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Weak type inequalities for conditionally symmetric
martingales

Adam Osȩkowski

Department of Mathematics, Informatics and Mechanics
University of Warsaw

Banacha 2, 02-097 Warsaw
Poland

Abstract

Let f be a conditionally symmetric martingale and let S(f) be its square function. We
prove that

||f ||p,∞ ≤ Cp||S(f)||p, 1 ≤ p ≤ 2,

where

Cp
p =

21−p/2πp−3/2Γ((p+ 1)/2)
Γ(p+ 1)

1 + 1
32 + 1

52 + 1
72 + . . .

1− 1
3p+1 + 1

5p+1 − 1
7p+1 + . . .

.

In addition, the constant Cp is shown to be the best possible even for the class of dyadic
martingales.

Keywords: Martingale, square function, weak type inequality

1. Introduction

Square function inequalities appear in many areas of mathematics, for example in
harmonic analysis, potential theory and both classical and noncommutative probability,
where they play an important role: see e.g. Burkholder (1991), Dellacherie & Meyer
(1982), Pisier & Xu (1997) and Stein (1982). It is therefore of interest to establish
sharp versions of such estimates. The primary objective of this paper is to determine the
best constants in some weak-type estimates for the martingale square function under the
assumption of conditional symmetry.

We start with introducing the background and notation. Let (Ω,F ,P) be a probability
space, filtered by (Fn)n≥0, a nondecreasing family of sub-σ-fields of F . Let f = (fn)n≥0

be an adapted martingale taking values in a separable Hilbert spaceH with scalar product
〈·, ·〉 and norm | · |. Then df = (dfn)n≥0, the difference sequence of f , is given by df0 = f0
and dfn = fn − fn−1. We define the square function of f by

S(f) =

( ∞∑
k=0

|dfk|2
)1/2

.
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We will also use the notation Sn(f) =
(∑n

k=0 |dfk|2
)1/2 for n = 0, 1, 2, . . . and write

||f ||p = supn ||fn||p, ||f ||p,∞ = supn supλ>0 λ(P(|fn| ≥ λ))1/p for the strong and weak
p-th norm of f .

A martingale f is conditionally symmetric, if for any n ≥ 1 the conditional distri-
butions of dfn and −dfn given Fn−1 coincide. For example, this is the case if f is a
dyadic martingale. To recall what it means, let (hn)n≥0 be the system of Haar functions
on [0, 1]. Then f is dyadic if for some a0, a1, a2, . . . ∈ H we have fn =

∑n
k=0 akhk for

n ≥ 0.
The problem of comparing the sizes of f and S(f) is classical and goes back to 30’s

and the works of Khintchine, Littlewood, Marcinkiewicz, Paley and Zygmund (clearly,
the concept of a martingale was not used there; the results concerned the partial sums
of Rademacher and Haar series). Consider the inequality

ap||S(f)||p ≤ ||f ||p ≤ Ap||S(f)||p, (1)

to be valid for all conditionally symmetric martingales f . As shown by Burkholder
(1966), for any 1 < p < ∞ there are finite universal ap and Ap such that the double
inequality above holds. It follows from the results of Burkholder & Gundy (1970) that
the right inequality above holds also for 0 < p ≤ 1 with some absolute Ap. What about
the optimal values of ap and Ap? Let νp be the smallest positive zero of the confluent
hypergeometric function and let µp be the largest positive zero of the parabolic cylinder
function of parameter p. Wang (1991) showed that ap = νp for p ≥ 2, Ap = νp for
0 < p ≤ 2 and Ap = µp for p ≥ 3 are the best choices, even if we restrict ourselves in (1)
to dyadic martingales. For the remaining values of parameter p, the optimal constants
are not known. When p = 1, the left inequality in (1) does not hold with any universal
a1 <∞. However, Bollobás (1980) established the weak type inequality

||S(f)||1,∞ ≤
(

exp(−1/2) +
∫ 1

0

exp(−s2/2)ds
)
||f ||1 = 1.4622 . . . ||f ||1

and Osȩkowski (2009) proved it is sharp. The purpose of this paper is to prove the
following related result.

