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Abstract

In recent years, models for (possibly multivariate) skewed distributions have become more and
more popular. In the univariate case, Ferreira and Steel (2006) [Ferreira, J.T.A.S., Steel, M.F.J.,
2006. A constructive representation of univariate skewed distributions. J. Amer. Statist. Assoc. 101,
823-829] introduced general skewing mechanisms in order to compare existing skewing methods in a
common framework and to ease construction of new such methods according to the needs in given
situations. In this paper, we make use of the classical transformation approach to define alternative
skewing mechanisms for the same purpose. While keeping all nice features of Ferreira and Steel’s
skewing mechanisms (flexibility, surjectivity, possibility of retaining prespecified characteristics of the
original symmetric distribution, etc.), our skewing mechanisms, unlike theirs, can easily be extended
to the multivariate case. We describe our skewing schemes, investigate their main properties, and
illustrate their effects on standard (multi)normal distributions by means of a few examples. Finally,
we briefly discuss their relevance in the context of optimal symmetry testing.

Key words: Probability transform, Skewing mechanism, Skew-normal distribution, Sinh-arcsinh
transform, Tail behavior, Transformation approach
2000 MSC: 60E05, 62H05, 62E10

1. Introduction.

The reasons for the growing interest in models for asymmetric distributions are mainly twofold.
First, they of course potentially provide a much better fit for data presenting some strong departure
from symmetry. Second, they provide specific alternatives in the construction of tests for symmetry.
Most models of asymmetric distributions proposed in the literature allow for a continuous variation
from symmetry to asymmetry, obtained by transforming an arbitrary symmetric distribution by
means of a skewing mechanism. The resulting skewed distributions often share some of the properties
of their symmetric antecedent, depending on the nature of the mechanism. We now briefly discuss
some well-known models of asymmetric distributions.

Introduced in Azzalini (1985), the skew-normal distributions met a huge success in the subsequent
years, thanks to their mathematical tractability and to the fact that they retain some of the properties
of the normal distribution. The basic skew-normal density is given by

x 7→ fSN(x; δ) = 2φ(x)Φ(δx), x ∈ R, (1.1)

where φ and Φ respectively stand for the probability density function (pdf) and the cumulative
distribution function (cdf) of the standard normal distribution, and the parameter δ ∈ R cap-
tures asymmetry. Positive (resp., negative) values of δ yield right- (resp., left-)skewed distributions,
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while δ = 0 corresponds to the symmetric case. The pioneering work of Azzalini (1985) led to numer-
ous extensions of the skew-normal model. To cite a few, Azzalini and Dalla Valle (1996) defined the
multivariate skew-normal densities, Genton and Loperfido (2005) the generalized skew-elliptical dis-
tributions, and Wang et al. (2004) the multivariate skew-symmetric ones. The latter are associated
with densities of the form

x 7→ fSS(x; δ) = 2f(x)Π(δ′x), x ∈ Rk,

where f is the k-variate symmetric pdf to be skewed, Π : R → [0, 1] is a function satisfying Π(−x) =
1 − Π(x) for all x, and δ ∈ Rk stands for the asymmetry parameter. Skew-symmetric densities are
the most general multivariate extensions of the univariate density in (1.1). For more details, see the
review paper Azzalini (2005).

Univariate symmetric distributions can alternatively be skewed by introducing different scale fac-
tors on both sides of the symmetry center. Starting from a symmetric pdf f (throughout, symmetric
pdf/cdfs refer to pdfs/cdfs of random variables—or random vectors—whose distribution does not
change under reflection about the origin), the resulting densities typically are of the form

x 7→ fDSF(x; δ) =
{

a1(δ)f(a2(δ)x) if x ≤ 0
b1(δ)f(b2(δ)x) if x > 0,

where a2(.) and b2(.) are heterogeneous scaling functions, a1(.) and b1(.) are normalizing functions,
and δ ∈ R again plays the role of a skewness parameter. This appealing and easily interpretable
skewing scheme has been used by several authors, such as, e.g., Fechner (1897), Fernàndez and
Steel (1998), or Mudholkar and Hutson (2000), which defined the so-called epsilon-skew-normal dis-
tributions. Of particular interest is the inverse scale factors model from Fernàndez and Steel (1998),
where a2(δ) = δ = (b2(δ))−1. Ferreira and Steel (2007) proposed a multivariate extension of this
model, by introducing different scale factors in each marginal of a k-variate random vector. For more
information on the link between different scaling functions, we refer the reader to Jones (2006).

