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Abstract

Microporous media, i.e., porous media made of pores with a nanometer size, are
important for a variety of applications, for instance for sequestration of carbon dioxide
in coal, or for storage of hydrogen in metal-organic frameworks. In a pore of nanometer
size, fluid molecules are not in their bulk state anymore since they interact with the
atoms of the solid: they are said to be in an adsorbed state. For such microporous
media, conventional poromechanics breaks down.

In this work we derive poroelastic constitutive equations which are valid for a generic
porous medium, i.e., even for a porous medium with pores of nanometer size. The com-
plete determination of the poromechanical behavior of a microporous medium requires
knowing how the amount of fluid adsorbed depends on both the fluid bulk pressure
and the strain of the medium. The derived constitutive equations are validated with
the help of molecular simulations on one-dimensional microporous media. Even when
a microporous medium behaves linearly in the absence of any fluid (i.e., its bulk mod-
ulus does not depend on strain), we show that fluid adsorption can induce non linear
behavior (i.e., its drained bulk modulus can then depend significantly on strain). We
also show that adsorption can lead to an apparent Biot coefficient of the microporous
medium greater than unity or smaller than zero.

The poromechanical response of a microporous medium to adsorption significantly
depends on the pore size distribution. Indeed, the commensurability (i.e., the ratio of
the size of the pores to that of the fluid molecules) proves to play a major role. For a one-
dimensional model of micropores with a variety of pore sizes, molecular simulations show
that the amount of adsorbed fluid depends linearly on the strain of the medium. We
derive linearized constitutive equations which are valid when such a linear dependence
of the adsorbed amount of fluid on the strain is observed.

As an application, the case of methane and coal is considered. Molecular simulations
of an adsorption of methane on a microporous realistic model for coal are performed with
a flexible solid skeleton. The applicability of the set of linearized constitutive equations
to this case is discussed and the results are shown to be consistent with swelling data
measured during a classical adsorption experiment.

Keywords: Porous material (B), constitutive behavior (B), adsorption, molecular simu-
lations

Introduction

Adsorption of fluid molecules in a microporous medium can cause the medium to swell or
deform. Several applications require to better understand and model such a coupling between
adsorption and deformation: underground coal swells when injected with carbon dioxide, thus
inducing a loss of permeability of the coal bed reservoir and impairing the economic viability
of such carbon dioxide geological sequestration schemes (Harpalani and Schraufnagel, 1990;
Levine, 1996; Mazumder and Wolf, 2008; Ottiger et al., 2008, Vandamme et al., 2010);
metal-organic frameworks (MOF) can be used for hydrogen storage (Murray et al., 2009) but
can be subject to elastic deformation and to structural transitions upon adsorption of fluid
(Coudert et al., 2008; Neimark et al., 2011); swellable organically modified silica (SOMS)
can be used for water purification and swell when adsorbing the contaminant (Edmiston
and Underwood, 2009); a kitchen sponge shrinks upon drying. This work focuses on the
poromechanical behavior of such microporous media.

Not all porous media are microporous: pores in a porous medium can be classified into
macropores, mesopores and micropores, depending on their size. Typically, the diameter
of a macropore is greater than 50 nm (i.e., much greater than the characteristic range of
intermolecular forces), that of a micropore is smaller than 2 nm (which is on the order of
the characteristic range of intermolecular forces), and that of a mesopore is in-between. In
a macropore, surface effects can be neglected, and all fluid molecules in the macropore are
in their bulk state. For a poroelastic medium made of macropores, usual poromechanical
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constitutive equations link a confining stress σ, deviatoric stresses sij , and a fluid pore
pressure p to a variation ϕ of porosity (ϕ = φ− φ0, where φ is the actual porosity and φ0 is
the porosity in the state of reference), a volumetric strain ε and deviatoric strains eij of the
medium (Biot, 1941; Coussy, 2004):

σ = Kε− bp (1)

ϕ = φ− φ0 = bε+ p/N (2)

sij = 2Geij (3)

where K, G, b, N are the bulk modulus, shear modulus, Biot coefficient, and Biot modulus
of the medium, respectively.

In a mesopore, not all fluid molecules are in their bulk state: a significant amount of fluid
molecules is adsorbed at the surface of the mesopore. Therefore, in a mesoporous medium,
surface effects must be taken into account. By introducing the interface energy γ of the pore-
fluid interface (i.e., of the surface of the pore), the specific area s of the pores, the excess
amount Γ of fluid adsorbed per unit area of pore-fluid interface and the surface stress σ̃s

which acts at the surface of the pore, the classical poroelastic constitutive equations can be
extended to surface effects (for more details, see Vandamme et al. (2010) or Coussy (2010)):

σ = Kε− bp+ σ̃s
∂s

∂ε

∣∣∣∣
p

(4)

φ− φ0 = bε+
p

N
− σ̃s ∂s

∂p

∣∣∣∣
ε

(5)

sij = 2Geij (6)

where the surface stress σ̃s is governed by Shuttleworth’s equation (Shuttleworth, 1950) and
by Gibbs’ adsorption isotherm (Gibbs, 1928):

σ̃s = γ + s
∂γ

∂s

∣∣∣∣
p

=
∂(γs)

∂s

∣∣∣∣
p

(7)

∂γ

∂µ

∣∣∣∣
s

= −Γ (8)

In contrast, the size of a micropore is on the order of the range of molecular interactions,
and therefore all fluid molecules in a micropore interact with the atoms of the solid matrix:
fluid molecules are not in their bulk state anymore but are said to be adsorbed. For a
microporous medium, all constitutive equations given above break down, since even the
basic concepts of porous volume or specific surface of the pores become ambiguous: indeed,
from one probe molecule to another, adsorption experiments provide different estimates for
those parameters (Pellenq and Levitz, 2002; Bae and Bhatia, 2006).