Theorem 1.1. For any conditionally symmetric martingale f we have

||f ||p,∞ ≤ Cp||S(f)||p, 1 ≤ p ≤ 2, (2)

where

Cp
p =

21−p/2πp−3/2Γ((p+ 1)/2)
Γ(p+ 1)

1 + 1
32 + 1

52 + 1
72 + . . .

1− 1
3p+1 + 1

5p+1 − 1
7p+1 + . . .

.

The constant Cp is the best possible, even for the class of real dyadic martingales.

Unfortunately, our approach works only for 1 ≤ p ≤ 2 does not allow to obtain the
best constants in the weak type estimates for p ∈ (0, 1) ∪ (2,∞). The proof is based on
Burkholder’s technique: in the next section we introduce a special function and study
its properties, which will be exploited in Section 3, where we establish Theorem 1.1.

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2. A special function and its properties

We will use the notation H = R× (0,∞), S = R× (−1, 1) and S+ = (0,∞)× (−1, 1).
For 1 ≤ p ≤ 2, introduce a harmonic function A = Ap : H → R, given by the Poisson
integral

A(α, β) =
1
π

∫ ∞

−∞

β
∣∣ 2
π log |t|∣∣p

(α− t)2 + β2
dt.

It is easy to see that the function A satisfies

lim
(α,β)→(z,0)

A(α, β) =
(

2
π

)p

| log |z||p, z 6= 0. (3)

Consider a conformal mapping ϕ given by ϕ(z) = ieπz/2, or, in the real coordinates,

ϕ(x, y) =
(
−eπx/2 sin

(π
2
y
)
, eπx/2 cos

(π
2
y
))

, (x, y) ∈ R2.

It can be easily verified that ϕ maps S onto H. Let A = Ap be defined on the strip S by
A(x, y) = A(ϕ(x, y)). Then the function A is harmonic on S, since it is a real part of an
analytic function. By (3), we can extend A to the continuous function on the closure S
of S by A(x,±1) = |x|p. One easily checks that for (x, y) ∈ S,

A(x, y) =
1
π

∫
R

cos
(

π
2 y
) ∣∣ 2

π log |s|+ x
∣∣p

(s− sin(π
2 y))2 + cos2(π

2 y)
ds (4)

for |y| < 1. Substituting s := 1/s and s := −s above, we see that A satisfies

A(x, y) = A(−x, y) = A(x,−y) for (x, y) ∈ S. (5)

Finally, let U = Up : [0,∞)× R → R be given by U(x, y) = xp for |y| > 1 and

U(x, y) = cp

∫
R
A(ux, y) exp(−u2/2)du

otherwise; here cp =
(∫

R |u|p exp(−u2/2)du
)−1 =

(
2(p+1)/2Γ

(
p+1
2

))−1
. Clearly, U is

continuous and, by (5), we have

U(x, y) = 2cp
∫ ∞

0

A(ux, y) exp(−u2/2)du on S+. (6)

Let us study the propertes of the function U which will be needed later.

Lemma 2.1. We have U(0, 0) = C−p
p .

Proof. This is straightforward: since π2/8 =
∑∞

k=0(2k + 1)−2, we have

U(0, 0) = cp
√

2πA(0, 0) =
2−p/2

Γ
(

p+1
2

)√
π

∫ ∞

−∞

∣∣ 2
π log |s|∣∣p
s2 + 1

ds

3
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=
21+p/2

πp+1/2Γ
(

p+1
2

) ∫ ∞

0

|log s|p
s2 + 1

ds =
21+p/2

πp+1/2Γ
(

p+1
2

) ∫ ∞

−∞

|s|p es

e2s + 1
ds

=
22+p/2

πp+1/2Γ
(

p+1
2

) ∫ ∞

0

spe−s
∞∑

k=0

(−e−2s)kds =
22+p/2Γ(p+ 1)
πp+1/2Γ

(
p+1
2

) ∞∑
k=0

(−1)k

(2k + 1)p
= C−p

p .

