based approach
of workflow composition that is briefly described
in section II. A service in this sense is a logical
processing unit, implemented by a specific data
processing algorithm, through which input data are

transformed into output data. Figure 1 presents the
graphical notations we use in the rest of the paper.
The target infrastructure for this work is a grid

of standard personal computers interconnected by
a high bandwidth network and managed through
a super-batch scheduler such as the EGEE grid
infrastructure1. Earlier work has shown that it is
possible to operate a Web-Services based workflow
processing unit on top of such an infrastructure [2]
but that optimal performances for data-intensive
applications cannot be obtained without taking into
account the data parallelism inherent to this kind of
application into the scheduling policy.
We show that current technologies only partially

address these requirements and we propose new
methods for optimizing the workflow execution
under the above assumptions by exploiting the
data parallelism. Some performance results on a
real data-intensive medical imaging application are
shown.
Section II presents related work about workflow

management systems in the e-Science field. Sec-
tions III and IV detail why and how to exploit
parallelism in a workflow in order to optimize its
execution on a grid infrastructure. In section V, we
present an implementation of an optimized enactor
prototype taking into account the points highlighted
before. Section VI then presents experiments and
our prototype performance results.

II. R 
One can basically identify two approaches for

workflow composition: the job-based approach and
the service-based approach. These two approaches
differ by the role of the workflow manager. A
complete taxonomy of workflow managers for e-
Science is presented in [3].

1http://www.eu-egee.org
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Fig. 1. Graphical workflow notations used in the paper

A. Job-based approach
In the job-based approach, the workflow manager

is responsible for the actual processing of data by
programs on physical resources.
The job-based approach is very close to the

grid infrastructure: in this approach, the workflow
manager itself submits jobs to the grid. Thus, it
allows the optimization of variables such as the job
submission rate, the dispatch rate and the scheduling
rate as detailed in [4].
DAGMan [5] is the emblematic workflow man-

ager of the job based approach. A Direct Acyclic
Graph (DAG) describes dependencies between Con-
dor [6] jobs. A child node is started once all its
parents have successfully completed. Among other
workflow managers, the Pegasus system [7] is also
based on this paradigm. It takes an abstract descrip-
tion of a workflow (that can be constructed by using
Chimera [8]) and finds the appropriate data and grid
resources to execute the workflow. Other systems
such as GRID superscalar [9] also identifies tasks
from a sequential application including particular
primitives in its code and manages their submission
to a grid. The P-GRADE environment [10] also
allows the creation, execution and monitoring of
job-based workflows on various grid platforms.

B. Service-based approach
In the service-based approach, the workflow man-

ager is responsible for the transmission of the data to
distant services and for the collection of the results.
The workflow manager is just aware of the interface
of the programs and do not access the actual binary
files. Jobs are submitted to the grid by the services.
In this approach, the description of a workflow is

made from the interface of the programs composing
the workflow. This interface describes the inputs

and outputs of a program and informs the workflow
manager of how to invoke the services. Among
various standards of service interface description,
the Web-Services Description Language [11] is
nowadays widely used in workflow management
systems.
The description of the dependencies between ser-

vices is expressed with a language which must be
able to describe all the required patterns needed
to build the workflow. A complete survey of such
workflow patterns is presented in [12]. Many work-
flow description languages emerged from the e-
Business field during the last few years and led
to standardization efforts still in progress [13] [14].
In the e-Science field, initiatives tended to propose
less exhaustive but simpler languages on the basis
of data dependencies. Examples of such languages
are the Simple Concept Unified Flow Language
(Scufl) [15] and the Modeling Markup Language
(MoML) [16].
Various service-based workflow management sys-

tems have been proposed in the e-Science field.
Among them, the Kepler system [16][17] targets
many application areas from gene promoter iden-
tification to mineral classification. It can orchestrate
standard Web-Services linked with both data and
control dependencies and implements various ex-
ecution strategies. The Taverna project [15], from
the myGrid e-Science UK project2 targets bioin-
formatics applications and is able to enact Web-
Services and other components such as Soaplab
services [18] and Biomoby ones. It implements high
level tools for the workflow description such as the
Feta semantic discovery engine [19]. Other work-
flow systems such as Triana [20], from the GridLab
project3, are decentralized and distribute several
control units over different computing resources.
This system implements two distribution policies,
namely parallel and peer-to-peer. It has been applied
to various scientific fields, such as gravitational
waves searching [21] and galaxy visualization [20].
Recent work4 aims at deploying this system on the
EGEE grid infrastructure.
Finally, at a higher level, describing a work-

2http://mygrid.org.uk
3http://www.gridlab.org
4https://gilda.ct.infn.it/



flow with the service-based approach may require
to introduce a domain-specific ontology to facili-
tate automatic format conversion and services fit-
ting [22]. Such tools are integrated into the Taverna
workbench [15]. Closely to our application field, an
example of a neuroimaging ontology modeling is
presented in [23].