The notion of disjoining pressure is a first step toward understanding the mechanical effect
of adsorption in slit-like micropores. The disjoining pressure, also called solvation pressure,
is the difference between the mechanical pressure acting on a thin film of fluid in a slit-like
pore and the bulk pressure of the fluid. A disjoining pressure appears when the thickness
of the film is on the order of the range of the molecular interactions. Reported values of
disjoining pressures can be positive (disjoining) or negative (joining); their magnitude can
be much larger than the bulk pressure of the fluid. For instance, in the case of water in
clays, Malani et al. (2009) computed disjoining pressures up to a few GPa for a film of water
confined between silica surfaces. Regarding the adsorption of methane in coal, Yang et al.
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(2010) computed disjoining pressures up to 200 MPa at temperatures and pressures repre-
sentative of underground conditions (p ≈ 10 MPa). Such high pressures can significantly
affect the behavior of porous media. Models have been proposed to relate the disjoining
pressures acting in such thin films to the overall mechanical behavior of a porous medium
made of slit-like micropores subjected to adsorption. The model of Kowalczyk et al. (2008)
predicts the overall behavior from the knowledge of the disjoining pressure, the pore size
distribution, and the pore stiffness. Yang et al. (2010) applied this model to the case of coal
swelling, assuming an incompressible solid phase, for definite pore sizes and showed that the
swelling is highly sensitive to the size of the micropore. A different approach was proposed
by Coudert et al. (2008), based on stability considerations in the osmotic statistical ensemble
(isobaric-isothermal for the solid matrix and grand canonical for the adsorbing fluid). The
thermodynamic framework they developed was used to determine the adsorption-induced
opening of flexible materials. Mushrif and Rey (2009) proposed a model that tentatively
combines adsorption and poromechanics but does not take into account the coupling be-
tween adsorption and deformation, even though deformation can have a significant effect on
adsorption (Grosman and Ortega, 2008, 2009). In contrast, this coupling is well taken into
account in the model developed by Neimark et al. (Ravikovitch and Neimark, 2006; Gor and
Neimark, 2011; Neimark et al., 2011), which links the stress induced by adsorption to the
grand thermodynamic potential of the adsorbed phase. In a recent work, Pijaudier-Cabot et
al. (2011) revisited poromechanics in the context of microporous solids. They derive consti-
tutive equations by introducing the density of the adsorbed phase, although such a notion
is ambiguous in micropores with an ill-defined volume (Pellenq and Levitz, 2002; Bae and
Bhatia, 2006). They also assume a simple relationship between the pressure induced by the
adsorbed fluid and the isotherm of adsorption.

In this work, we aim at extending the realm of poromechanics to microporous media. In
a first section, poroelastic constitutive equations are derived, which are valid for a generic
porous medium. We check that the derived constitutive equations are consistent with con-
stitutive equations already existing for macroporous and mesoporous media. In a second
section, we perform molecular simulations of fluid adsorption in deformable one-dimensional
microporous media. Molecular simulations allow validating the derived poroelastic consti-
tutive equations. The effect of pore size distribution on the adsorption-induced strain is
studied. In a last section, we perform molecular simulations of adsorption of methane in a
deformable three-dimensional realistic coal structure. The applicability of the derived con-
stitutive equations to adsorption in coal is discussed and the swelling predicted numerically
is compared with experimental data.

1 Thermodynamic approach of adsorption in a microp-
orous medium

1.1 Derivation of constitutive equations

We consider a porous medium with a generic pore size distribution. In this medium we con-
sider a small representative volume, for which the Helmholtz free energy per unit undeformed
volume is noted f . Energy can be provided to the system either by deforming it or by adding
fluid molecules to it:

df = σdε+ sijdeij + µdn (9)

where n is the Lagrangian molar concentration of fluid molecules per unit volume of porous
medium (i.e., n = N/V0 where N is the actual number of moles of molecules in the medium
and V0 is the volume of the undeformed medium) and where µ is their molar chemical
potential. The above equation can be rewritten as follows:
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d(f − nµ) = σdε+ sijdeij − ndµ (10)

for which the use of Maxwell relations yields:

∂2(f − nµ)

∂µ∂ε

∣∣∣∣
eij

=
∂2(f − nµ)

∂ε∂µ

∣∣∣∣
eij

⇒ ∂σ

∂µ

∣∣∣∣
ε,eij

= − ∂n

∂ε

∣∣∣∣
eij ,µ

(11)

∂2(f − nµ)

∂µ∂eij

∣∣∣∣
ε

=
∂2(f − nµ)

∂eij∂µ

∣∣∣∣
ε

⇒ ∂sij
∂µ

∣∣∣∣
ε,eij

= − ∂n

∂eij

∣∣∣∣
ε,µ

(12)

Under the hypothesis of small deformations, if the porous material is isotropic, the ad-
sorption of fluid molecules does not depend on the deviatoric strain: ∂n/∂eij |ε,µ = 0. If

the material behaves linearly in vacuum (i.e., its bulk modulus K and its shear modulus G
are constant), an integration of the above equations with respect to ε, eij , and µ yields the
following constitutive equations:

σ = Kε− ∂

∂ε

[∫ µ

−∞
ndµ

]
µ,eij=0

(13)

n = n(ε, µ) (14)

sij = 2Geij (15)

In the above equations, the amount of fluid in the medium appears naturally as a state
variable of the system (Rice and Cleary, 1976; Coussy, 1995). Eq. (13) is consistent with
that obtained by Gor and Neimark (2011).

Using the Gibbs-Duhem relation in isothermal conditions (dµ = V̄b dp, where V̄b is the
molar volume of the bulk fluid), the constitutive equations can be rewritten in an alternative
form by introducing the bulk pressure p of the fluid as a state variable:

σ = Kε− ∂

∂ε

[∫ p

0

nV̄bdp

]
p,eij=0

(16)

n = n(ε, p) (17)

sij = 2Geij (18)

In the case of a fluid mixture, the energy balance (10) becomes:

d

(
f −

∑
i

niµi

)
= σdε+ sijdeij −

∑
i

nidµi (19)

where ni and µi are the Lagrangian molar concentration and the molar chemical potential
of the i-th component of the mixture. The associated Maxwell relations for each component
are:

∂σ

∂µi

∣∣∣∣
ε,eij ,µj 6=i

= − ∂ni
∂ε

∣∣∣∣
eij ,µ1,...,µn

and
∂sij
∂µi

∣∣∣∣
ε,eij ,µj 6=i

= − ∂ni
∂eij

∣∣∣∣
ε,µ1,...,µn

(20)

The constitutive equations in the case of fluid mixtures are obtained by successive inte-
gration of the Maxwell relations with respect to the chemical potentials µi:

σ = Kε− ∂

∂ε

[∫ (µ1,...,µn)

(−∞,...,−∞)

(∑
i

ni

)
dµ1...dµn

]
µ1,...,µn,eij=0

(21)

ni = ni(ε, µ1, ..., µn) (22)

sij = 2Geij (23)
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where the integration does not depend on the chosen path.

1.2 Consistency with usual poromechanics

We aim at verifying whether the general constitutive equation (16) derived in the previous
section for a generic porous medium is consistent with constitutive equations already existing
for macroporous media (Eq. (1)) and for mesoporous media (Eq. (7)).