The proof is complete.

Lemma 2.2. (i) The function U satisfies the differential equation

Ux(x, y) + xUyy(x, y) = 0 on S+. (7)

(ii) The function U is superharmonic on S+.

Proof. By Fubini’s theorem, we may take the derivatives inside the integral while com-
puting the partial derivatives of U on S+.

(i) Since A is harmonic, we have, for (x, y) ∈ S+,

xUyy(x, y) = x

∫
R
Ayy(ux, y) exp(−u2/2)du = −

∫
R
xAxx(ux, y) exp(−u2/2)du

and the claim follows from the integration by parts: the above is equal to

−
∫

R
Ax(ux, y)u exp(−u2/2)du = −Ux(x, y).

(ii) By the previous part, the assertion can be rewritten in the form

xUxx(x, y)− Ux(x, y) ≤ 0 on S+.

Since Ux(0+, y) = 0, we will be done if we show that Uxxx ≤ 0 or, by (6), Axxx ≤ 0 on
S+. To this end, fix x > 0, ε ∈ (0, x) and introduce the function

fε(h) = 2|h|p−2h− |h− ε|p−2(h− ε)− |h+ ε|p−2(h+ ε), h ∈ R.

One easily verifies that
fε is odd and fε ≥ 0 on [0,∞). (8)

We write

2Ax(x, y)−Ax(x− ε, y)−Ax(x + ε, y) =
p

π

∫ ∞

−∞

fε

(
x+ 2

π log |s|) cos(π
2 y)

(s− sin(π
2 y))2 + cos2(π

2 y)
ds,

split the integral into two, over the nonpositive and nonnegative halfline, and, finally,
substitute s = ±er. As the result, we get

2Ax(x, y)−Ax(x− ε, y)−Ax(x + ε, y) =
p

π

∫ ∞

−∞
fε

(
x+

2
π
r

)
gy(r)dr, (9)

where the function gy is given by

gy(r) =
cos(π

2 y)er

(er − sin(π
2 y))2 + cos2(π

2 y)
+

cos(π
2 y)er

(er + sin(π
2 y))2 + cos2(π

2 y)
.

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Note that gy is even and nonincreasing on [0,∞): indeed, for r > 0,

(gy)′(r) =
cos(π

2 y)er(1− er)
[(er − sin(π

2 y))2 + cos2(π
2 y)]2

+
cos(π

2 y)er(1 − er)
[(er + sin(π

2 y))2 + cos2(π
2 y)]2

≤ 0.

Thus, by (8), the integral in (9) is nonnegative and, since ε ∈ (0, x) was arbitrary, the
function Ax is concave on S+.

Lemma 2.3. (i) For any (x, y) ∈ [0,∞)× R we have

xp ≤ U(x, y) ≤ xp + U(0, 0)1{|y|<1}. (10)

(ii) We have Ux(x, y) ≥ 0 on (0,∞)× R and Uy(x, y) ≤ 0 on (0,∞)× ((0,∞) \ {1}).
Proof. We may assume that |y| < 1, since otherwise the claim is obvious, both in (i)
and (ii). The lower bound in (10) follows from Jensen’s inequality: we have

A(x, y) =
∫ ∞

−∞

∣∣∣∣ 2π log |s|+ x

∣∣∣∣p · 1
π

cos(π
2 y)

(s− sin(π
2 y))2 + cos2(π

2 y)
ds

≥
∣∣∣∣∣ 1π
∫ ∞

−∞

cos(π
2 y)