C. Comparison of the two approaches
In the service-based approach, the workflow de-

scription stipulates that a particular output of a
program is to be linked to a particular input of
another one. Thus, the iteration of such workflows
on a number of input data sets is straightforward and
does not require any rewriting of the workflow. For
instance, the Taverna workbench uses so-called iter-
ation strategies (described in section V-C) that are
convenient to implement data-centric applications.
On the contrary, in the job-based approach, data
dependencies between programs are not explicitly
described. Iterating a single workflow on many
data sets thus requires to write specific jobs for
each data set. Indeed, one job in the workflow
exactly corresponds to one task to be submitted and
computed on the grid and it cannot be instantiated
with different data sets.
The service-based approach is more independent

from the infrastructure than the job-based one be-
cause the services themselves are responsible for the
submission of jobs to the grid whereas it is the role
of the workflow manager in the job-based approach.
One of the consequences is that the service-based
approach allows different services included in the
same workflow to submit jobs on various types of
grids. It also permits the composition of applica-
tions including legacy code because the workflow
manager do not even access the binary that would
be executed on the grid. The service-based approach
thus offers a lot of flexibility for the benefit of the
user by making the sharing and reusing of generic
components easier, which particularly suits to the
kind of applications we are targeting.
The service-based approach is thus well-adapted

to our assumptions described in section I. Never-
theless, the service-based approach makes the opti-
mization of the computations much more complex
as the workflow manager is not in direct contact
with the computation infrastructure(s).

2P
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Fig. 2. A simple workflow example

The ultimate goal of this work is to optimize
the execution of service-based workflows on the
grid. We present here a first solution by exploiting
parallelism inherent to the workflow itself, the data
to process, and the services to execute.

III. P   
A. Intrinsic workflow parallelism
The first trivial way of parallelism in a workflow

deals with the intrinsic workflow patterns. It consists
in allowing services to be enacted independently
from each other when they are not linked by any
kind of dependence. For example, if we consider the
simple workflow pattern represented on figure 2, the
service P2 must be able to be enacted independently
from the service P3. This kind of parallelism is
implemented by the majority of workflow enactors
today.

B. Data parallelism – multithreading
When considering data-intensive applications,

several input data sets are to be processed according
to the same workflow. Benefiting from the large
number of resources available in a grid, workflow
services can then be instantiated as several comput-
ing tasks running on different hardware resources
and processing different input data in parallel.
Multithreading denotes that a service is able

to process many data sets simultaneously with a
minimal performance loss. This definition implies
that multithreading can only be achieved efficiently
on a multiprocessor infrastructure such as a grid.
Indeed, even if the operating systems nowadays al-
low simultaneous processings on a single processor,
increasing the number of parallel tasks leads to a
strong performance loss in this context.
Enabling multithreading implies, on the one hand,

that the services are able to process many parallel
connections and, on the other hand, that the work-
flow engine is able to submit several simultaneous



queries to a service leading to the dynamic creation
of several threads. Moreover, a multithreaded work-
flow engine should implement a dedicated data man-
agement system. Indeed, in case of a multithreaded
execution, a data is able to overtake another one dur-
ing the processing and this could lead to a causality
problem, as we explained in [2]. To properly tackle
this problem, data provenance has to be monitored
during the multithreaded execution. Detailed work
on data provenance can be found in [24].

Consider the simple workflow made of 3 services
and represented on figure 2. Suppose that we want
to execute this workflow on 3 independent input
data sets D0, D1 and D2. The multithreaded exe-
cution diagram of this workflow is represented on
figure 3. On this kind of diagrams, the abscissa axis
represents time. When a data set Di appears on a
row corresponding to a service P j, it means that
Di is being processed by P j at the current time.
To facilitate legibility, we represented with the Di
notation the piece of data resulting from the pro-
cessing of the initial input data set Di all along the
workflow. For example, in the diagram of figure 3,
it is implicit that on the P2 service row, D0 actually
denotes the data resulting from the processing of
the input data set D0 by P1. On those diagrams, we
moreover made the assumption that the processing
time of every data set by every service is constant,
thus leading to cells of equal widths. Multithreading
occurs when different data sets appear on a single
square of the diagram whereas intrinsic workflow
parallelism occurs when the same data set appears
many times on different cells of the same column.
Crosses represent idle cycles.

