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Dipartimento di Economia e Metodi Quantitativi, 

 Università degli Studi di Urbino  

Via Saffi, 42  61029 (PU), Italy 

nicola.loperfido@uniurb.it 

SUMMARY 

Some statistical models imply that two random vectors are marginally independent as 

well as being conditionally independent with respect to another random vector. When 

the joint distributions of the vectors is normal, Canonical Correlation Analysis may lead 

to relevant simplifications of the dependence structure. A similar application can be 

found in elliptical models, where linear independence does not imply statistical 

independence. Implications for Bayes analysis of the general linear model are discussed.  

 

Some key words: Bayes linear analysis; Canonical Correlation Analysis; Elliptical 

distributions; Sylvester law of nullity; Unrelated parameters. 

 

1. INTRODUCTION 

Data modelling and interpretation are greatly simplified when independence relations 

can be assumed or derived. In order to achieve the simplest structure from the least of 
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constraints, it is necessary to derive all implications of the assumed independence 

relations. Properties in Dawid (1979) are very useful to this purpose and can be regarded 

as axioms for a logical system. Unfortunately, no finite set of axioms can completely 

characterize conditional independence (Studeny, 1992). Other implications of 

conditional independence relations require more probabilistic structure than that 

axioms, as it happens when dealing with marginally independent 

random vectors X and Y which are also conditionally independent with respect to a 

random vector Z (Dawid, 1998). We shall write X Y and X Y|Z to denote the former and 

the latter independence relation, respectively.  

Statistical implications of X Y and X Y|Z were first investigated within the framework of 

three-way tables. Yule (1903) showed that X Y and X Y|Z imply either (Z,X) Y or 

X (Y,Z), when X, Y, Z are dichotomous random variables. The result was independently 

rediscovered by Simpson (1951) while considering situations where X Y may be a 

reasonable hypothesis while X Y|Z is irrelevant, and vice versa. Birch (1963) generalized 

the result to r s 2 tables, but considered doubtful whether there were any practical 

situation in which both X Y and X Y|Z might be expected to hold. According to Darroch 

(1962), a relevant example of such a situation was given by perfect tables, where X Y 

holds if and only if X Y|Z does. 

Marginal and conditional independence also occur in Bayesian analysis, when the 

distribution of the sample Y is indexed by the parameter =( ), with a prior 

distribution on it. Subparameters  and  are said to be unrelated (Basu, 1977) if they 

are independent in the prior distribution ( ) as well as in the posterior one ( |Y). 

Dawid (1980) introduced the strong identifiability condition and showed its usefulness in 

deriving further independence relations when a statistic A is marginally ancillary for the 
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parameter  (i.e. A ), as well as being specific ancillary for it (i.e. A | ). Basu & 

Pereira (1983) also assumed strong identifiability, when dealing with the case of a 

statistic T, ancillary for  (i.e. T ), and a statistic V, sufficient for  (leading to 

T |V).  

Statistical analysis in graphical models sometimes focuses on the conditional distribution 

of YS given YC, before and after marginalization over YM, where YS, YC and YM are the 

random vectors associated to the sets of nodes S, C and M, respectively. In particular, it 

may be of interest to know whether independence relations between YS and YC, like 

YS YC| YM, also holds after marginalization over YM, i.e. YS YC. Cox & Wermuth (1996, 

section 8.5) deal with the issue using summary graphs and collisionless paths. Wermuth 

& Cox (2004) state conditions preventing simultaneous occurrence of YS YC| YM and 

YS YC. Cox & Wermuth (1993) discuss the issues with respect to chordless four-cycles in 

the covariance and in the concentration matrix.  

