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Abstract

Itis now common knowledge that the simple quadratic ARCHp8s has regularly
varying tail even when generated by a normally distributgidey, and the tail behaviour
is well-understood under more general conditions as walictMess studied is the case
of 5-ARCH-type processes, i.e. when the conditional varias@23-power function
with 0 < 8 <1. Being a little more general and allowing for asymmetrg, eonsider
threshold3-ARCH models, driven by noises with Weibull-like tails. @gpal cases
include the Gaussian or the Laplace distributions.) We gshatthe generated process
has approximately Weibull like tail, too, albeit with difnt exponent: 13 times that
of the noise, in the sense that the tail can be bounded fromsiaés by Weibull distri-
butions of this exponent but slightly different constarthe proof is based on taking
an appropriate auxiliary sequence and then applying thergeresult of Klippelberg
and Lindner (2005) for the tail of infinite MA sequences withhit-tailed innovations.
Keywords: ARCH-type model, conditional heteroscedasticity, exteralue theory,

tail behaviour

1. Introduction

In this paper we examine the tail behaviour of the statiowi#stribution of certain

ARCH-type models defined by the equation

1/2
X, = (w +ay (Xttl)% +a_ (X;l)%) Zy, 1)
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where we apply the usual notation$ = max (z,0) andz~™ = —min (z,0). The
model parameters, a4 anda_ satisfymin (a4, a—) > 0, max (ay,a—) > 0 and
w > 0,andZ; is an i.i.d. sequence with zero mean and finite variance.

An important feature of this process is that — if the autoglation function is de-
fined at all — it is an uncorrelated but not an independentesgcpibecause its condi-
tional variance is changing over time as a function of th@éatvalues (conditional
heteroscedasticity). I8 = 1 anda,. = «— > 0, we obtain the well-known ARCH
(autoregressive conditionally heteroscedastic) modegi& 1982), where the condi-
tional variance has a quadratic functional form. Since pinccess can reproduce the
stylised facts (e.g. uncorrelatedness, conditional bstedasticity, nonnormality) of
financial time series in an easily estimable way, it has becaribasic tool in financial
econometrics in the past two decades, and gave rise to sagewneralisations. For
instance, in order to model the fact that the variance ofksteturns responds more
strongly to negative shocks than to positive ones, Glostel.€1993) defined the
TARCH (threshold ARCH) process by allowing. # «_ in the equation withg = 1.
(Hencea < a_ generally holds in financial applications.) For a broad wiev of
the various generalisations of ARCH models and some of greperties we refer the
reader to Terasvirta (2009).

Due to the popularity of the quadratic ARCH models in finartbejr probabilis-
tic properties are quite much studied and well understobig. d well-known fact for
B =1 (see e.g. Embrechts et al. (1997)) that not all choicés)of,, a_) and of the
distribution ofZ; permit a stationary solution of equation (1). For instarfcg; is nor-
mally distributed, the quadratic ARCH model (i.e. the case= «_) has a stationary
solution if and only ifay = a— < 2exp (d) = 3.562, whered is the Euler-constant.
(A different choice for the noise distribution yields a @ifént domain of stationarity.)
Also, much is known about the tail behaviour of the statigrdistribution if 3 = 1.

It was proven two decades ago (Goldie, 1991) that the sSimpRE process has reg-
ularly varying tail (roughly speaking: polynomially deday tail) even whenZ, is
normally distributed. This phenomenon is often summaréedlight-tailed input can
cause heavy-tailed output”. More generally, Borkovec aligphgelberg (2001) proved
that the AR(1) model driven by a quadratic ARCH(1) innovati@s regularly varying



tail for a very general class of noise distributions. Using toncepts of extreme value
theory (EVT) it follows that the stationary distribution gfiadratic ARCH processes
belongs to the maximum domain of attraction of the Frech&eexe value distribu-
tion or, equivalently, their tail can be approximated by agyalised Pareto distribution
(GPD) with shape parametér> 0. (For an introduction into EVT we refer the reader
to Embrechts et al. (1997).)

The0 < 8 < 1 case — where the conditional variance is increasing slomaar &
quadratic function of the lagged values — is very differeoif the usuab = 1 param-
eter choice, and is much less studied in the literature. Théemay then be called
the 3-TARCH process and was analysed e.g. by Guegan and Dield8i) 11t follows
relatively easily from the drift condition for Markov cha&iiMeyn and Tweedie, 1993)
that in the) < 8 < 1 case theX; process defined by (1) is stationary irrespective of
the choice for the parameters and for the distributio#ofprovided that the latter has
a finite second moment and some basic conditions for its geas fulfilled). More-
over, if themth moment ofZ; is finite, themth moment of the stationary distribution
of X; will be finite, too (see Guegan and Diebolt (1994), or in a ng@eeral setting
Elek and Mérkus (2008)). Hence, if all momentsAfis finite and its distribution has
infinite support, the distribution oX; may only belong to the maximum domain of at-
traction of the Gumbel law and, equivalently, the shaperpatar of the GPD fitted to
it may only be zero — if the distribution belongs to the maximdomain of attraction
of an extreme value law at all.