The Taverna workbench [15], for example, only
implements a limited multithreading strategy. The
user can specify a fixed number of threads limited
to 10. Such a limitation is clearly too low for a
data-intensive application benefiting of a data grid,
and the number cannot be dynamically adjusted by
the scheduler. In [2], we presented an asynchronous
framework of invocation between Taverna and Web-
Services, by splitting the services into a submission
and a fetching service. These services are able to
cope with this limitation. Nevertheless, it is clear
that this problem can only properly be solved at the
workflow enactor level.

D0
P3 X D1

D2
D0

P2 X D1
D2

D0
P1 D1 X

D2
Fig. 3. Multithreaded execution diagram of the workflow of fi gure 2

C. Service parallelism – pipelining
Input data sets are likely to be independent from

each other. This is for example the case when a
single workflow is iterated in parallel on many input
data sets. Thus, parallelism can also be highlighted
at a service level in the workflow.
Pipelining denotes that the processing of two

different data sets by two different services are to-
tally independent. A workflow enactor should allow
pipelining of sequential tasks, in order to optimize
the workflow execution.
Pipelining has been very successfully imple-

mented in hardware processors to reduce the time
spent during the completion of sequential instruc-
tions. This model can be adapted to sequential parts
of workflows. Consider again the simple workflow
represented on figure 2, to be executed on the 3
independent input data sets D0, D1 and D2. Fig-
ure 5 presents a pipelined execution diagram of
this workflow whereas figure 4 displays an non
pipelined one. We here supposed that a given service
can only process a single data set at a given time
(multithreading is disabled). On those diagrams,
pipelining occurs when different data sets appear
on different cells of the same column.
Here again, the Taverna workflow manager does

not allow the pipelined execution of a workflow.
Efforts have been done to cope with this limitation
by developing specific services [25]. Nevertheless,
pipelining has to be enabled by the workflow en-
actor itself in order to be used with standard Web-
Services that provide genericness and are thus par-
ticularly adapted to our assumptions.

D. Data synchronization
Nevertheless, in some cases, different data sets

need to be synchronized, in order to compute an



P3 X X X D0 D1 D2
P2 X X X D0 D1 D2
P1 D0 D1 D2 X X X

Fig. 4. Non pipelined execution diagram of the workflow of fi gure 2

P3 X D0 D1 D2
P2 X D0 D1 D2
P1 D0 D1 D2 X

Fig. 5. Pipelined execution diagram of the workflow of fi gure 2

operation on more than one data set. In such work-
flow areas, a pipelined execution cannot be used and
the engine must be aware of such synchronization
services. An example of such a case occurs when
one need to compute statistics such as the mean
of all data. It is the case in workflows such as the
Bronze-Standard medical image registration assess-
ment application that we describe in section VI and
in [2].
Figure 6 displays such a synchronization pattern.

The service µ corresponds to a synchronization
operation that needs to be executed on the whole
data. We figured it with a double square in the
diagram.

IV. I    
In order to show how pipelining and multithread-

ing influence the execution time of a workflow, we
determine in this section the workflow execution
times for a given execution policy.

A. Definitions and notations
• In the workflow, a path denotes a set of services
linking an input to an output.

• The critical path of the workflow denotes the
longest path in terms of execution time.

1P
0D 2D1D 2P

Input
µ

P2 X D0 D1 D2 X
P1 D0 D1 D2 X X
µ X X X X D0,D1,D2

Fig. 6. Example of a data synchronization pattern and its execution
diagram

• nw denotes the number of services on the
critical path of the workflow.

• nD denotes the number of data sets to be
executed by the workflow.

• i denotes the index of the ith service of the
critical path of the workflow (i ∈ !0, nW − 1").
Similarly j denotes the index of the jth data set
to be executed by the workflow ( j ∈ !0, nD −
1").

• Ti, j denotes the duration in seconds of the
treatment of the data set j by the service i.

• σi, j denotes the absolute time in seconds of
the end of the treatment of the data set j by
the service i. The execution of the workflow is
assumed to begin at t = 0. Thus σ0,0 = T0,0 > 0.

• Σ denotes the total execution time of the work-
flow:

Σ = max
j<nD

(σnW−1, j) (1)

Notations are represented on figure 7.

B. Hypotheses
• The critical path is assumed not to depend on
the data set. This hypothesis seems reasonable
for most applications but may not hold in some
cases as for example the one of workflows
including algorithms containing optimization
loops whose convergence time is likely to vary
in an complex way w.r.t the nature of the input
data set.

• Multithreading is assumed not to be limited
by infrastructure constraints. We justify this
hypothesis considering that our target infras-
tructure is a grid, whose computing power is
sufficient for our application.

• In this section, workflows are assumed not
to contain any synchronization pattern (see
section III-D for definition). Workflows con-
taining such patterns may be viewed as two
subworkflows respectively corresponding to the
parts of the initial workflow preceding and
succeeding the synchronization pattern (the
synchronization pattern itself being included in
the succeeding part). Execution times of those
two subworkflows can be determined using the
following expressions. The execution time of
the global workflow will then correspond to



the sum of the execution times of the subwork-
flows.