In a macroporous medium, a porosity φ can be well identified. When the material is in
contact with a reservoir of fluid at pressure p, the porosity is filled with fluid molecules in
their bulk state, from what follows φ = nV̄b, so that the constitutive equation (16) can be
rewritten as:

σ = Kε− ∂

∂ε

[∫ p

0

φdp

]
p

(24)

where the fact that the deviatoric strains must be kept constant during the differentiation is
omitted from the notation.

Inserting the macroporous constitutive equation (2) into the equation above, we retrieve
the macroporous constitutive equation (1). This verification shows that the general consti-
tutive equations derived in this work are consistent with usual poromechanics, which is valid
for macroporous media only.

In contrast, in a mesoporous medium, fluid molecules (their molar concentration per
unit volume of undeformed porous medium is noted n) are either in bulk form (their molar
concentration per unit volume of undeformed porous medium is noted nb) in the mesopores, or
adsorbed (their molar concentration per unit volume of undeformed porous medium is noted
na) at the surface of the mesopores, from what follows: n = na + nb and nV̄b = φ + naV̄b.
Therefore, for a mesoporous medium that behaves linearly, the general constitutive equation
(16) can be rewritten as:

σ = Kε− ∂

∂ε

[∫ p

0

φdp

]
p

− ∂

∂ε

[∫ p

0

naV̄bdp

]
p

(25)

If we input the mesoporous constitutive equation (5) into the general constitutive equation
(25) and note that na = Γs, we obtain:

σ = Kε− bp+
∂

∂ε

[∫ p

0

(
σ̃s

∂s

∂p

∣∣∣∣
ε

− sΓV̄b
)
dp

]
p

(26)

Gibbs’ equation (7) can be rewritten:

∂γ

∂p

∣∣∣∣
s

= −ΓV̄b (27)

and the integrand in Eq. (26) can be simplified by using the above expression and Shuttle-
worth’s equation (8):

σ̃s
∂s

∂p

∣∣∣∣
ε

− sΓV̄b =

(
γ + s

∂γ

∂s

∣∣∣∣
p

)
∂s

∂p

∣∣∣∣
ε

+ s
∂γ

∂p

∣∣∣∣
s

(28)

=
∂(γs)

∂s

∣∣∣∣
p

∂s

∂p

∣∣∣∣
ε

+
∂(γs)

∂p

∣∣∣∣
s

=
∂(γs)

∂p

∣∣∣∣
ε

(29)

so that Eq. (26) can be rewritten as:

σ = Kε− bp+
∂(γs)

∂ε

∣∣∣∣
p

= Kε− bp+ σ̃s
∂s

∂ε

∣∣∣∣
p

(30)
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which is the mesoporous constitutive equation (4). This verification shows that the general
constitutive equations here derived are consistent with regular poromechanics extended to
surface effects, which is valid for mesoporous materials only (Vandamme et al., 2010).

1.3 Poroelastic properties of the porous medium

The general poroelastic constitutive equations (13)-(15), or equivalently (16)-(18), are valid
for porous media with a generic pore size distribution. In particular, they still hold when the
porosity is made of micropores, for which even the notion of pore volume becomes ambiguous.

The general constitutive equations here derived can be used to calculate apparent poro-
elastic properties. For instance, one can define an apparent tangent drained bulk modulus
Kt = ∂σ/∂ε|p, which, with the help of the constitutive equation (16), is given by:

Kt(ε, p) =
∂σ

∂ε

∣∣∣∣
p

= K − ∂2

∂ε2

[∫ p

0

nV̄bdp

]
p

= K − ∂2

∂ε2

[∫ µ

−∞
ndµ

]
µ

(31)

Such an equation interestingly shows that, if the adsorption isotherm n(ε, p) (or, equiv-
alently, n(ε, µ)) depends on the deformation in a complex manner, the apparent drained
tangent bulk modulus Kt of the porous medium may differ from its bulk modulus K in va-
cuum: the coupling between adsorption and deformation can lead to apparent non-linearities
of the porous medium, even when the porous medium behaves linearly in the absence of any
fluid.

Likewise, one can define an apparent tangent Biot coefficient bt = − ∂σ/∂p|ε, which, with
the help of the constitutive equation (16), is given by:

bt(ε, p) = − ∂σ

∂p

∣∣∣∣
ε

=
∂(nV̄b)

∂ε

∣∣∣∣
p

=
∂(nV̄b)

∂ε

∣∣∣∣
µ

(32)

For a linear poroelastic material made of macropores, a relationship exists between bulk
modulus and Biot coefficient (Coussy, 2004): b = 1−K/Ks, where Ks is the bulk modulus
of the solid phase. For a microporous medium, such a relation no more holds and it is even
not possible to define a solid bulk modulus Ks unambiguously. Nevertheless, combining Eqs.
(31) and (32), one can readily derive the following relation:

Kt(ε, p) = K − ∂

∂ε

[∫ p

0

bt(ε, p)dp

]
p

(33)

which shows that the tangent drained bulk modulus Kt and the tangent Biot coefficient bt

are linked with each other.
Equivalently, one can define apparent secant poroelastic properties. For instance, one can

introduce an apparent secant drained bulk modulus Ks = [σ(ε, p) − σ(ε = 0, p)]/ε, which,
with the help of the constitutive equation (16), is given by:

Ks(ε, p) =
σ(ε, p)− σ(ε = 0, p)

ε
= K − 1

ε

∫ ε

0

∂2

∂ε2

[∫ p

0

nV̄bdp

]
p

dε (34)

As was the case for the apparent tangent properties, if the adsorption isotherm n(ε, p)
(or, equivalently, n(ε, µ)) depends on the deformation in a complex manner, the apparent
drained secant bulk modulus Ks of the porous medium may differ from its bulk modulus K
in vacuum.

One can also define an apparent secant Biot coefficient bs = −[σ(ε, p) − σ(ε, p = 0)]/p,
which, with the help of the constitutive equation (16), is given by:

bs(ε, p) = −σ(ε, p)− σ(ε, p = 0)

p
=

1

p

[
∂

∂ε

∫ p

0

nV̄bdp

]
p

(35)
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From a combination of the two equations above, one can readily derive the following
relation:

Ks(ε, p) = K − p

ε
[bs(ε, p)− bs(ε = 0, p)] (36)

which shows that the secant drained bulk modulus Ks and the secant Biot coefficient bs are
linked with each other.