There exist other ways of skewing symmetric distributions, for example by using order statistics
(Jones, 2004), by applying Tukey’s g-and-h transformations (Hoaglin 1986, or Field and Genton 2006
for the multivariate case) or through the sinh-arcsinh transformation (Jones and Pewsey, 2009). Each
of the pre-cited skewing methods has advantages and disadvantages, but they all share a common
drawback: most properties of the resulting skewed distributions strongly depend on the choice of
the method, hence follow a pre-defined pattern and cannot be adapted according to the needs in
certain situations. Thus, despite their flexibility compared to their symmetric counterparts, those
asymmetric models still remain restrictive. Moreover, some models suffer from serious inferential
problems. In the vicinity of symmetry, Fisher information matrices happen to be singular in some
parametric subclasses of the skew-symmetric models, implying that the optimal tests for symmetry
against those alternatives coincide with the trivial test, that is, the test rejecting the null of symmetry
at level α whenever an auxiliary Bernoulli variable with parameter α takes value one; see Ley and
Paindaveine (2010a) for more details.

A solution to the problems mentioned above has been proposed in the univariate setup by Ferreira
and Steel (2006), who presented a unified perspective on skewing distributions. Their key idea
consists in separating the skewing mechanism from the original symmetric distribution to be skewed.
More concretely, Ferreira and Steel (2006)—hereafter referred to as FS06—based their mechanisms
on a probability transform turning any symmetric cdf F into a cdf of the form

x 7→ FFS
L (x) = L(F (x)), (1.2)

where L is a cdf over [0, 1]. FS06 showed that FFS
L is symmetric iff L is antisymmetric with respect

to 1/2 (in the sense that L(1− x) = 1−L(x) for all x). If the emphasis is on skewing, it is therefore
natural to define a skewing mechanism LS = {L} as a collection of cdfs L over [0, 1] such that the only
cdf in LS being antisymmetric with respect to 1/2 is the identity function I—which of course leaves
the symmetric cdf F untouched. It is straightforward to show that, starting from a given cdf F , any
(asymmetric) distribution can be obtained using the probability transform in (1.2), provided that its
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support coincides with (or is included in) the support of F . This surjectivity property thus allows
to compare different skewing mechanisms in a common framework, as done in FS06 for some of the
models presented above. The decomposition into two distinct components—the skewing mechanism
and the original symmetric distribution F—allows to improve on existing skewing methods: on one
hand, the freedom of choosing the skewing mechanism independently of F eases the construction
of new skewed distributions with pre-defined characteristics, replacing the arbitrariness encountered
in the usual skewing methods with a large amount of flexibility. On the other hand, it brings
inferential advantages, since very general optimal tests for symmetry can be achieved; see Ley and
Paindaveine (2009).

However, nice and appealing as they are, the FS06 skewing mechanisms present a major disad-
vantage: they do not allow for a satisfactory multivariate extension (see Section 2). The present
paper therefore proposes an alternative univariate probability transform by resorting to the well-
known transformation approach. Parallel to the FS06 proposal, our transform separates the skewing
mechanism from the symmetric distribution to be skewed, but it can be extended to the multivariate
case in a highly satisfactory way. In particular, our proposal ensures surjectivity in any dimension,
so that all the (ad hoc) multivariate asymmetric models described above are compatible with our
general construction, hence can be compared in a common framework. In other words, we com-
bine the mathematical ease of the classical transformation approach with the FS06 idea of a unified
perspective on skewing mechanisms.

The paper is organized as follows. In Section 2, we present this alternative univariate probabil-
ity transform as well as its multivariate extension, establish the corresponding (multidimensional)
surjectivity property, and introduce the resulting skewing mechanisms. The main properties of our
skewing scheme are stated in Section 3, while Section 4 contains examples of such skewing mech-
anisms. Some final remarks are given in Section 5. Finally, the Appendix collects the technical
proofs.

2. The proposed skewing mechanisms.

2.1. An alternative probability transform.

Denoting by ℓ the pdf associated with the cdf L, the pdf of the distribution in (1.2) is

x 7→ fFS
L (x) = ℓ(F (x)) f(x),

hence can be regarded as a weighted version of the pdf f = F ′, with a weight function given by
x 7→ ℓ(F (x)). Note that this way of skewing distributions is obtained by weighting the quantile
space.

In this paper, we make use of the transformation approach to rather propose skewing mechanisms
based on a probability transform that acts on the sample space. More precisely, we define

x 7→ fH(x) = f(H(x))H ′(x), (2.1)

where H : R → R is a monotone increasing diffeomorphism of R (throughout, the terminology
diffeomorphism of S ⊂ Rk refers to a one-to-one mapping H : S → S such that both H and its
inverse H−1 are continuously differentiable). If the random variable X has cdf F , then fH is the pdf
of H−1(X) (which explains the connection with the transformation approach), and the corresponding
cdf is given by x 7→ FH(x) := F (H(x)). Clearly, FH is symmetric iff H is an odd function, which
allows to define general univariate skewing mechanisms along the same lines as in FS06.