C. Execution times
Under those hypotheses, we can determine the ex-

pression of the total execution time of the workflow
for every execution policy:
• Case S: Sequential (pipelining and multithread-
ing disabled):

ΣS =
∑

i<nW

∑

j<nD

Ti, j (2)

• Case M: pipelining disabled and multithreading
enabled:

ΣM =
∑

i<nW

max
j<nD

{

Ti, j
}

(3)

• Case P: pipelining enabled and multithreading
disabled:

ΣP = TnW−1,nD−1 + mnW−1,nD−1 (4)
with: ∀i # 0 and ∀ j # 0,

mi, j = max(Ti−1, j + mi−1, j, Ti, j−1 + mi, j−1)
and:

m0, j =
∑

k< j

T0,k and mi,0 =
∑

k<i

Tk,0

• Case PM: pipelining enabled and multithread-
ing enabled:

ΣPM = max
j<nD















∑

i<nW

Ti, j















(5)

All the above expressions of the execution times
can easily be shown recursively. Here is an example
of such a proof for ΣP.
We first can write that, for a pipelined and non-

multithreaded execution:

∀i # 0 and ∀ j # 0 :
σi, j = Ti, j + max(σi−1, j,σi, j−1) (6)

Indeed, if multithreading is disabled, data sets are
processed one by one and service i has to wait for
data set j − 1 being processed by service i before
starting processing the data set j. This expression
is illustrated by the two configurations displayed on
figure 7.

Dj−1

Dj−1

Dj

Dj

σ i,j−1

i,jT

i−1

σ i−1,j−1 σ i−1,j σ i,j
time

iP

P

Dj−1

DjDj−1

Dji−1

σ i−1,j−1 σ i,j
time

i

σ i,j−1σ i−1,j

i,jT

P

P

Fig. 7. Two different confi gurations for an execution with pipelining
enabled and multithreading disabled

We moreover note that service 0 is never idle until
the last data set has been processed and thus:

σ0, j =
∑

k≤ j

T0,k (7)

Furthermore, D0 is sequentially processed by all
services and thus:

σi,0 =
∑

k≤i

Tk,0 (8)

We can then use the following lemma, whose
proof is deferred to the end of the section:

Lemma IV.1

P(i, j) : σi, j = Ti, j + mi, j

with: ∀i # 0 and ∀ j # 0,
mi, j = max(Ti−1, j + mi−1, j, Ti, j−1 + mi, j−1),

and:
m0, j =

∑

k< j T0,k and mi,0 =
∑

k<i Tk,0

Moreover, we can deduce from equation 6 that for
every non null integer j, σi, j > σi, j−1, which im-
plies that ΣP = σnW−1,nD−1 (according to equation 1).



Thus, according to lemma IV.1

ΣP = TnW−1,nD−1 + mnW−1,nD−1

with: ∀i # 0 and ∀ j # 0,
mi, j = max(Ti−1, j + mi−1, j, Ti, j−1 + mi, j−1),

and:
m0, j =

∑

k< j

T0,k and: mi,0 =
∑

k<i

Tk,0

“
Proof of lemma IV.1: The lemma can be shown

via a double recurrence, first on i and then on j.
Recursively w.r.t i:
• i=0: According to equation 7:

∀ j < nD, σ0, j =
∑

k≤ j

T0,k

= T0, j + m0, j
with

m0, j =
∑

k< j

T0,k

∀ j < nD, P(0,j) is thus true.
• Suppose Hi: ∀ j < nD P(i,j) true. We are going
to show recursively w.r.t j that Hi+1 is true:
– j=0: According to equation 8:

σi+1,0 =
∑

k≤i+1

Tk,0

= Ti+1,0 + mi+1,0

with
mi+1,0 =

∑

k<i+1

Tk,0

Hi+1 is thus true for j = 0.
– Suppose K j: Hi+1 is true for j. We are
going to show that K j+1 is true.

According to equation 6:
σi+1, j+1 = Ti+1, j+1 + max(σi, j+1,σi+1, j)

Thus, according to K j:
σi+1, j+1 = Ti+1, j+1

+max(σi, j+1, Ti+1, j + mi+1, j)
And, according to Hi:

σi+1, j+1 = Ti+1, j+1 +
max(Ti, j+1 + mi, j+1,

Ti+1, j + mi+1, j)

n −1D

0P

,...,D0 D

Fig. 8. Massively data-parallel workflow pattern

= Ti+1, j+1 + mi+1, j+1

with:
mi+1, j+1 = max(Ti, j+1 + mi, j+1,

Ti+1, j + mi+1, j)

K j+1 is thus true.
Hi+1 is thus true.