In econometric theory, independence often models Granger noncausality or one of its 

variants (Granger, 1969; 1980; 1988). Both X Y and X Y|Z might hold when spurious 

and indirect causal relationships are identified by adding new variables to the 

information set or removing from it already included variables, an approach proposed by 

Hsiao (1982) and later developed by Eichler (2009). Unfortunately, independence 

properties often lead to inferential difficulties, especially within complex, nonparametric 

models (Dahlhaus & Eichler, 2003). Linear Granger causality avoids the problem by 

focusing on linear dependencies (Hosoya, 1977; Florens & Mouchart, 1985; Dahlhaus, 

2000; Eichler, 2007). As a direct consequence, focus shifts from marginal and 

conditional independence to ordinary uncorrelation and partial uncorrelation, 

respectively. 
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If Z=(Z1, Z2) and (X, Z1) (Y, Z2), then both X Y, X Y|Z hold, as a trivial application of 

axioms in Dawid (1979). On the other hand, X Y and X Y|Z do not imply that there 

exists a one-to-one function of Z into (Z1, Z2) such that (X, Z1) (Y, Z2) holds ( a simple 

counterexample can be found in Dawid, 1975). A natural question is then whether X Y, 

X Y|Z imply (X, Z1) (Y, Z2), at least in relevant statistical models.  The paper approaches 

the problem using correlations and partial correlations, in order to apply well-known 

results of linear algebra. Independence and conditional independence easily follow when 

dealing with special families of distributions, i.e. the normal ones. Other kind of 

independencies are also considered. The paper is structured as follows: § 2 contains the 

main results; § 3 shows their relations with Canonical Correlation Analysis; § 4 applies 

them to Bayes analysis of the general linear model; § 5 discusses the results. Proof of 

Proposition 1 is in the Appendix. 

2. MAIN RESULTS 

Y is irrelevant to X once Z 

other than X Y|Z (Dawid, 1998), and uncorrelation is a natural choice. We shall write 

X Y to denote two uncorrelated random vectors and X Y||Z  to denote that residuals of 

linear regression of X and Y on Z are uncorrelated (it is implicitly assumed that all 

necessary moments exist). The following proposition shows an implication of their joint 

occurrence. 

Proposition 1: Let Ya, Yb and Yc be three random vectors satisfying Ya  Yb, Ya Yb||Yc. 

Then (Ya, YA)  (Yb, YB), where (YA, YB) is a one-to-one linear function of Yc. 
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The relation (Ya, YA)  (Yb, YB) implies (Ya, HYA)  (Yb, KYB), where H and K are two 

square, full rank matrices of appropriate dimensions. In particular, if cov(Yb, Yc) is a null 

matrix, YA=Yc, YB is a constant and (Ya, Yc)  Yb. 

In the normal case, (partial) uncorrelation implies (conditional) independence. The 

following corollary relies on this very convenient property. 

Corollary 1: Let Ya, Yb and Yc be three random vectors whose joint distribution is 

multivariate normal and such that Ya Yb, Ya Yb|Yc. Then (Ya, YA)  (Yb, YB), where (YA, 

YB) is a one-to-one linear function of Yc. 

Unfortunately, Corollary 1 may not hold when the density of the data Y=(Y1 Yp)
T
 is 

elliptical, i.e. it depends on the outcome y=(y1 p)
T
 only through the quadratic form 

(y- )
T -1

(y- ), 
p
, = ij , =

ij p p
. Components of an elliptical, 

Y 

is irrelevant to X once Z X Y and X Y|Z to denote 

that, almost surely, E(X|Y)=E(X) and  E(X|Y,Z)=E(X|Z), respectively (it is implicitly 

assumed that all necessary moments exist). When ij=0 and first (second) moments 

exist, Yi  Yj ( Yi  Yj).  Similarly, if 
ij
 =0 and first (second) moments exist, Yi  Yj |Y/ij ( 

Yi  Yj|Y\ij), where Y\ij is the vector of all components of Y but Yi and Yj. Given 

constraints on matrices  and  lead to relevant simplifications of the dependence 

structure, as shown in the following corollary. 

Corollary 2: Let Ya, Yb and Yc be three random vectors whose joint distribution is 

elliptical and such that Ya  Yb, Ya Yb|Yc . Then (Ya, YA)  (Yb, YB), where (YA, YB) is a 

one-to-one linear function of Yc. 
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The proof easily follows from the expectation E(X|Y) being linear in Y, when the joint 

distribution of X and Y is elliptical and E(X) exists finite. 