These skewing mechanisms enjoy the same nice properties as their FS06 competitors defined
in (1.2): any skewed distribution can be written as a skewed version FH of F for an appropriate
function H (this surjectivity property here remains valid for skewed versions with larger supports
than F , which yet constitutes an improvement on the FS06 proposal), the skewing mechanisms may
be defined independently of F , etc. However, the link with the transformation approach makes it
easy to extend the probability transform in (2.1) to the multivariate setup: the relevant probability
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transform then maps the pdf f of the k-variate random vector X onto the pdf of H−1(X) (where H
is a diffeomorphism of Rk), that is, onto

x 7→ fH(x) = f(H(x)) |DH(x)|, (2.2)

where |DH(x)| stands for the absolute value of the determinant of the jacobian matrix DH(x) of H
at x. This nicely allows for a stochastic representation of the resulting skewed distribution.

In the sequel, we restrict to diffeomorphisms H : x = (x1, . . . , xk)′ 7→ (H1(x), . . . , Hk(x))′ of Rk

such that, for all j = 1, . . . , k, (i) Hj(x) does not depend on xj+1, . . . , xk and (ii) h
x1,...,xj−1
j (xj) :=

Hj(x) is, for any fixed x1, . . . , xj−1, strictly monotone increasing (hence, invertible) with respect
to xj . Throughout, we denote by H the collection of such diffeomorphisms. Clearly, (H, ◦) is a
group. Adopting the notation D= for equality in distribution, the following result, which is proved in
the Appendix, explains why one may restrict to H and shows that, as in the univariate case, any
distribution can be obtained from any other distribution by the probability transform (2.2), hence
that surjectivity extends to the multivariate setup.

Theorem 2.1 For any couple (X, Y ) of absolutely continuous k-variate random vectors, there exists
a unique H ∈ H such that H(X) D= Y .

It appears difficult (if at all possible) to define a multivariate extension of the FS06 transform that
would satisfy the surjectivity property in Theorem 2.1. For instance, defining fFS

L as the k-variate
pdf associated with the cdf x 7→ FFS

L (x) := L(F (x)), where L still stands for a cdf over [0, 1], clearly
would not achieve this surjectivity as such a skewing scheme does not allow for skewing marginals
individually: if X = (X1, . . . , Xk)′ has symmetric cdf F , no L can make the resulting distribution
skewed in the first marginal only (more precisely, denoting by Y a k-variate random vector with
pdf fFS

L , it is not possible to have −Yj
D= Yj iff j = 2, . . . , k). A much more flexible extension of the

FS06 transform, proposed by an anonymous referee, maps the symmetric k-variate cdf

x 7→ F (x) = C(F1(x1), . . . , Fk(xk))

(written in terms of the corresponding copula C and marginal cdfs Fj , j = 1, . . . , k) onto

x 7→ FFS
L1,...,Lk

(x) := C(L1(F1(x1)), . . . , Lk(Fk(xk))),

where each Lj is a cdf over [0, 1]. This skewing scheme applies the univariate FS06 skewing method in
each marginal independently (which allows to generate arbitrary marginal distributions), but leaves
the copula function untouched. This implies that the surjectivity in Theorem 2.1 cannot hold, and
that some classical multivariate skewing schemes cannot be written under this form. For instance,
this rules out the Azzalini and Dalla Valle (1996) multivariate skew-normal scheme, which typically
turns the standard multinormal distribution into a distribution with dependent marginals. In the
multivariate case, the class of skewing mechanisms we propose in this paper is therefore much richer
than (the natural multivariate extensions of) the FS06 one.

One might argue that the class H of diffeomorphisms above introduces an unpleasant ordering
of the components x1, . . . , xk. This, however, only fixes an ordering in (the arguments of) the
transformations themselves: the surjectivity in Theorem 2.1 ensures that, despite this ordering, any
random vector X can be turned into any random vector Y . Moreover, in the bivariate case (similar
reasonings are likely to hold in higher dimensions), the ordering can be circumvented by applying
our transformation to the polar coordinates instead of the usual cartesian ones.

As a closing remark for this subsection, we point out that if X is a k-variate random vector (k > 1)
with cdf F and pdf f , then the cdf of H−1(X), H ∈ H, unlike in the univariate case, in general is
not x 7→ F (H(x)). This can be seen by noticing that, by definition of H, the jacobian matrix DH(x)
is triangular, hence the pdf in (2.2) reduces to x 7→ fH(x) = f(H(x))

∏k
j=1 ∂xj (Hj(x)) and thus

differs, for k > 1, from the pdf x 7→ ∂k
x1,x2,...,xk

F (H(x)) corresponding to the cdf x 7→ F (H(x)).
Therefore, in the sequel, we simply define FH as the cdf associated with the pdf fH in (2.2).

4
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2.2. The resulting class of (multivariate) skewing mechanisms.

In order to define the general multivariate skewing mechanisms based on the probability transform
in (2.2), we need the following result.

Theorem 2.2 Let f be the pdf of a symmetric absolutely continuous k-variate random vector X

and fix H ∈ H. Then (i) Y ∼ fH iff Y
D= H−1(X); (ii) fH = f iff H = I; (iii) if Y ∼ fH, then

−Y ∼ fH̄, where H̄(x) := −H(−x); (iv) fH is symmetric iff H is an odd function.