The lemma is thus true. “

D. Speed-ups
In this section, we study the asymptotic speed-ups

introduced by pipelining and multithreading.
1) Massively data-parallel workflows: Let us

consider a massively data-parallel workflow as the
one represented in figure 8. In such workflows,
nW = 1 and the execution times resume to:

ΣM = ΣPM = max
j<nD

(T0, j) $ ΣS = ΣP =
∑

j<nD

T0, j

In this case, multithreading leads to a significant
speed-up. Pipelining is useless but do not lead to
any overhead.
2) Data non intensive workflows: In such work-

flows, nD = 1 and the execution times resume to:

ΣM = ΣPM = ΣS = ΣP =
∑

i<nW

Ti,0

In this case, neither multithreading nor pipelining
lead to any speed-up. Nevertheless, neither of them
do introduce any overhead.
3) Data intensive complex workflows: In this

case, we will suppose that:

nD → ∞ and: nW > 1

In order to analyze the speed-ups introduced by
pipelining and multithreading in this case, we make



the simplifying assumption of constant execution
times:

Ti, j = T (9)

In this case, the workflow execution times resume
to:

ΣM = ΣPM = nW × T
ΣS = nD × nW × T
ΣP = (nD + nW − 1) × T

Those expressions can be checked on the execution
diagrams of section III.
Pipelining do not lead to any speed-up in ad-

dition to multithreading. However, we will see in
section VI-D that T is hardly constant in production
systems and that in this case the conclusion does not
hold. Indeed, figures 9 and 10 illustrate on a simple
example that pipelining do provide a speed-up even
if multithreading is enabled, if the assumption of
constant execution times is not done.
If multithreading is disabled, the induced speed-

up is:

S =
nD × nW

nD + nW − 1

In case of data intensive workflows, this speed-up
is significant. Indeed:

lim
nD→+∞

S = nW

Moreover, this speed-up is growing with the number
of input data sets. Indeed:

dS
dnD

=
nW .(nW − 1)
(nD + nW − 1)2

(10)

This derivative is always positive but decreases to
zero when nD tends towards infinity. This speed-up
is thus smoothly growing with the number of input
data sets.
We can conclude from this section that pipelining

leads to a significant speed-up for the execution of
a data-intensive complex workflow. This kind of
workflow is the one targeted by our application.
That is why we focus on the implementation of a
workflow enactor that enables pipelining in the rest
of the paper.

D2
P3 X X D1 X X

D0
D0

P2 X X D2
D1 D1 D1

D2
P1 D1 X X X

D0 D0

Fig. 9. Multithreaded non pipelined execution diagram of the
workflow of fi gure 2 with the assumption of variable execution times.

P3 X D1 X
D2 D0

P2 X D2 D0
D1 D1 D1

D2
P1 D1 X X

D0 D0

Fig. 10. Multithreaded pipelined execution diagram of the workflow
of fi gure2 with the assumption of variable execution times. Compar-
ing this diagram to the one of fi gure9, one can see that pipelining do
provide a speed-up even if multithreading is enabled if the execution
times are not constant.

V. I   
We implemented a prototype of a workflow

enactor taking into account the 3 kinds of par-
allelism we described in section III: intrinsic
workflow parallelism, multithreading and pipelin-
ing. Our hoMe-made OpTimisEd scUfl enac-
toR (MOTEUR) prototype was implemented us-
ing Java, in order to make it platform indepen-
dent. It is available under CeCILL Public Li-
cense (a GPL-compatible open source license)
at http://www.i3s.unice.fr/˜ glatard.

A. Workflow description language
This prototype is able to enact a workflow of

standard Web-Services described with the Simple
Concept Unified Flow Language (Scufl) used by the
Taverna workbench [15]. This language is currently
becoming a standard in the e-Science community.
Apart from describing the data links between the

services, this language allows to define so-called
coordination constraints. A coordination constraint
is a control link which enforce an order of execution
between to services even if there is no data depen-
dency between them. We used those coordination



constraints to identify services that require data
synchronization.
The Scufl language also specifies the number of

threads of a service. In our case, this number is
dynamically determined during the execution, with
respect to the available input data of the service, so
that we only consider that a service is multithreaded
or not.

B. Input data description
We developed an XML-based language to be able

to describe input data sets. This language aims at
providing a file format to save and store the input
data set in order to be able to re-execute workflows
on the same data set. It simply describes each item
of the different inputs of the workflow.