3. CANONICAL CORRELATION ANALYSIS 

Linear transformations leading to YA and YB can be obtained through basic results in 

Canonical Correlation Analysis. However, unlike Canonical Correlation Analysis, here 

interest focuses on linear functions minimizing, rather than maximizing, squared 

correlations. Moreover, standard Canonical Correlation Analysis does not impose any 

structure on the covariance matrix, whereas here some structure is required in order to 

satisfy assumptions of Proposition 1. The procedure for obtaining YA and YB can be 

outlined as follows. Let 

.2121

q

c

bp

c

ak

B

bh

A

a

Y
Y

X
Y
Y

X
Y
Y

U
Y
Y

U  

Without loss of generality we can assume that p  q and that Ya, Yb, Yc are linearly 

independent. Consider now the following matrices 

,var 2/1

2212

2/1

11

2221

1211

2

1 TB
O
D

AR
X
X

 

where the columns a1 p (b1 bp) of A (B) are the eigenvectors of RRT
 (RTR). The 

matrix D=diag( 1 q) is a diagonal matrix with 1 q . 

Proposition 1 and basic results in Canonical Correlation Analysis imply existence of 

two random vectors Z=(Z1 Zh)
T
 and W=(W1 Wh)

T
, where 

,,...,;,..., 12

2/1

2211

2/1

11 qj
T
jjpi

T
ii bbXWaaXZ  

satisfying 
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.,...,1,...,10,cov1 kjhiWZWVZV jiji  

The constraint cov(Z,W)=Ohk implies that Z (W) is linear one-to-one transformation of 

U1 (U2), i.e. Z=A1U1 (W=A2U2), so that U1 = A1
-1Z (U2 = A2

-1W).  

As a numerical example, let Y1, Y2, Y3, Y4 be four standardized random variables whose 

variance and concentration matrix are  

,

679.15944.15009.2595.0

944.15538.17679.2447.0

009.2679.2563.10

595.0447.00042.1

and

196.036.016.0

96.0148.012.0

36.048.010

16.012.001

 

respectively. It follows that Y1 Y2 and Y1 Y2||(Y3, Y4), but no other independence 

relation is apparent from the above matrices. Proposition 1 shows that the above 

covariance structure can be simplified by choosing an appropriate linear transformation 

of (Y3, Y4), while the method described in this section leads to (Y1, 3Y3+4 Y4)  (Y2, 

4Y3+3Y4). 

4. BAYESIAN LINEAR MODEL 

Bayesian analysis of the normal linear model provides a statistical application of results 

in § 2. Let  

,,;,, 2

2

12

221121 VmNIXXNY n  

where Y n
 is a vector of observations, X1

n h
 and X2

n k
 are matrices of 

known coefficients, 1
h
 and 2

k
 are the parameters . The 

matrix V, the vector m and the scalar  are assumed to be known (the latter assumption 

will be relaxed later in this section). Also, let the parameters 1 and 2 be unrelated 
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(Basu, 1977), i.e. 1 2 and 1 2|Y. As a direct consequence of Corollary 1, there 

exists a one-to-one linear function (A1Y, A2Y) of Y satisfying ( 1, A1Y) ( 2, A2Y). 

Axioms in Dawid (1979) lead to Y 2|( 1, A2Y),  A1Y 2 and Y 1|( 2, A1Y) and  A2Y 

1. Equivalently, we can say that A1Y  and A2Y are partially sufficient for 1 and 2, 

respectively (Basu, 1977). 

In the general case, the parameter  is assumed to be the realization of a random 

variable, so that: 

.;,;,,, 2

2

12

221121 FVmNIXXNY n  

After marginalization over , the joint distribution of 1, 2, Y is elliptical (as all scale 

mixtures of centered normal distributions are) and 1 and 2, are dependent, as well as 

being dependent conditionally on Y. If appropriate moments exist, however, 1  2 and 

1 2|Y. Hence Corollary 2 implies that there exists a one-to-one linear function (A1Y, 

A2Y) of Y satisfying ( 1, A1Y)  ( 2, A2Y). The statistics A1Y and A2Y are no longer 

partially sufficient. However, there is no way that a linear estimate of 1 ( 2), based on 

statistics A1Y (A2Y) can be improved by using the full data Y, under mean squared loss. 