(
2
π log |s|+ x

)
(s− sin(π

2 y))2 + cos2(π
2 y)

ds

∣∣∣∣∣
p

= xp

(to see the latter equality, make the substitution s := 1/s) and it suffices to apply (6).
Now we turn to (ii). Similar argument gives that the function A(·, y) is convex and hence
the same is valid for U . Therefore, by part (ii) of Lemma 2.2 we have Uyy ≤ 0 and (ii)
follows. Indeed, Ux ≥ 0 by the first part of that lemma and Uy ≤ 0 for y > 0, since the
function U(x, ·) is even (see (5) and (6)). Thus we have shown (ii); moreover, we see that
it suffices to establish the upper bound in (10) for y = 0. Using an elementary inequality
|a+ b|p + |a− b|p ≤ 2|a|p + 2|b|p for a, b ∈ R yields

2A(x, 0) = A(x, 0) +A(−x, 0) =
1
π

∫
R

∣∣ 2
π log |s|+ x

∣∣p +
∣∣ 2
π log |s| − x

∣∣p
s2 + 1

ds

≤ 1
π

∫
R

2
∣∣ 2
π log |s|∣∣p + 2|x|p

s2 + 1
ds = 2A(0, 0) + 2|x|p.

It suffices to use (6) to get the claim.

In the lemmas below, we will use the following notation. For a ∈ H, let a′ = a/|a| if
a 6= 0 and a′ = 0 otherwise; furthermore, a∗ = a for |a| ≤ 1 and a∗ = a/|a| otherwise.

Lemma 2.4. For any a, b ∈ H we have |a∗ + b∗| ≤ |a+ b|.
Proof. If both |a|, |b| do not exceed 1, the claim is obvious. If |a| > 1 ≥ |b|,

|a+ b|2 − |a∗ + b∗|2 = |a|2 − 1 + 2〈a, b〉(1− |a|−1) ≥ |a|2 − 1− 2|a|(1− |a|−1) ≥ 0

and similarly for |b| > 1 ≥ |a|. Finally, if |a| > 1 and |b| > 1, then

|a+ b|2 − |a∗ + b∗|2 = |a|2 + |b|2 + 2〈a, b〉(1− (|a||b|)−1)− 2 ≥ |a|2 + |b|2 − 2|a||b| ≥ 0,

as desired.
5
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Lemma 2.5. For any (x, y) ∈ [0,∞)×H and any d ∈ H we have

2U(x, |y|) ≤ U
(
(x2 + |d|2)1/2, |y + d|)+ U

(
(x2 + |d|2)1/2, |y − d|). (11)

Proof. It is convenient to split the proof into three parts.
Case 1: |y| ≥ 1. Then the estimate is trivial: indeed, by Lemma 2.3,

2U(x, |y|) ≤ 2(x2 + |d|2)p/2 ≤ U((x2 + |d|2)1/2, |y + d|) + U((x2 + |d|2)1/2, |y − d|).

Case 2: |y| < 1, |y ± d| ≤ 1. For t ∈ [0, 1], let ψ(t) = U
(
xt

+, |yt
+|
)

+ U
(
xt

+, |yt
−|
)
,

where xt
+ = (x2 + t2|d|2)1/2 and yt

± = y ± td. We have that ψ′(t)/|d| equals

t|d|
xt

+

[
Ux

(
xt

+, |yt
+|
)

+ Ux

(
xt

+, |yt
−|
)]

+ 〈Uy

(
xt

+, |yt
+|
)
(yt

+)′ − Uy

(
xt

+, |yt
−|
)
(yt
−)′, d′〉

(when |y + td| = 0, the differentiation is allowed since Uy(x, 0) = 0). We will prove that
this is nonnegative, which will clearly yield the claim. It suffices to show that

|yt
+ − yt

−|
2xt

+

[
Ux

(
xt

+, |yt
+|
)

+ Ux

(
xt

+, |yt
−|
)] ≥ ∣∣Uy

(
xt

+, |yt
+|
)
(yt

+)′ − Uy

(
xt

+, |yt
−|
)
(yt
−)′
∣∣.