C. Enactor model
The UML class diagram of the prototype we

implemented is represented on figure 14.
a) Data management: Services have input and

output ports. Each port has children ports, so that
a service can convey data from its output ports
directly to the corresponding children ports, without
going via the central workflow entity.
Data also has parents and children data: when a

new data is produced by a service, it is appended to
each piece of data that was used to produce it. Thus,
this provides a basic mechanism to retrieve data
provenance of a result at the end of the workflow ex-
ecution by going back in the data tree. Handling data
provenance is particularly crucial in multithreaded
workflows, as we explained in section III-B.
The Scufl language specifies so-called iteration

strategies to handle input data of the services. An
iteration strategy is a composition of two kinds of
binary operators, cross product and dot product. Let
us consider two inputs A and B of a service P, each
of them being instantiated by a fixed number of data
sets: A0, A1,. . . , An for input A and B0, B1,. . . , Bm
for input B. If the iteration strategy of this service P
is a cross product, then P will process each Ai with
every B j (i < n and j < m), thus leading to n × m
computations. Conversely, if the iteration strategy of
P is a dot product, then P will process each Ai with
the corresponding Bi, thus leading to n computations
(one must then have n = m and i < n) (cf. figure 11
for details).
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Fig. 11. Action of the cross product (left) and dot product (right)
operators on the input data
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Fig. 12. Example illustrating the need for a unique identifi cation of
data sets in a multithreaded workflow: services P 0 and P1 compute
cross products on their input data whereas service P2 computes a dot
product. Without any appropriate numbering (represented in dotted
lines cells here), P2 may not process the right dot product because
P0 and P1 are multithreaded and produce their result in a different
order. Pi(I, J) denotes the result of the processing of data sets I and
J by service Pi

Handling iteration strategies in a multithreaded
pipelined workflow is not straightforward because
produced data sets have to be uniquely identified.
Indeed they are likely to be computed in a different
order in every service, which could lead to wrong
dot product computations, as figure 12 illustrates.
Moreover, due to pipelining, several data sets are
processed concurrently and one cannot number all
the produced data once computations completed.
Thus, we use the following bijective function f to
number the data produced bycross products:

f : ! ×! → !

(i, j) (→ k2 + k + i − j
where k = max(i, j)

This function is injective, which guarantee the
uniqueness of the numbering. Here is the proof of



the injectivity of f . We first can note that for every
integer n, there is a unique integer kn such as:

k2n ≤ n < (kn + 1)2 (11)

Moreover it is obvious that:

∀(x, y) ∈ !2, k2 ≤ f (x, y) < (k + 1)2 (12)
with k = max(x, y)

Suppose that we have (x0, y0) and (x1, y1) two pairs
of integers such as f (x0, y0) = f (x1, y1). We are
going to show that (x0, y0) = (x1, y1). Let k0 =
max(x0, y0) and k1 = max(x1, y1). According to
equation 12, we have:

k0 ≤ f (x0, y0) < (k0 + 1)2 and
k1 ≤ f (x1, y1) < (k1 + 1)2

Moreover, according to equation 11, there is a
unique integer k such as:

k2 ≤ f (x0, y0) = f (x1, y1) < (k + 1)2

Thus, given the uniqueness of k, we have k0 = k1 =
k. We then have:

(k = x0 OR k = y0) AND (k = x1 OR k = y1)

This leads to 4 distinct cases:
1) k = x0 AND k = x1:
Thus: k2 + k + k − y0 = k2 + k + k − y1 and
y0 = y1.

2) k = y0 AND k = y1:
As well as case 0, x0 = x1.

3) k = x0 AND k = y1:
Thus: x1 + y0 = 2k
Finally: x1 = y0 = k because y0 ≤ k and x1 ≤
k.

4) k = x1 AND k = y0:
As well as case 3, x0+y1 = 2k and x0 = y1 = k
because x0 ≤ k and y1 ≤ k.

We thus have (x0, y0) = (x1, y1) for each of those
cases. “
Actually, this function corresponds to the num-

bering of !2 displayed on figure 13. This function
is also surjective (and thus bijective) as it can be
intuited from figure 13.
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Fig. 13. Numbering used to label the data in the workflow. The
values of f are displayed in the cells.

b) Services enactment: A workflow contains a
list of services and is responsible for their enactment
(process() method on the UML diagram of fig-
ure 14), so that the execution control is centralized
in a single entity. The workflow queries services
to check whether they are ready to be enacted
(isReady() method on figure 14). Services answer
depending on the data available in their input ports
and on the status of the elements of the toWait
attribute.
This attribute aims at enabling data synchroniza-

tion, as explained in section III-D. In the imple-
mented enactment strategy, a service will wait for
every service S in the toWait array and recursively
for every ancestor of S to be inactive before starting.
This implementation of data synchronization is lim-
ited but suitable for our application as we will see
in section VI. Other kinds of synchronization could
of course be defined, to impose services to wait for
a particular piece of data produced by its parents,
taking into consideration the data-tree described in
the previous paragraph. However, this would require
to be able to express such synchronization strategies
with the Scufl language, which is not the case yet
since only a single kind of so-called coordination
constraint is available.
Sources and sinks are particular ”Nop” services

which do not process anything and just convey data
from their single input port to their single output
port.