This property is useful in Bayes linear analysis, where observational data are combined 

with prior judgements using expectation rather than probability as the primitive 

expression for the judgements themselves. Moreover, there is also a close similarity 

between the same property and 
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a weakening of the general notion of probabilistic sufficiency when only second-order 

prior specifications are made.  

5. DISCUSSION 

Implications of marginal and conditional independence simplify the dependence 

structure of linear systems with independent components, which include the 

multivariate normal distribution as a special case. When components are dependent but 

conditional expectations are linear in the conditioning variables, other simplifications of 

the dependence structure can be achieved. 

Results in the paper rely on Sylvester law of nullity and singular value decomposition, 

providing another example of tools from linear algebra applied to the statistical analysis 

of independence. The prominent role of linear algebra in conditional independence 

theory is well established, to the point that it is not uncommon to devote first sections in 

papers on graphical models to review of known results in matrix form (Cox & 

Wermuth, 1993; Wermuth & Cox, 2004). Moreover, linear algebra can benefit from 

results obtained within  a statistical framework, as remarked by Rao (2006). As an 

example, let the vector spaces V1, V2, V3 and write V1  V2, V1  V2|| V3. to denote that 

that vector spaces V1 and V2 are orthogonal to each other and that projections of V1 and 

V2 onto the vector space V3 are orthogonal to each other, too. Minor modifications to 

Proposition 1 and its proof can be made in order to derive implications of the 

orthogonality relations V1  V2, V1  V2|| V3. 
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APPENDIX: PROOF OF PROPOSITION 1 

We shall denote with na, nb and nc the dimensions of Ya, Yb and Yc, respectively. Let Y be 

the vector obtained by stacking Ya, Yb and Yc on top of each other. Without loss of 

generality we can assume that the covariance  of Y is positive definite, so that its 

inverse 
-1

 exists. Moreover, let  

.)(,cov)cov(
cccbca

bcbbba

acabaa

c

b

a

cccbca

bcbbba

acabaa

c

b

a

Y
Y
Y

conYcon
Y
Y
Y

Y  

By definition 
-1

 is an identity matrix, so that  

ab
cb

ac
bb

ab
ab

aa O  

where Oab is a na nb matrix of zeros. Assumptions Ya  Yb and Ya Yb||Yc imply that ab 

and 
ab

 are null matrices, so that ac
cb=Oab. By Sylvester law of nullity, there exists a 

non-singular nc nc matrix M such that the last k columns of acM and the first nc-k rows 

of  M-1 cb
 are null vectors, where k is an integer such that 0 k nc. Equivalently, there 

exists a linear transformation MYc=(Y T,Y T)T
 such that  

.,cov

ba

ba

bbbbba

aaabaa

b

a

ba

ba

bbbbba

aaabaa

b

a

O
OO

O

Y
Y
Y
Y

con

O

O
OO

Y
Y
Y
Y

 

Consider now the linear transformation 
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.
1

y
y

IO
I

Y
Y

B

A
 

The covariance and concentration matrices of Ya, Yb, YA and YB are 

 

.,cov

BBBABbBa

ABAAAbAa

bBbAbbba

aBaAabaa

B

A

b

a

BBBABbBa

ABAAAbAa

bBbAbbba

aBaAabaa

B

A

b

a

O
OO

O

Y
Y
Y
Y

con

OO
O

O
OO

Y
Y
Y
Y

 

Since the two matrices are inverses, the following equality holds: 

ab
Bb

AB
Ab

AA
bb

Ab
ab

Aa OOOO  

By assumption  is a positive definite matrix, so that 
bb

 is a positive definite matrix 

and Ab is a null matrix. By rearranging elements in the above vectors and matrices we 

obtain 

BBBbBABa

bBbbbAba

ABAbAAAa

aBabaAaa

B

b

A

a

OO
OO

OO
OO

Y
Y
Y
Y

cov  

Hence (Ya, YA)  (Yb, YB).                                                                                                   
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