1.4 Linearized poroelastic constitutive equations

Under the hypothesis of small deformations (ε� 1), we can perform a first-order expansion
of the adsorption isotherm:

n(ε, p) ≈ n0(p)(1 + C(p)ε) (37)

where n0(p) = n(ε = 0, p) is the adsorption isotherm when the medium is kept at zero defor-
mation. If the above approximation holds, the constitutive equation (16) can be rewritten
as:

σ = Kε− f(p) = Kε−
∫ p

0

C(p)n0(p)V̄b(p)dp (38)

For specific porous media, it may well be that the coupling coefficient C(p) does not de-
pend on the pressure of the fluid (i.e., C(p) = C). In such a case, the poroelastic constitutive
equation (38) further simplifies:

σ = Kε− C
∫ p

0

n0(p)V̄b(p)dp (39)

For instance, the above equation would hold for a macroporous medium made of an
incompressible solid skeleton. Indeed, for such a medium, we infer from the constitutive
equation (2) that the amount n(ε, p) of fluid in the porous medium can be expressed as:
n(ε, p) = n(ε = 0, p) + ρε = n0(p)(1 + ερ/n0(p)), where ρ is the molar density of the fluid.
Therefore, for a macroporous medium made of an incompressible solid skeleton, the first-order
expansion (37) of the adsorption isotherm is valid for any strain, with: C = 1/φ(ε = 0).

Practically, K can be determined by performing a compression test on the sample. But
the complete determination of the adsorption isotherm n(ε, p) would require to perform ad-
sorption experiments at several fixed strain levels, which is very unpractical. Often, only one
adsorption experiment is performed, in so-called unjacketed conditions: the porous medium
is immersed in the bulk fluid and the pressure p of the fluid is increased. In such an experi-
ment, the molar concentration nu(p) of fluid molecules per unit volume of porous medium is
measured; sometimes, over the same experiment, the volumetric strain εu(p) also is measured.
In unjacketed conditions, the confining stress is equal to the opposite of the fluid pressure
(σ = −p) and the constitutive equation (16) yields a relation that the volumetric strain εu(p)
must verify:

−p = Kεu(p)− ∂

∂ε

[∫ p

0

n (ε, p) V̄bdp

]
p,ε=εu

(40)

Assuming that the first order expansion of Eq. (37) is valid, a differentiation of Eq. (40)
with respect to the pressure p of the fluid yields:

C(p) =
1 +Kdεu/dp

nuV̄b − εu(1 +Kdεu/dp)
(41)

The above equation shows how the coupling coefficient C(p) needed in a first-order expan-
sion of the adsorption isotherm can be fully determined from a regular adsorption experiment
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performed in unjacketed conditions in which both the adsorption isotherm nu(p) and the vol-
umetric strain εu(p) would be measured. This equation also enables to check whether the
coupling coefficient C(p) depends or not on the bulk pressure of the fluid.

One should realize, however, that, if the first-order expansion (37) is not valid for the
porous medium and for the fluid considered (i.e., in the general case), a regular adsorption
experiment will not provide enough information in order to fully characterize the porome-
chanical behavior of the medium. Indeed, if Eq. (37) is not valid, the constitutive equation
that governs the volumetric poromechanical behavior of the medium is Eq. (16) and not
Eq. (39). This former equation can only be used if the adsorption isotherms n(ε, p) are
known, which requires making the strain of the medium and the bulk pressure of the ad-
sorbed fluid vary independently. Making those two parameters vary independently from each
other can not be done in a regular adsorption experiment in which the sample is immersed in
a fluid since, in such a case, the confining stress is equal to the opposite of the fluid pressure
(σ = −p).

2 Case study: adsorption in one-dimensional microp-
orous media

In order to illustrate the effect of adsorption on the poromechanical behavior of a microporous
medium and validate the derivations performed in the Sec. 1.1, we model one-dimensional
microporous chain-like pores in which we perform Monte Carlo simulations of adsorption of
fluid. All micropores of the first chain model studied have the same size (Sec. 2.1). We then
study a chain made of micropores with a variety of sizes (Sec. 2.2). We will refer to the first
chain as being ‘crystalline’ and to the second one as being ‘amorphous’.

2.1 Crystalline chain

We considered a one dimensional chain made of equally distributed atoms separated by an
equilibrium distance r0. Each atom was interacting with its two closest neighbors. The
energy Eij of interaction was harmonic (Eij = k (rij − r0)

2
where rij is the distance between

the atoms i and j), thus making this one-dimensional chain linear elastic. The space between
two atoms of the solid was large enough to accommodate a few adsorbed fluid molecules
(see Fig. 1). The fluid considered for the simulation was a Lennard-Jones fluid. The energy

of interaction between two fluid molecules was: Eij = 4εFF

(
(σFF /rij)

12 − (σFF /rij)
6
)

,

where εFF and σFF are the Lennard-Jones parameters of the fluid. The energy of interaction
between a fluid molecule and an atom of the chain was a Lennard-Jones potential as well, but
with different parameters εFS and σFS . We performed Monte Carlo molecular simulations of
such a system (Allen and Tildesley, 1989; Frenkel and Smit, 2001). The solid was simulated
in the Canonical ensemble (the number Ns of atoms in the solid, the volume V and the
temperature T were fixed). The fluid was simulated in the Grand canonical ensemble (the
chemical potential µ of the fluid was fixed, the volume V and the temperature T were the
same as for the solid). Since the simulations were one-dimensional, the volume V was the
length of the chain. During the simulations, we computed the confining stress with the Virial
estimate (Allen and Tildesley, 1989) and the number Nf of fluid molecules in the system.
Several values of the fluid chemical potential µ and of the volume V were considered. One
Monte Carlo simulation was performed for each pair (µ, V ).

The values of the different parameters used for this numerical experiment were chosen

such that the adsorption was significant: k = 2× 10−20 J.Å
−2

, r0 = 6 Å, εFF = 2× 10−21 J,
σFF = 1 Å, εFS = 5 × 10−21 J, σFS = 2 Å. The simulated chain was made of 50 atoms
and was 300 Å long at rest. The temperature T of the system was fixed at 100 K. We
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Figure 1: Example of molecular configuration. The fluid molecules can enter or leave the
interstitial space between solid atoms. The atoms of the solid are the large pink balls, the
fluid molecules are the small blue balls, the line represents the 1D space.

considered periodic boundary conditions and the atoms were interacting according to the
minimum image convention.

In the following sections, we will refer to the dimensionless fluid pressure p∗ = p/K and
to the dimensionless confining stress σ∗ = σ/K, where K = 2kr0 = 2.4× 10−9 N is the bulk
modulus of the chain at zero fluid pressure. Molecular simulations of the bulk fluid were
performed to find the equation of state p∗ (µ) of the fluid, which links the molar chemical
potential µ of the fluid with its dimensionless bulk pressure p∗.