VI. E
A. Application
We made experiments considering a medical

imaging rigid registration application. Medical im-
age registration consists in searching a transforma-
tion (that is to say 6 parameters in the rigid case
– 3 rotation angles and 3 translation parameters)
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Fig. 14. UML diagram of the prototype we implemented

between two images, so that the first one (the float-
ing image) can superimpose on the second one (the
reference image) in a common 3D frame. Medical
image registration algorithms are a key component
of medical imaging workflows.
The application we are working on aims at assess-

ing registration results with a statistical approach
called the Bronze-Standard [26]. The goal is basi-
cally to compute the registration of a maximum of
image pairs with a maximum number of registration
algorithms so that we obtain a largely overestimated
system to relate the geometry of all the images. As a
consequence, the mean registration should be more
precise and is called a bronze-standard. It implies
that we are first able to process registrations of many
pairs of images, which is a data-intensive problem.
The workflow of our application is represented

on figure 15. The two inputs referenceImage
and floatingImage correspond to the image
sets on which the evaluation is to be processed.
The first registration algorithm is crestMatch.
Its result is used to initialize the other registra-
tion algorithms which are Baladin, Yasmina and
PFMatchICP/PFRegister. crestLines is a pre-
processing step. Then, the formatConversion and
writeResults services are executed locally and
aim at recording the results in a suitable for-
mat. Finally, the MultiTransfoTest service is
responsible for the evaluation of the accuracy of

the registration algorithms, leading to the outputs
values of the workflow. This evaluation considers
means computed on all the results of the regis-
tration services except one that we specify and
evaluates the accuracy of the specified method.
Thus, the MultiTransfoTest service has to be
synchronized: it must be enacted once every of its
ancestor is inactive. This is why we figured it with
a double square on figure 15.
As detailed in section VI-C, we made experi-

ments on two different infrastructures: a local one,
made of 4 PCs and the EGEE grid one. Corre-
sponding workflows are both identical, except that a
getFromEGEE service has been added on the EGEE
workflow, in order to download results from the grid
at the end of the registration procedures. Other steps
in the workflow do not need such a service because
data transfers within the grid are handled by the grid
middleware itself.

B. Data

Input image pairs are taken from a database of
injected T1 brain MRIs from the cancer treatment
center ”Centre Antoine Lacassagne” in Nice, France
(courtesy of Dr Pierre-Yves Bondiau). All images
are 256×256×60 and coded on 16 bits, thus leading
to a 7.8 MB size per image (approximately 2.3 MB
when compressed).
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Fig. 15. Workflow of the application

C. Experimental terms

We made experiments in order to evaluate the rel-
evance of our prototype on two different infrastruc-
tures. These infrastructures correspond to different
parallelism conditions. On each infrastructure, we
measured the workflow execution time for various
numbers of input data sets.
We first deployed our application on an local in-

frastructure, where a single monoprocessor machine
is dedicated to each registration algorithm. Intrinsic
workflow parallelism and pipelining do make sense
on this infrastructure, whereas multithreading does
not. Indeed, in case of multithreading, multiple
instances of a service would be executed on a single
physical processor, which would not lead to any
execution speed-up.
We also deployed the application on the grid

infrastructure provided by the EGEE European
project. The platform offered is a pool of thousands
computing (standard PCs) and storage resources

accessible through the LCG2 middleware5. The re-
sources are assembled in computing centers, each of
them running its internal batch scheduler. Jobs are
submitted from a user interface to a central Resource
Broker which distributes them to the available re-
sources. Not only intrinsic workflow parallelism and
pipelining but also multithreading make sense on
such a grid infrastructure. Indeed, every instance
of a service will be submitted to the grid and thus
executed on a different processor.
In both cases, we compared execution times with

and without pipelining. We used our MOTEUR for
the pipelined case and for the non pipelined case,
we used the Freefluo6 enactor, which is the one
included into the Taverna workbench. Because of a
limitation of this workbench, the number of threads
was limited to 10 with this enactor.
For each of the above infrastructures, we executed

our workflow on 3 inputs data sets, corresponding to

5http://lcg-web.cern.ch
6http://freefluo.sourceforge.net



the registration of 12, 66 and 126 image pairs from
the database described in section VI-B. These inputs
data sets correspond respectively to images from 1,
7 and 25 patients on which acquisitions have been
done at several time points to monitor the growth
of brain tumors. Each of the input image pair was
registered with the 4 algorithms, thus respectively
leading to 48, 264 and 504 registrations.