The diffeomorphism H̄ will be called the dual of H . In the univariate case, if fH is skewed to
the right (resp., to the left), then fH̄ is skewed to the left (resp., to the right) with the same type
and amount of skewness. Similar comments can be made in the multivariate case. Clearly, ¯̄H = H
for all H ∈ H, and the only mappings fixed by this duality operator are the odd ones. In view of
Theorem 2.2, it is natural to adopt

Definition 2.1 A skewing mechanism (SM) is a subset HS of H satisfying the following conditions:
(i) I ∈ HS and (ii) the set HS \ {I} is nonempty but contains no odd mapping. An SM is said to be
symmetric iff H̄ ∈ HS for all H ∈ HS.

Clearly, for any symmetric k -variate pdf f , the pdf fH , H ∈ HS , will then be skewed, unless, of
course, H = I—in which case fH = f . The skewing mechanism HS therefore can be regarded as a
tool for skewing any fixed symmetric density f .

An important special case (especially so when the focus lies on statistical inference; see Ley
and Paindaveine, 2009, 2010b) occurs when HS is indexed by some finite dimensional parameter—a
d-dimensional parameter δ, say.

Definition 2.2 A parametric skewing mechanism (PSM) is a skewing mechanism of the form HS =
{Hδ : δ ∈ D ⊂ Rd} for which H0 = I. Moreover, this PSM is said to be a canonical PSM (CPSM)
iff H̄δ = H−δ for all δ ∈ D such that H̄δ ∈ HS.

For any PSM, it is therefore assumed that D contains the origin of Rd, which is the only (see
Definition 2.1) value of the skewness parameter δ that does not skew the underlying symmetric
distribution. Since the skewing effect is regulated by that finite-dimensional parameter, PSMs are
more homogeneous than SMs, where the type of asymmetry can be determined by totally unrelated
functions H ∈ H. Theorem 2.2(ii) and (iv) for a PSM then translate into fHδ

= f iff δ = 0 iff fHδ

is symmetric. This means that a skewness parameter equal to 0 corresponds to letting the pdf f
symmetric (equivalently, untouched), an idea that appears to be quite natural. In the same spirit,
we favor CPSMs over PSMs, since the former ensure that Y ∼ fHδ

iff −Y ∼ fH−δ
; in other words,

if δ is the value associated with some skewness to the right (resp., left) for a univariate CPSM, then
the corresponding skewness to the left (resp., right) is obtained for the value −δ of the parameter.
Again, a similar interpretation holds in the multivariate case.

3. Characteristics of the proposed skewing mechanisms.

Part of the flexibility of the proposed SMs is that one can define an SM in such a way the
resulting skewed distributions exhibit some specific properties or retain some prespecified features
of the original symmetric distribution. In this section, we provide some structural characteristics
inherent to the probability transform in (2.2), hence also to the related SMs. These characteristics
determine whether a certain SM is more or less appropriate in certain situations, and allow for a
comparison between different SMs. Since FS06 analyzed the univariate skew-normal distribution
and the inverse scale factor model on basis of their framework, we rather use the multivariate sinh-
arcsinh transform (see Jones and Pewsey 2009) to illustrate the subsequent properties of our general
SMs. It is straightforward to check that this transform is associated with our SM HSA := {HSA

δ :
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δ = (δ1, . . . , δk)′ ∈ Rk} ⊂ H, where HSA
δ (x1, . . . , xk) = (Hδ1(x1), . . . , Hδk

(xk))′, with Hδj (xj) =
sinh(arcsinh(xj) + δj) for j = 1, . . . , k.

While FS06 turned their attention to the mode as location measure for univariate distributions,
we rather focus on the median. From an inferential point of view, fixing the median of the orig-
inal symmetric distribution happens to be more important than the (possibly not unique) mode.
Moreover, considering both the median and the mode as functionals over the space of densities, the
median, unlike the mode, is continuous with respect to the L∞-norm, which is highly desirable when
aiming at optimal inference about location. Therefore, we present in Theorem 3.1 a necessary and
sufficient condition for a (multivariate) H ∈ H to fix the (componentwise) median of the original
symmetric distribution.

Theorem 3.1 Fix H ∈ H. Then, the componentwise median of fH coincides, for every symmetric
pdf f , with the componentwise median of f iff for all j ∈ {1, . . . , k}, we have that h

x1,...,xj−1
j (0) = 0

for all x1, . . . , xj−1 (for j = 1, this simply rewrites H(0) = h1(0) = 0).

As an immediate consequence, it follows that H(0k) = 0k (where 0k stands for the origin of Rk)
is a necessary but not sufficient condition for H ∈ H to fix the componentwise median—unless k = 1,
that is, unless we are in the univariate setup. It should be noted that the condition h

x1,...,xj−1
j (0) = 0

for any x1, . . . , xj−1 is actually an “iff” condition for fixing the median in the jth marginal (see the
proof of Theorem 3.1). Since the mapping x 7→ sinh(arcsinh(x) + δ) for δ 6= 0 does not fix 0, the
skewing mechanism HSA does not fix the componentwise median (actually, not even the median of
any marginal), which may be a serious drawback in some inferential problems; see, e.g., Ley and
Paindaveine (2009, 2010b).