Figure 2 displays the amount n(ε, p) of fluid molecules per unit length of the undeformed
chain in function of the strain ε of the chain for various dimensionless bulk fluid pressures
p∗. At large pressures, the greater the strain was, the more fluid molecules there were in the
pores. At low pressures, interestingly, the amount of fluid molecules in the pores decreased
with the strain of the medium.

At zero pressure of the fluid (µ→ −∞), there was no fluid molecule in the system and the
elastic behavior of the medium was linear: σ = σ0 (ε) = Kε. But the apparent mechanical
properties of the porous medium varied upon adsorption. For instance, we display in Fig. 3
the apparent tangent drained bulk modulus Kt defined by Eq. (31). As is expected for an
elastic medium, Kt = K in the absence of any fluid. By contrast, under adsorption Kt was
no more constant: the adsorption of fluid modified its value by up to −24% and +45% in
this example.

The fluid-induced stress σ (ε, p)− σ0 (ε) = σ (ε, p)−Kε characterizes the confining stress
that must be added to the system to keep it at a given strain ε and counteract an increase of
fluid pressure p. We display in Fig. 4 the dimensionless fluid-induced stress σ∗ (ε, p)−σ∗0 (ε) =
(σ (ε, p)− σ0 (ε))/K in function of the bulk fluid pressure for different strains: we display
both the stress computed directly from the molecular simulations by using the Virial estimate
and the stress calculated with the constitutive equation (16) and the simulated adsorption
isotherm n (ε, p) displayed in Fig. 2. The match between those two ways of estimating the
fluid-induced stress was very satisfactory, proving therefore that the derivations performed
in Sec. 1.1 enable to capture accurately the poromechanical behavior of the chain here
considered, although the adsorption isotherms strongly depend on the strain of the medium
(see Fig. 2).
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ulations with the Virial estimate (symbols) and computed with the simulated adsorption
isotherms n(ε, p) combined with the constitutive equation (13) (lines).

As can be observed in Fig. 4, the fluid-induced stress could be positive or negative
and was much greater than the bulk pressure of the fluid. This is surprising since, for a
macroporous medium, the poroelastic constitutive equation (1) shows that the fluid-induced
stress is σ (ε, p)−σ0 (ε) = −bp, where b is the Biot coefficient (0 < b ≤ 1, b = 1 corresponding
to an incompressible solid matrix). The apparent tangent and secant Biot coefficients are
displayed in Fig. 5 and in Fig. 6, respectively. To a large extent, the values obtained for
those Biot coefficients are out of the conventional range [0; 1], reaching values as high as 10
and as low as -10.

In the next section, adsorption on a one-dimensional microporous medium with a different
pore size distribution is considered.

2.2 Amorphous chain

In this section we consider a one-dimensional microporous medium with a variety of micropore
sizes chosen randomly. We will refer to this medium as to the ‘amorphous’ chain. The
molecular interactions were the same as in Sec. 2.1, except for the equilibrium length r0
which was specific to each pair of neighboring atoms of the solid. The equilibrium lengths were
generated randomly between 3 Å and 11 Å following a uniform law (see Fig. 7). The chain
was made of 139 atoms and its total length at rest was 1000 Å. We performed Monte Carlo
simulations of adsorption of fluid on this chain, by using the same potentials of interaction
as in Sec. 2.1.

For various bulk pressures of the fluid and strains of the medium, we computed the number
of adsorbed molecules and the confining stress by using the Virial estimate. We display in Fig.
8 and in Fig. 9 the adsorbed amount n (ε, p) per unit volume of the undeformed chain, and
the fluid-induced stress σ(ε, p)− σ(ε, p = 0) due to the adsorption of fluid, respectively. The
behavior of the amorphous chain differed significantly from that of the crystalline chain (see
Fig. 2 and Fig. 4). Indeed, for the amorphous chain, the adsorbed amounts of fluid depended
linearly on the strain of the medium and the fluid-induced stress did almost not depend on
the strain of the medium. Moreover, in contrast to what was observed for the crystalline
chain (see Fig. 3) the apparent tangent bulk modulus Kt remained mostly constant (Kt =
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K ± 1.8%) for strains ε ranging from −0.1 to +0.1 and for dimensionless fluid pressures
p∗ = p/K ranging from 0 to 5.7× 10−3.

We display in Fig. 9 both the fluid-induced stress computed directly from the molecular
simulation by using the Virial estimate and the fluid-induced stress calculated with the
constitutive equation (16) and the simulated adsorption isotherm n (ε, p) displayed in Fig.
8. As was the case for the crystalline chain (see Fig. 4), both ways of estimating the
fluid-induced stress compared very well with each other, which further confirms that the
constitutive equations derived in Sec. 1.1 enable to capture accurately the poromechanical
behavior of a microporous medium.

We display in Fig. 10 the apparent secant Biot coefficient bs. At low bulk fluid pressures
(p∗ < 10−3), this coefficient significantly depended on the strain. The greater the bulk
pressure of the fluid was, the less this coefficient depended on the strain, and the smaller
its average value over strains from −0.1 to +0.1 was. At the largest bulk fluid pressure
considered (p∗ = 2.97 × 10−3), the apparent secant Biot coefficient was mostly insensitive
to the strain (bs = 1.91 ± 15%). In any case, for all pressures considered, the secant Biot
coefficient remained greater than the value observed in macroporous media (b < 1).

2.3 Discussion

The poromechanical behaviors of the crystalline chain (Sec. 2.1) and of the amorphous chain
(Sec. 2.2) differed from each other and from that of a usual macroporous medium.

For the crystalline chain, the fluid-induced stress σ (ε, p)− σ0 (ε) sometimes was positive
or ‘joining’ (in the sense that adsorption made the medium shrink and should be counterbal-
anced by some additional tensile confining stress if one wanted to keep the strain constant)
and sometimes was negative or ‘disjoining’ (in the sense that it made the medium swell). In
fact, the fluid had a joining effect at low bulk pressure of the fluid, and mostly a disjoining
effect at the highest bulk pressures considered (see Fig. 4). The complex effect of adsorption
in this crystalline chain is closely related to the number of fluid molecules that micropores
can accommodate. Indeed, by deforming the medium from ε = −0.1 to ε = 0.1, the average
distance between neighboring atoms of the solid changed by 1.2 Å, which is approximately
the size of one fluid molecule. We display in Fig. 11 the fluid-induced stress σ (ε, p)− σ0 (ε)

14



R
e
d

u
c
e
d

fl
u

id
p

re
ss

u
re
p
∗

=
p
/
K

,
1
0
−

3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.1 -0.05 0 0.05 0.1

Strain ε

A
m

o
u

n
t
n

o
f

fl
u

id
m

o
le

c
u

le
s,

Å
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and the number of fluid molecules per pore versus the size of the pores (considered as the
distance between two atoms of the solid) for a fluid pressure p∗ = 5.742 × 10−3. We also
sketch the filling of a slit pore in order to understand the different situations at stake.