D. Results
1) Evaluation of our MOTEUR on the local in-

frastructure: Table I displays the comparison be-
tween the execution times obtained with Taverna
and our MOTEUR on the local infrastructure w.r.t
the number of input data sets. S p denotes the speed-
up introduced by the pipeline strategy implemented
in our prototype. On this infrastructure, our proto-
type introduces an average speed-up of 1.74 w.r.t the
execution with Taverna. This speed-up is smoothly
growing with the number of input data sets, as
predicted by equation 10.
Moreover, one can notice on figure 16 that ex-

ecution times are a linear function of the size of
the input data set on this local infrastructure. This
function is a straight line because of the nature of
the workflow which iterates the same computations
on each data set. It tends towards zero when nD
tends towards zero thanks to the low latency of the
local infrastructure.
2) Evaluation of our MOTEUR on the EGEE

infrastructure: Table II displays the comparison
between the execution times obtained with Taverna
and our MOTEUR on the EGEE infrastructure w.r.t
the number of input data sets. On this infrastructure,
our MOTEUR introduces an average speed-up of
2.03 w.r.t the execution with Taverna. This speed-
up is growing with the number of input data sets.
Section IV-D predicted a speed-up of 1 for our

prototype on such a multithreaded environment.
This is not the case here. It can be explained by the
fact that the hypothesis of constant execution times
(cf. equation 9) may not be verified here because
of the highly variable nature of the grid environ-
ment. Indeed, on a production grid infrastructure
such as the EGEE one, the multi-users system is
permanently under unpredictable load. Thus, a few
jobs are likely to remain blocked for a while on
a particular area of the system (such as a waiting
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Fig. 16. Execution times of MOTEUR vs Taverna on the local
infrastructure

queue), whereas other ones are faster to execute.
And even if their proportion remains reasonable,
“outlier” jobs can be very late with respect to the
faster ones, thus leading to a high variability of
execution times among jobs and consequently to a
strong delay of the workflow if the execution is not
pipelined. Future work [27] will try to model this
variability in order to cope with it.
We can also clearly notice on figure 17 that the

extrapolation of those curves would not give a zero
value for nD = 0. This can be explained by the high
latency introduced by the grid. The consequences of
this latency can be viewed on figures 18 and 19. We
can clearly see on those figures that with Taverna
as well as with our MOTEUR, our application is
slowed down by the execution on the EGEE grid
for low numbers of input data.
More measures remains to be done in order to

present statistics concerning execution times on this
infrastructure instead of just one experimental result.
This is part of our future work.
We can thus conclude from those results that our

MOTEUR is particularly suitable for executions of
data-intensive applications in grid environments.

VII. C   
We designed a complete prototype of an opti-

mized workflow enactor that provides significant
speed-up for the execution of data-intensive work-
flows on a grid infrastructure. The implemented
prototype is able to deal with existing standard
workflows and services description languages. It
benefits from computation parallelization at differ-
ent levels (inherent to the workflow, data parallelism



Input Data Execution times (s)
Number of input Number of Pipelining disabled Pipelining enabled S P
image pairs registration (Taverna) (MOTEUR)

12 48 6789s 4160s 1.63
66 264 36217s 20457s 1.77
126 504 71095s 38816s 1.83

TABLE I
E    ( )

Input Data Execution times (s)
Image pairs Registrations Pipelining disabled Pipelining enabled S P
number number (Taverna) (MOTEUR)
12 48 9959s 5906s 1.69
66 264 20073s 9922s 2.02
126 504 33662s 14220s 2.37

TABLE II
E     (EGEE )
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Fig. 17. Execution times of MOTEUR vs Taverna on the EGEE
infrastructure
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Fig. 18. Execution times of Taverna on EGEE vs on the local
infrastructure. One can see that for less than 20 input image pairs,
the latency of the EGEE infrastructure slows down the execution.
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Fig. 19. Execution times of MOTEUR on EGEE vs on the local
infrastructure. One can see that for less than 20 input image pairs,
the latency of the EGEE infrastructure slows down the execution.

and processing parallelism) in order to exploit the
resources available on grid infrastructures better
than most existing implementations. The modeling
of the overall execution times demonstrates that
in different scenarios, the workflow manager does
never lead to performance drops and that it is
particularly efficient for dealing with data-intensive
applications. This is confirmed by an experiment on
a medical image registration application.
We have plans for further optimizing the work-

flow engine. To take into account the limited amount
of resources really available we plan to study dy-
namic multithreading by adapting the number of



threads of a service to the current status of (i)
the target grid infrastructure and (ii) the workflow
execution. This would require to be able to monitor
the status of the grid and to predict the services
execution time on the infrastructure. By doing that,
we plan to propose strategies to avoid pipeline
draining during the workflow execution.
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