Let us now examine the tail behavior of fH . To do so, we extend the FS06 definition of the
largest right/left moment of a univariate distribution to the largest u-directional moment of a k-
variate distribution, where u belongs to Sk−1, the unit sphere in Rk.

Definition 3.1 Letting H+
u := {x ∈ Rk : u′x > 0} for any u ∈ Sk−1, we define the largest u-

directional moment of the k-variate pdf g as

Mu,g := sup
{

r ∈ R+ :
∫

H+
u

|u′x|r g(x) dx < ∞
}

(3.1)

and the largest moment of g as Mg := supu∈Sk−1 Mu,g.

If g is a symmetric pdf, then Mu,g = M−u,g for any u ∈ Sk−1, which, in the univariate case, simply
means that the largest right moment M1,g coincides with the largest left one M−1,g. Theorem 3.2
below links the largest u-directional moments of fH with those of the original symmetric density f
(see the Appendix for a proof).

Theorem 3.2 Let f be a symmetric k-variate pdf and let H ∈ H. Fix q > 0 and u ∈ Sk−1. Denote
by BM := {x ∈ Rk : ‖x‖ ≤ M} the centered (closed) Euclidean ball with radius M . Then
(i) if there exist M, c > 0 such that |u′H−1(x)|/|u′x|q ≤ c for all x ∈ H+

u \BM , then Mu,fH ≥ Mu,f/q;
(ii) if there exist M, c1, c2 > 0 such that c1 ≤ |u′H−1(x)|/|u′x|q ≤ c2 for all x ∈ H+

u \ BM , then
Mu,fH = Mu,f/q.
Moreover, for k = 1, we have that
(iii) limx→±∞ |x|/|H(x)|q is finite iff M±1,fH ≥ M±1,f/q, and
(iv) if limx→±∞ |x|/|H(x)|q is finite and non-zero, then M±1,fH = M±1,f/q.

The complex nature of multidimensional largest u-directional moments explains that the first
two points of Theorem 3.2 are not equivalences for k > 1: since the integral in (3.1) is taken
over the halfspace H+

u , there may be many diverse reasons, difficult to identify, why it does not
converge. Such issues, however, do not appear in the univariate case (k = 1), where, as shown in
Theorem 3.2(iii)-(iv), the sufficient conditions involve simple limits only.

6
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This allows for investigating straightforwardly the tail behavior of distributions skewed by means
of the skewing mechanism HSA. First note that (HSA

δ )−1(x) = (H−1
δ1

(x1), . . . , H−1
δk

(xk))′, where
H−1

δj
(xj) := sinh(arcsinh(xj) − δj) satisfies limxj→±∞H−1

δj
(xj)/xj = exp(∓δj) for any δj. Hence

Theorem 3.2(ii) yields that M±ej ,fH = M±ej ,f for any j ∈ {1, . . . , k}, where ej stands for the jth
vector of the canonical basis of Rk. In other words, the sinh-arcsinh transform leaves untouched the
largest moments in each semi-axial direction, hence, of course, also in any direction u ∈ Sk−1.

Theorem 3.2, on one hand, is a useful tool for the evaluation of the moment characteristics of
previously defined classes of skewed distributions, and on the other hand it provides the conditions
the probability transforms H of an SMHS = {H} have to fulfill if one aims at defining novel moment-
preserving classes of skewed distributions. The latter requirement corresponds to the special case
q = 1 in Theorem 3.2(ii), and was met above for the skewing mechanism HSA. Since the tail
behavior can be well controlled by the (multivariate) probability transforms we propose, it seems
quite obvious that, by adding an additional vectorial parameter ν, one could define general skewing-
tailing mechanisms on the basis of the framework presented here. This idea is strengthened by
the fact that quantiles—on which natural tail weight measures can be based—interact well with
transformations (see Gilchrist, 2000). However, this is beyond the scope of the present paper, and
we do not pursue that idea here.

Besides these distributional aspects, FS06 also puts much emphasis on the fact that the skewing
mechanisms introduced there can be defined independently of the pdf f to be skewed. As already
mentioned, this requirement also applies in the context of our SMs.

Definition 3.2 An SM HS is said to be independent of the pdf f to be skewed if none of its members
is defined in terms of f .

Clearly, the skewing mechanism HSA is independent of the symmetric distributions to be skewed,
which clearly constitutes an advantage of the skewing method described by Jones and Pewsey (2009).
Now fix, in the univariate case, an FS06 skewing mechanism LS = {L}, and consider, for any arbi-
trary symmetric density f , the collection of resulting skewed pdfs {fFS

L }, or equivalently, the collec-
tion of skewed cdfs {FFS

L }. Thanks to the surjectivity of our own SM, there exists, for any L ∈ LS ,
some H belonging to H such that FFS

L = FH ; in other words, the FS06 skewing mechanism LS = {L}
induces an SM HS = {H} through the relation

(L ◦ F =:)FFS
L = FH (:= F ◦H), equivalently through H = F−1 ◦ L ◦ F.