• For pore sizes between 5.6 and 6.1 Å, the pore could accommodate 2 fluid molecules.
The density remained almost constant and the fluid-induced stress mostly increased
with the strain in this range, and reached a maximum at a pore size of about 6 Å. The
fluid had a disjoining effect up to a pore size of 5.8 Å and a joining effect in larger
pores.

• For pore sizes between 6.1 and 6.6 Å, a third molecule may enter the pore. The density
increased with the strain and the fluid-induced stress decreased with the strain. The
fluid had a joining effect in pores smaller than 6.2 Å. For larger pores, the larger the
pore, the more disjoining the fluid.

• Finally, for pore sizes between 5.4 and 5.6 Å, the second fluid molecule could be ex-
cluded from the pore. The density was an increasing function of the pore size and the
fluid was strongly disjoining.

The mechanical effect of adsorption can be interpreted in terms of the commensurability
of the size of the micropores to the size of the fluid molecules. The size of the pores for which
the fluid-induced stress was maximal (5.4 Å) did not correspond to completely filled pores.
Indeed, Eq. (16) shows that the fluid-induced stress depends on the derivative of the adsorbed
amounts of fluid with respect to the strain (at the current and at lower chemical potentials).
Therefore, the mechanical effect of adsorption in a crystalline microporous medium can not
be simply related to the pore filling, but to the capacity of the pores to accommodate new
molecules with strain.

The results displayed in Fig. 11 are consistent with simulations of disjoining pressure in
slit pores available in the literature. Balbuena et al. (1993) computed the disjoining pressure
of a Lennard-Jones fluid adsorbing in graphite slit pores. In the range of pores sizes we have
in common, our results for a crystalline chain compare well with their results. Do et al.
(2008) reported results of simulations of slit pores as well. They observed that fluid has a
joining effect at small chemical potentials, but a disjoining one at high chemical potentials.
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Figure 11: Fluid-induced stress and fluid density as a function of the pore size (considered
as the average distance between two solid atoms) in the case of the crystalline chain.

The disjoining pressure isotherms obtained by Kowalczyk et al. (2008) (adsorption of argon
between carbon walls) and Yang et al. (2010) (adsorption of methane in coal) exhibit only
one main disjoining oscillation because of the high temperature they considered.

For the amorphous chain, we observed that the adsorbed amount increased linearly with
the strain (see Fig. 8). Such a smooth behavior can be interpreted as a sum of all the
complex responses of each specific pore size present in the amorphous chain. At a given
bulk fluid pressure, some pores contract while others expand, which eventually leads, at
the scale of the porous medium, to an overall disjoining action of the fluid, for any strain
of the medium. Interestingly, even at low fluid pressure, we observed no joining effect of
the fluid for the amorphous chain whereas, for the crystalline chain, a joining effect was
observed for all strains considered. Such a discrepancy is due to the fact that the range
of pore sizes explored in the crystalline chain (see Fig. 11) is too narrow to account for
all pore sizes of the amorphous chain, which extend from 3 Å up to 11 Å. Balbuena et al.
(1993) showed that pores that are a few-Angstrom large (i.e., which are about the size of one
fluid molecule) exhibit a very strong disjoining behavior upon adsorption, even at low fluid
pressure. Moreover, for pores that are larger than 5 fluid molecules (i.e., larger than about
9 Å in our case), the fluid-induced stress is negative.

An analysis of the data displayed in Fig. 8 shows that, for the amorphous chain, the
adsorbed amount depended almost linearly on the strain of the medium, from what follows
that the first-order expansion (37) of the adsorption isotherm should be valid for the amor-
phous chain in the range of strains here considered (−0.1 ≤ ε ≤ 0.1). In addition, based
on the same data, a calculation of (∂n/∂ε|p)/n0 (where n0 = n(ε = 0, p)) shows that the
coupling coefficient C(p) introduced in Sec. 1.4 did almost not depend on the pressure p
of the fluid (C(p) = 1.52 with a standard deviation of 12% on the whole range of pressures
considered in this study), from what we conclude that the linearized constitutive equation
(39) should hold for the amorpous chain. And, indeed, the fluid-induced stress calculated
with the linearized constitutive equation (39) and displayed in Fig. 9 compares well with
the fluid-induced stresses estimated directly from the molecular simulations with the Virial
estimate. Such a good agreement proves that the linearized poroelastic constitutive equa-
tions derived in Sec. 1.4 enable to satisfactorily describe the poromechanical behavior of the
amorpous chain.

From the results of the molecular simulations, for both the crystalline and the amorphous
chains we computed the adsorbed amount nu(p) of fluid and the swelling εu(p) which one
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would measure if he were to perform a regular adsorption experiment in which he would
immerse the microporous medium in the fluid (in such a case, σ = −p). Then, making use of
Eq. (41), we computed the coupling coefficient C (p), which we display in Fig. 12 together
with the coefficient (∂n/∂ε|p)/n(ε = 0, p). For both chains, the coupling coefficient C(p)
could equivalently be calculated with Eq. (41) or from its definition (37). As expected, the
amorphous chain exhibited a nearly constant coupling coefficient C (p). By contrast, for the
crystalline chain the coupling coefficient C (p) depended on the bulk fluid pressure, from what
follows that the linearized poroelastic constitutive equation (39) does not apply for such a
chain.

3 Application to adsorption of methane in coal

Coal is a disordered microporous medium with a variety of pore sizes whose molecular struc-
ture is amorphous (Jain et al., 2006a). In this section, we aim at verifying whether the
poromechanical behavior of coal with methane can be satisfactorily described with the con-
stitutive equations derived in Sec. 1.1. By analogy with the amorphous chain considered
in Sec. 2.2, one can even wonder whether this poromechanical behavior can not be well
described with the linearized constitutive equation (38) or (39). In order to answer those
questions, this section is devoted to molecular simulations of adsorption of methane in a
microporous carbon structure (called CS1000) representative of a realistic coal. In order to
quantify the coupling between adsorption and strain numerically, the implemented carbon
structure is compliant.

3.1 Implementation of the molecular simulations

Using the parameters described below, a first series of molecular simulations was performed
to identify the volume of the unstressed carbon sample in the absence of any fluid. Then
we applied various strains to the sample and let it relax for each strain with a Monte Carlo
canonical simulation. The final molecular configuration obtained at each strain was used
as a starting configuration for the simulations of adsorption of methane. The simulations
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of adsorption were performed in the canonical ensemble regarding the atoms of the CS1000
sample and in the grand canonical ensemble regarding the molecules of methane.