To this end, note that if we square both sides, the estimate becomes A ≤ B ·〈(yt
+)′, (yt

−)′〉,
where A and B depend only on |yt

+| and |yt−|. Thus it suffices to prove it for (yt
+)′ =

±(yt
−)′. When (yt

+)′ and (yt
−)′ are equal, we use (7) and see that the inequality reads

−
∣∣|yt

+| − |yt
−|
∣∣

2
[
Uyy

(
xt

+, |yt
+|
)

+ Uyy

(
xt

+, |yt
−|
)] ≥ ∣∣∣∣∣

∫ |yt
+|

|yt
−|

Uyy(xt
+, s)ds

∣∣∣∣∣ .
This follows from the fact that Uyy is nonpositive and concave: by Lemma 2.2, we have
x2Uyyyy(x, y) = Uxx(x, y) + Uyy(x, y) ≤ 0 for (x, y) ∈ S+. The case (yt

+)′ = −(yt−)′ is
dealt with in the same manner.

Case 3: |y| < 1, d > 1 − |y|. This can be reduced to the previous case. Set y+ =
(y + d)∗, y− = (y − d)∗ and ỹ = (y+ + y−)/2, d̃ = (y+ − y−)/2, x̃ = (x2 + |d|2 − d̃2)1/2.
By Lemma 2.4, |ỹ| ≤ |y| and |d̃| ≤ |d|, so x̃ ≥ x. Now, using Lemma 2.3 (ii) and the fact
that ỹ, d̃ satisfy the assumptions of Case 2, we may write

2U(x, y) ≤ 2U(x̃, ỹ) ≤ U((x̃2 + d̃2)1/2, y+) + U((x̃2 + d̃2)1/2, y−)

and the latter sum is precisely the right hand side of (11).

Remark 2.1. The choice x = 0, y = 0 in (11) gives U(0, 0) ≤ U(d, d) for all d ≥ 0.

3. Proof of Theorem 1.1

Proof of (2). We may assume that S(f) ∈ Lp, since otherwise there is nothing to
prove. By homogeneity, it suffices to show that for any n ≥ 0,

P(|fn| ≥ 1) ≤ Cp
pESp

n(f).
6
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The key ingredient of the proof of this estimate is the fact that

the process (U(Sn(f), |fn|))n≥0 is an (Fn)-submartingale. (12)

Indeed, for n ≥ 0 the variable U(Sn(f), |fn|) is integrable by the condition S(f) ∈ Lp

and (10). Moreover, by the conditional symmetry, 2E(U(Sn+1(f), |fn+1|)|Fn), n ≥ 0,
equals

E
[
U((S2

n(f) + |dfn+1|2)1/2, |fn + dfn+1|) + U((S2
n(f) + |dfn+1|2)1/2, |fn − dfn+1|)

∣∣∣∣Fn

]
.

This is not smaller than 2U(Sn(f), |fn|): apply (11) with x = Sn(f), y = fn and d =
dfn+1. Thus (12) follows and, using (10) and Remark 2.1, we get

U(0, 0) ≤ EU(S0(f), |f0|) ≤ EU(Sn(f), |fn|) ≤ ESp
n(f) + U(0, 0)P(|fn| < 1).

This completes the proof, by virtue of Lemma 2.1.

Sharpness. Suppose that γp is the optimal constant in (2) for real-valued dyadic martin-
gales. Arguing as in Osȩkowski (2009), this yields a corresponding weak type inequality

P(|Bτ | ≥ 1) ≤ γp
pEτp/2, (13)

where B is a standard Brownian motion and τ is any stopping time of B. On the
other hand, let η = inf{t : |Bt| = 1} and consider the process (U(

√
η ∧ t, Bη∧t))t≥0.

By (7) and Itô’s formula, it is a martingale with expectation equal to U(0, 0). By (10)
and exponential integrability of η, this martingale converges almost surely and in L1 to
ηp/2, which, by Lemma 2.1, yields C−p

p = Eηp/2 and, consequently, 1 = P(|Bη| ≥ 1) =
Cp

pEηp/2. By (13), this implies γp ≥ Cp and completes the proof.
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