Most importantly, we want to stress that this clearly shows that, if the original skewing mecha-
nism LS = {L} is independent of f , then the induced SM HS = {H = F−1 ◦ L ◦ F} does depend
on f . And vice versa, it can be shown that an SM HS that does not depend on the pdf f to be
skewed induces an FS06 skewing mechanism LS that will crucially depend on f . An example for the
latter statement is provided by the PSM H1 = {Hδ(x) = x − δ : δ ∈ R}. Such a PSM corresponds
to a location shift, which, in terms of FS06 parametric skewing mechanisms, entails dependence on
the original distribution. We conclude that the independence of skewing mechanisms on the original
symmetric distribution surely is an interesting feature but only makes sense when considered with
respect to some fixed type of skewing mechanism (either the FS06 one or ours). This independence,
in any case, should therefore be regarded with care.

4. Some examples.

In this section, we consider three examples of symmetric PSMs (in fact all of them are CPSMs),
investigate their properties and show their effects on standard (multi)normal distributions. The first
two examples are univariate, whereas the third one is bivariate. Most properties of those PSMs will
be discussed under the light of the results of Section 3. All three examples are chosen in such a
way they meet the independence property in Definition 3.2. For the sake of illustration, Figure 1
provides plots of several functions Hδ belonging to each of the two one-dimensional PSMs considered,
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along with the corresponding skewed standard normal densities; Figure 2 plots skewed versions of
the standard bivariate normal density obtained through the two-dimensional PSM HS

3 given below.
As a first example, consider the PSM HS

1 := {H1δ : δ ∈ [−1, 1]} defined by

H1δ(x) := x− δ cos(x).

The set of admissible values for δ (namely, [−1, 1]) is here the largest subset of R over which H1δ

is a diffeomorphism of R. Theorem 3.1 readily shows that this PSM does not fix the median of
the original distribution. Moreover, a simple limit calculation reveals (Theorem 3.2(iv)) that HS

1

preserves the right and left moment structure of the original symmetric distribution to be skewed,
so that tail behavior remains unchanged by the PSM.

The second PSM is defined by HS
2 := {H2δ : δ ∈ R} where

H2δ(x) := x
(1 + exp(δx))

2
.

Contrarily to HS
1 , this second PSM preserves the median of the original symmetric distribution

since H2δ(0) = 0 for any δ ∈ R, which makes this PSM more suitable for inferential purposes.
Turning our attention to the tails of the resulting skewed distributions, the situation becomes quite
interesting since their left and right weights differ. Actually, for δ > 0, limx→−∞ |x|/|H2δ(x)| = 2
and limx→+∞ |x|/|H2δ(x)|q = 0 for each q > 0, implying that the largest left moment of the skewed
version is inherited from the original distribution whereas the largest right moment becomes infinite.
Intuitively, the exponential term concentrates a high mass of probability in the neighborhood of the
origin on the positive real halfline, leading to very light tails on the right. Clearly, negative values
of the skewness parameter lead to the opposite conclusions.

Our final example involves a two-dimensional PSM, namely HS
3 := {H3δ : δ ∈ R} defined by

H3δ(x1, x2) := (x1, (2 + arctan(δx1))x2/2)′.

Thanks to Theorem 3.1, we see that this two-dimensional PSM fixes the componentwise median of the
original symmetric distribution. As for largest u-directional moments, first note that, for each δ ∈ R,
the inverse of H3δ is simply H−1

3δ (x1, x2) = (x1, 2(2+arctan(δx1))−1x2)′. One immediately sees that
the largest ±e1-directional moments are preserved. The boundedness of (2+arctan(δx1))−1 leads to
the same conclusion for the largest ±e2-directional moments, showing that the PSM HS

3 conserves
the largest semi-axial moments, hence also any largest u-directional moment.

5. Final remarks.

When the focus lies on testing for symmetry, it is clear that, the more flexible the asymmetric
alternatives are, the more general the tests become. This latter fact was the main motivation
of Ley and Paindaveine (2009) to build Le Cam optimal tests for symmetry against (univariate)
skewed distributions generated by the FS06 skewing mechanisms. In the same spirit, we shall, in a
future work (Ley and Paindaveine, 2010b), construct Le Cam optimal tests for symmetry against
distributions skewed by means of the PSMs proposed in this paper, both in the univariate and
multivariate setups.

It should be noted that, for inferential purposes, our PSMs may indeed appear more advantageous
than the FS06 ones; in particular, the stochastic representation of the corresponding skewed densities
(recall that, for any H ∈ H, fH is the pdf of H−1(X) if X admits the original symmetric pdf f)
paves the way to natural estimation procedures of the skewness parameter in any given PSM, or,
alternatively, might be useful to discriminate between PSMs.