The coal microporous matrix was the CS1000 model (Jain et al., 2006b). This model
is obtained by hybrid reverse Monte Carlo reconstruction methodology from a carbonated
saccharose. CS1000 is made of atoms of carbon and hydrogen and exhibits an amorphous
structure representative of the disordered microporosity found in coal. CS1000 is denser than
real coal and does not include atoms of oxygen, whereas real coal does.

The carbon-carbon interactions within CS1000 were modeled with a modified Morse po-
tential proposed by Belytschko et al. (2002) for hybridized sp2 atoms of carbon: such a
potential should be well adapted to the study of coal, since most atoms of carbon in coal
are hybridized sp2. Moreover, this potential is expected to provide realistic results for what
concerns mechanical issues. The modified Morse potential is the sum of a conventional Morse
potential and of a bond angle bending potential. In this study we only considered the second
order term in the bond angle bending potential. The equilibrium distance in the Morse po-
tential was equal to the average equilibrium distance between atoms of carbon in the CS1000
sample:

UMorse = D
[
(1− exp (−a (r − r0)))

2 − 1
]

and Uangle =
1

2
kθ (θ − θ0) (42)

where r is the distance between two atoms of carbon, r0 = 1.423 Å is the equilibrium distance

between atoms of carbon, D = 6.03× 10−19 J and a = 2.625 Å
−1

are the parameters of the
Morse potential, θ is the angle between three adjacent atoms of carbon, θ0 = 2.094 rad is
the equilibrium angle, and kθ = 9.0 × 10−19 J is the parameter for the bond angle bending
potential.

Practically, the atoms of hydrogen within the solid skeleton have very little impact on
the mechanical behavior of coal: this behavior is indeed mostly governed by the atoms of
carbons and their interactions. Therefore, the potentials of interaction of atoms of hydrogen
with atoms of carbon within the CS1000 sample had very little effect on the overall mechan-
ical behavior of the sample. We chose those potentials in order to ensure the stability of
the molecular structure. The carbon-hydrogen interaction within the CS1000 sample was
modeled with a harmonic potential Uh = k (r − r0)

2
/2, where r0 = 1.09 Å is the equilibrium

distance between atoms of carbon and of hydrogen, and where k = 8×10−18 J.Å
−1

was such
that the second-order derivative of this harmonic potential at equilibrium was the same as
for the Morse potential for carbon-carbon interactions. We also accounted for the carbon-
carbon-hydrogen and hydrogen-carbon-hydrogen bond angle bending energies by using the
same potential as for the carbon-carbon-carbon bond angles. Finally, we also modeled short
range repulsive interactions between non-bonded atoms of hydrogen and of carbon by using
the potential Ur = 4ε(σ/r)12, where ε =

√
εC · εH and σ = (σC + σH)/2 were obtained

following the Lorentz-Berthelot rules with σC = 3.36 Å, εC = 28 · kB , σH = 2.42 Å, and
εH = 15.08 · kB .

Two atoms of carbon of the CS1000 sample were considered bonded if the initial distance
between them was less than 1.8 Å. This value is greater than the location of the first peak of
the carbon-carbon pair correlation function of the initial CS1000 sample. Likewise, an atom
of carbon and an atom of hydrogen were considered bonded if the initial distance between
them was less than 1.4 Å. During the simulation, no bond could be added or removed. From
the initial CS1000 sample obtained by reconstruction, we removed 8 atoms of hydrogen which
were bonded to no atom of carbon but to another atom of hydrogen: indeed, the reactive
potential used by Brenner (1990) in order to obtain the initial CS1000 by hybrid reverse
Monte Carlo reconstruction allowed for the creation of hydrogen-hydrogen bonds.

We checked that the CS1000 sample was stable with the potentials of interaction given
above. In order to do so, we performed canonical simulations of CS1000 in the absence of any
fluid and checked that atoms that were initially bonded would still verify the bond criteria
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Figure 13: Adsorbed amount of methane in CS1000.

at the end of a simulation; that there was no non-bonded pair of atoms that would verify the
bond criteria at the end of a simulation; and that the pair correlation functions before and
after a simulation were similar.

During the simulations of adsorption of methane on CS1000, methane-methane interac-
tions were governed by a Lennard-Jones potential with the parameters σCH4

= 3.751 Å and
εCH4

= 148 · kB , which are suitable for methane in supercritical conditions (Kurniawan et
al., 2006). The potentials of interaction between a molecule of methane and the atoms of
the CS1000 sample were Lennard-Jones potentials as well. The parameters for methane-
carbon and methane-hydrogen interactions were obtained following the Lorentz-Berthelot
rules: σCH4−i = (σCH4

+ σi) /2 and εCH4−i =
√
εCH4

· σi with σC = 3.36 Å, εC = 28 · kB ,

σH = 2.42 Å and εH = 15.08 · kB .

3.2 Results and discussion

We display in Fig. 13 the adsorbed amount of methane (per unit volume of undeformed
porous medium) in function of the strain of the CS1000 sample for various methane bulk
pressures. When the volumetric strain of the CS1000 sample was negative, the adsorbed
amount of methane depended on the strain of the medium non-monotonically, which re-
minds of the response of the crystalline chain to adsorption (see Fig. 2). In contrast, when
the volumetric strain of the CS1000 was positive, the adsorbed amount of methane increased
mostly linearly with the strain of the medium, which reminds of the response of the amor-
phous chain to adsorption (see Fig. 8). Such an observation suggests that, at least for cases
in which coal swells, the linearized poroelastic model derived in Sec. 1.4 should be applica-
ble. Indeed, a calculation of (∂n/∂ε|p)/n0 (where n0 = n(ε = 0, p) and where ∂n/∂ε|p was
averaged over all positive strains considered here) shows that the coupling coefficient C(p)
introduced in Sec. 1.4 did almost not depend on the pressure p of the fluid (C(p) = 6.30 with
a standard deviation of 15% on the whole range of pressures considered in this study), thus
proving that the linearized poroelastic constitutive equation is valid for coal, at least when
coal swells.

The applicability of the linearized poroelastic constitutive equations to adsorption of
methane in coal could also be checked directly with experimental data. In order to do so,
we used the data of Ottiger et al. (2008), who performed CH4 adsorption experiments.
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Figure 14: Coupling coefficient C (p) estimated from the adsorption experiments of Ottiger
et al. (2006, 2008)

Over their adsorption experiments, they measured the swelling of the sample and the excess
adsorbed amount (Ottiger et al., 2008), which we translated into a total adsorbed amount
thanks to an estimate of the volume of micropores in the coal sample (Ottiger et al., 2006).
In order to calculate the coupling coefficient C (p) with Eq. (41), one needs to know the
density of the sample and its bulk modulus K in the absence of any fluid. We estimated the
density of the coal sample to 1300 kg/m3, which is a characteristic value for an average coal
(Senel et al., 2001). We display in Fig. 14 the coupling coefficient C (p) calculated for bulk
moduli K ranging from 1 GPa to 4 GPa, which are plausible values for coal (Wang et al.,
2009). The back-calculated coupling coefficient was the least pressure-dependent for a bulk
modulus K = 2.65 GPa. For such a bulk modulus, we back-calculated a coupling coefficient
C(p) = 6.05 ± 7%, i.e., a coupling coefficient C(p) which practically did not depend on the
bulk fluid pressure. This calculation suggests that the linearized poroelastic constitutive
equation (39) can be applied to an adsorption of methane in coal.

We estimated the swelling that one would measure in a regular adsorption experiment
if the poromechanical behavior of coal was exactly governed by the linearized poroelastic
constitutive equation (39). The volumetric strain εu of a coal sample immersed in the fluid
(in such a case, σ = −p) can be calculated from Eq. (39):

εu = − p

K
+
C

K

∫ p

0

n0(p)V̄b(p)dp (43)

We calculated this swelling by using C = 6.05, K = 2.65 GPa, and by estimating the
adsorbed amount n0(p) at zero strain from grand canonical Monte Carlo simulations of
methane in a rigid CS1000 sample at T = 318.15 K (Vandamme et al., 2010). We display in
Fig. 15 the results of this calculation together with the swelling measured experimentally by
Ottiger et al. (2008) at T = 318.15 K . Despite a small shift, which is due to the fact that
the coupling coefficient C(p) is not really constant at low fluid bulk pressures (see Fig. 14),
both curves compare reasonably well, thus proving that the linearized constitutive equation
(39) describes well the poromechanical behavior of coal subject to an adsorption of methane.

The coupling coefficient C = 6.05 back-calculated from the adsorption experiments of
Ottiger et al. (2008) compares well with the coupling coefficient C = 6.30 back-calculated
from the molecular simulations. Such a good agreement shows the relevance of the molecular
simulations we performed. Nevertheless, the non-linear dependence of the adsorbed amount
of methane with respect to the strain, which we observed in our numerical simulations when
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Figure 15: Volumetric strain of a coal sample immersed in methane. Comparison of the
strain predicted by the linearized model with the strain measured experimentally (Ottiger et
al., 2008).

the strain of the CS1000 sample was negative (see Fig. 13), is surprising. It is unclear whether
such a dependence is a true property of the sample or an artifact of the simulations. Indeed,
it may well be that the CS1000 sample was not representative enough to capture accurately

the behavior of coal under compression: this molecular model is quite small (25×25×25 Å
3
)

and can accommodate only a few pores, which may not be sufficiently representative of the
variety of pore sizes and shapes in real coal. On the other hand, it may well be that such
a dependence is a true property of coal under compression: compression might narrow the
pore size distribution, which would make the response of coal to adsorption evolve from a
type exemplified by the amorphous chain (linear dependence of the adsorbed amount of fluid
on the strain of the medium) toward a type exemplified by the crystalline chain (complex
dependence of the adsorbed amount of fluid on the strain of the medium).

Conclusions

In this work, we derived poroelastic constitutive equations (Eqs. (16)-(18)) which are valid
for a generic porous medium. Those equations are thus also valid for a porous medium with
pores of nanometer size, in which all fluid molecules are in an adsorbed state. For such a
microporous medium, in which the fluid molecules are not in their bulk state, usual porome-
chanics breaks down. We validated those constitutive equations by performing molecular
simulations of adsorption of fluid in one-dimensional microporous media. Those simulations
also showed that microporous media can exhibit a counterintuitive behavior: their drained
bulk modulus can become strain-dependent because of adsorption, even when the medium
behaves linearly in the absence of any fluid, and their Biot coefficient can take values greater
than unity and smaller than zero.

The full determination of the poromechanical behavior of a porous medium requires the
knowledge of how the amount of fluid in the porous medium depends on both the bulk pres-
sure of the fluid and on the strain of the medium. But, often, the dependence of the isotherm
of adsorption with respect to strain is disregarded since, for a macroporous medium, the
amount of fluid in the system simply increases linearly with the strain. But, in a microp-
orous medium, we showed that the adsorbed amount can depend in a complex manner on
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the strain and that this dependence can play a tremendous role on how the medium will
respond mechanically to adsorption. At the scale of the micropore, we explained this non-
linear dependence by the commensurability of the size of the pore to the size of the fluid
molecules.

Interestingly, we showed that, when the pore size distribution of the microporous medium
is wide, the amount of fluid in the system increases linearly with the strain of the medium,
although this response at the scale of the system results from a complex combination of
closure and opening of micropores. In the case of a porous medium for which the amount of
fluid would depend linearly on the strain of the medium, we derived a linearized constitutive
equation (Eq. (38) or Eq. (39)).

Measuring isotherms of adsorption at different levels of strain of the sample would be
very difficult. Practically, an adsorption experiment often consists in immersing the porous
medium in a fluid and in measuring the amount of fluid adsorbed and, sometimes, the swelling
of the sample. In such an experiment, the confining stress is equal to the opposite of the
fluid pressure. Therefore, a regular adsorption experiment provides only partial information
on how the isotherms of adsorption depend on the strain of the medium. In the general case,
this information is not sufficient to fully characterize the poromechanical behavior of the
porous medium. But, if this poromechanical behavior can be well described by the linearized
constitutive equation we derived, then the regular adsorption experiment provides enough
information. We described how to check, from a regular adsorption experiment, whether the
linearized constitutive equation (38) or (39) can apply to the porous medium and to the fluid
considered.

As an application, we considered the case of an adsorption of methane in coal. We
showed, both by molecular simulations and from experimental data of a regular adsorption
experiment, that the response of coal to adsorption can be well described with the linearized
constitutive equation (39) we derived. Such a possibility is a consequence of the disordered
structure of coal, which is a microporous material with a large variety of pore sizes. Therefore,
our work provides the constitutive equations that are relevant to the study of the porome-
chanics of coal. Those constitutive equations are relevant for any other porous media, and
in particular for microporous media in which adsorption induces a significant mechanical
response.
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