A. Appendix: Proofs of Theorems 2.1, 2.2, 3.1, and 3.2.

Proof of Theorem 2.1. Let V = Hx1(X), where Hx1(x1, . . . , xk) = (FX1(x1), . . . , FXk(xk))′

with FXj (.) the cdf of the j-th marginal Xj of X = (X1, . . . , Xk)′. Under our assumption on X ,

8
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Figure 1: Plots of H1δ (a) (resp., H2δ (c)) and of the resulting skewed versions
of the standard normal density (b) (resp., (d)) for δ = 0 (solid line), δ = 0.1
(resp., 0.5) (dashed line), δ = 0.4 (resp., 2) (dash-dot line), and δ = 0.9
(resp., 3) (dotted line).
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Figure 2: Plots of the H3δ-skewed versions of the standard bivariate normal
density for δ = 0.5, δ = 2, and δ = 5.
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the cdf of V , namely v 7→ C(v) = FX(H−1
x1 (v)), is a continuously differentiable copula. Also, for

all j = 2, . . . , k, the conditional cdf of Vj given V1 = v1, . . . , Vj−1 = vj−1 corresponds to

vj 7→ P[Vj ≤ vj |V1 = v1, . . . , Vj−1 = vj−1] =
∂j−1
1,2,...,j−1C(v̄j)

∂j−1
1,2,...,j−1C(v̄j−1)

,

where v̄j := (v1, . . . , vj , 1, . . . , 1)′ ∈ Rk, j = 1, . . . , k − 1, and v̄k = v. It is then easy to show that

Hx2(v) =
(
v1,

∂1C(v̄2)
∂1C(v̄1)

,
∂2
1,2C(v̄3)

∂2
1,2C(v̄2)

, . . . ,
∂k−1
1,2,...,k−1C(v)

∂k−1
1,2,...,k−1C(v̄k−1)

)
is a diffeomorphism from [0, 1]k to [0, 1]k, with the jacobian

|DHx2(v)| =
k∏

j=2

∂j
1,2...,jC(v̄j)

∂j−1
1,2,...,j−1C(v̄j−1)

= ∂k
1,2,...,kC(v).

Now, defining Hx := Hx2 ◦Hx1, the pdf of H−1
x (U), where U is uniformly distributed on [0, 1]k, is

given by x 7→ fU (Hx(x)) |DHx(x)| = |DHx2(Hx1(x))||DHx1(x)| = (
∏k

j=1 fXj (xj))∂k
1,2,...,kC(Hx1(x)) =

fX(x), so that H−1
x (U) D= X . Similarly, H−1

y (U) D= Y for some diffeomorphism Hy from Rk to [0, 1]k.

Therefore, H(X) D= Y , with H := H−1
y ◦Hx. Finally, it is easy to check that H ∈ H.

As for unicity, assume that Ha(X) D= Y
D= Hb(X) for some Ha, Hb ∈ H. Then H(X) D= X , where

H = H−1
a ◦Hb ∈ H. In the first marginal, this implies that FX1(h−1

1 (z)) = P[h1(X1) ≤ z] = P[X1 ≤
z] = FX1(z) for all z ∈ R, hence that H1(x) = h1(x1) = x1 for all x ∈ Rk. Now, assume that for all
j = 1, . . . , m (1 ≤ m ≤ k− 1), we have that Hj(x) = xj for all x ∈ Rk. In combination with the fact

that H(X) D= X , this yields

(X1, . . . , Xm, hX1,...,Xm

m+1 (Xm+1))′
D= (X1, . . . , Xm, Xm+1)′,

which in turn implies that

FXm+1|X1=x1,...,Xm=xm((hx1,...,xm

m+1 )−1(z)) = P[Xm+1 ≤ (hx1,...,xm

m+1 )−1(z) |X1 = x1, . . . , Xm = xm]
= P[hx1,...,xm

m+1 (Xm+1) ≤ z |X1 = x1, . . . , Xm = xm]

= P[hX1,...,Xm

m+1 (Xm+1) ≤ z |X1 = x1, . . . , Xm = xm]
= P[Xm+1 ≤ z |X1 = x1, . . . , Xm = xm]
= FXm+1|X1=x1,...,Xm=xm(z),

for all z ∈ R. Hence, we have hx1,...,xm

m+1 (z) = z for all z ∈ R, or equivalently, Hm+1(x) = xm+1 for all
x ∈ Rk. This establishes that H−1

a ◦Hb = H = I. �

Proof of Theorem 2.2. The result in (i) is just the classical jacobian formula. Part (ii) readily
follows from the unicity statement in Theorem 2.1. As for Part (iii), the symmetry of X and Part (i)
entail −H−1(−X) D= −H−1(X) D= −Y

D= H̄−1(X), so that the claim follows again from the unicity
statement in Theorem 2.1 and from the fact that x 7→ H(−x) does not belong to H. Eventually,
Part (iv) is a direct consequence of (iii). �

Proof of Theorem 3.1. In view of Theorem 2.1 (i), Y ∼ fH is equivalent to Y
D= H−1(X), hence

the median of fH corresponds to the median of H−1(X). Since h1 is (strictly) monotone increasing,
it trivially follows that P[(H−1(X))1 ≤ 0] = P[X1 ≤ h1(0)]; clearly, the latter probability equals 1/2
iff h1(0) = 0. For j ∈ {2, ..., k}, conditioning with respect to X1, . . . , Xj−1, Xj+1, . . . , Xk shows that
Med[(H−1(X))j ] = 0 is equivalent to∫

Rk−1
P[(H−1(X))j ≤ 0 |X1 = x1, ..., Xj−1 = xj−1, Xj+1 = xj+1, . . . , Xk = xk]

f (X1,...,Xj−1,Xj+1,...,Xk)′(x1, ..., xj−1, xj+1, . . . , xk)d1,...,j−1(x)dj+1,...,k(x) =
1
2
, (A.1)
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where we adopt the notation di1,...,i2(x) := dxi1 · · · dxi2 for any i1 < i2 ∈ {1, . . . , k}. Since this
conditioning fixes the j − 1 first components of X , the assumption that h

x1,...,xj−1
j (.) is a (strictly)

monotone increasing function allows to rewrite the left-hand side of (A.1) as∫
Rk−1

∫ h
x1,...,xj−1
j

(0)

−∞
fXj |X1=x1,...,Xj−1=xj−1,Xj+1=xj+1,...,Xk=xk(xj)dxj

f (X1,...,Xj−1,Xj+1,...,Xk)′(x1, ..., xj−1, xj+1, . . . , xk)d1,...,j−1(x)dj+1,...,k(x)

=
∫

Rk−1

∫ h
x1,...,xj−1
j

(0)

−∞
f (X1,...,Xk)′(x1, ..., xk)dxjd1,...,j−1(x)dj+1,...,k(x).

Since 0 is the median of Xj , (A.1) is then equivalent to

∫
Rk−1

∫ h
x1,...,xj−1
j (0)

0

f (X1,...,Xj−1,Xj ,Xj+1,...,Xk)′(x1, ..., xj−1, xj , xj+1, . . . , xk)dxjd1,...,j−1(x)dj+1,...,k(x) = 0,

which in turn implies that h
x1,...,xj−1
j (0) = 0, as the last equality has to hold for any symmetric

absolutely continuous pdf f . �

Proof of Theorem 3.2. Throughout the proof, let u belong to Sk−1 and q > 0 be some fixed real
number. Note that, for any r ∈ R+, a simple change of variables allows to rewrite

∫
H+

u
|u′x|r/qfH(x)dx

as
∫

u′H−1(x)>0
|u′H−1(x)|r/qf(x)dx. Hence, for the rest of this proof, all the results are established

with respect to the latter expression.
Let us start with Theorem 3.2 (i). The sufficient condition states that there exist some positive

constants M and c such that |u′H−1(x)| ≤ c|u′x|q for all x ∈ H+
u \BM . It trivially follows that∫

H+
u \BM

|u′H−1(x)|r/qf(x)dx ≤ cr/q

∫
H+

u \BM

|u′x|rf(x)dx, (A.2)

where the right-hand side is finite for r ≤ Mu,f . Moreover, the condition |u′H−1(x)| ≤ c|u′x|q
for x ∈ H+

u \ BM implies that u′H−1(x) = 0 when u′x = 0, hence the regions H+
u and {x :

u′H−1(x) > 0} do coincide outside BM . This latter region being compact, the convergence of the
integral

∫
u′H−1(x)>0

|u′H−1(x)|r/qf(x)dx is entirely determined by the left-hand side of (A.2). We
easily deduce that Mu,fH ≥ Mu,f/q, thus the claim holds.

Now, concerning Theorem 3.2 (ii), the existence of an additional lower bound to |u′H−1(x)|/|u′x|q
allows to turn inequality (A.2) in a double inequality of the form

c
r/q
1

∫
H+

u \BM

|u′x|rf(x)dx ≤
∫

H+
u \BM

|u′H−1(x)|r/qf(x)dx ≤ c
r/q
2

∫
H+

u \BM

|u′x|rf(x)dx;

the same reasoning as above thus leads to the announced result.
In the univariate case, it is clear that the sufficiency conditions of Theorem 3.2 (i) and (ii) can be

reexpressed in terms of limits, thus we only provide a proof for the necessity part of Theorem 3.2 (iii).
Assume that limx→+∞ |H−1(x)|/|x|q is infinite. This means that there exist some positive real
constants M and ǫ such that |H−1(x)| > |x|q+ǫ if x ∈ H±1 \BM , which in terms of integrals implies
that ∫

H±1\BM

|x|r+rǫ/qf(x)dx <

∫
H±1\BM

|H−1(x)|r/qf(x)dx.

Now, for r = M±1, the left-hand integral becomes infinite, indicating that M±1,fH < M±1,f/q. �
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