This result already yields that tie TARCH model is lighter tailed than the usual,
quadratic specification: for light-tailed; noises the tail ofX; decays faster to zero
than a polynomial function. The finding, however, does né¢idaine the exact tail be-
haviour: the maximum domain of attraction of the Gumbel lantains many different
types of distributions (e.g. normally, exponentially ogitmrmally decaying ones). In
this paper we give a more precise estimate for the tail degahbwing thatX, has
approximately Weibull-like tail provided th&t; has a Weibull-like distribution. Our
research is motivated by the fact th&iTARCH models proved useful to model con-
ditional heteroscedasticity in areas where the quadra®€H model was considered

too heavy-tailed, such as in the analysis of water dischseges of rivers with large



catchments. (See e.g. Elek and Markus (2008) or in a broanfgext Szilagyi et al.
(2006).)
Throughout the paper we will use the notatiafig (u) = 1 — Fx (u) for the

survival function andf x (u) for the density function of the random variabte

2. Tail behaviour

To examine the tail behaviour of; let us introduce an assumption on the tail of

Ztl

Assumption 1. Z; is an i.i.d. sequence with a symmetric, absolutely contisymob-
ability distribution. Moreover, there exisy > 0,~v > 0, k > 0, K; > 0 and K3 such

that its probability density satisfies
fz, (w) = Ki|ul ™2 exp (= |u|") )
for every|u| > ug, and fz, (u) is bounded away from zero ¢ruo, uo] .

According to this assumptiotr; has a Weibull-like tail with exponent The Gaus-
sian(y = 2) or the Laplacdg~y = 1) distributions are obtained as special cases.
Guegan and Diebolt (1994) showed under the assumptiar{c.;,«—) > 0 that
if 8 > (v —1)/v, X: has no exponential moment (i.e. it is heavier tailed than the
exponential distribution) while if < (y — 1)/~, X; has a moment generating func-
tion defined around the neighbourhood of zero. This findingealy suggests tha;
may possess (approximately) a Weibull-like tail with expoty (1 — 3). Assuming a
normally distributed noise (i.ex = 2), oy = a_ and1/2 < § < 1, Robert (2000)
argued that this is indeed the case: under his assumptiphas Weibull-like tail with

exponent (1 — 3) . Although the proof of his conjectures seems to be incomplete

°He derives a functional equation for the logarithm of the reatngenerating functiorLy (s) =
E (exp (sX¢)) of Y = log X2 and estimates the tail df; based on the behaviour dfy- (s) around
oo. During the calculations he assumes (see Appendix 1 of higrpapat if a functiong satisfies
g(z) — glax) = O(1/z) asz — oo, theng(z) = O(1/x). However, this is not the case: if e.g.
g(x) = sin (2w log z/ log «) theng(z) — g(ax) = 0.



some of his ideas are useful to prove thgthas approximately Weibull-like tail even

if we consider the more general case, &g.# o, v # 2 and0 < 8 < 1.

Theorem 1. Assume thalX; satisfies equatiofil), Assumption 1 holds, and > 0,
min (a4, a—) > 0,0 < 8 < 1. Then, using the notation = max (a4, a_), the
survival function of the stationary distribution &f; satisfies

-v/2 -5 _
exp (——a K;ﬁ L9 4 0 (uwmﬂ)) < Ix, (u)

=V/2 -T2
< exp (_ (Oé+w) 72 Ky(B~ T-B u,y(l_ﬁ) +0 <u7(1—ﬂ)/2>> )

Clearly, since K —€) z < Kz+ O (2'/?) < (K +€) zasz — oo foranyK > 0
ande > 0, the exponent and the bounds for the multiplien:of' —%) are exact in the
above given Weibull like approximation, but (even if the stamts were the same in the
upper and lower bound) there still remains room for a demiftiom an asymptotically

exact Weibull limit distribution.

Proof. We may assume without loss of generality that= oy > a_. LetY; =
log(X?), Up,1 = log (a4 Z2) , andUy » = log (a— Z}) . Furthermore, let us introduce
the functions
h1 (y) = log (w/ oy + exp (By)) ,
ha (y) = log (w/a— + exp (By))
and the random variablds ; = h; (Y;—1) — fY;—1 (i =1,2). Then
Yi=hi1 (Yee1) + Uy = Y1 + U1 + Vi if Zi_1>0,
Yi =ho (Yic1) + Uro = BYi1 + Ua + Vo if Z;_1<0.
Sinceh; (y) > By (i =1,2), V;; > 0 a.s. Moreover, sinc€; is a symmetrically
distributed i.i.d. sequenc®; can be written as
i =8Y1 + U + V4,

whereU; = Ui 1x(z,_, >0} + Ut1x{z,_, <0} is anindependent 1/2-1/2 mixture©f ,
andU; o, and is itself an i.i.d. process. Similafly = Vi 1x(z,_, >0y + Vi, 1X(2z:_, <0}

is an independent 1/2-1/2 mixture Bf; andV; ».



Let us introduce the auxiliary autoregressive sequence
o0
Y =0Y U= AU
=0

As we usdog in the definition ofU;, the convergence of the sum cannot be taken for
granted. However, the distribution 4t is absolutely continuous (at zero as well) and
it has finite variance, hencE (U?) < oo, thereforeY;* has a stationary distribution
andE (Y;*)? < oo.

The importance of this process comes from the fact that tbisheastically smaller

thanY;, i.e. Fy (u) < Fy, (u) . To see this, le¥ = Y, and define¥; recursively as
Y, = Y1 + Uy (4)

Using thatV;, > 0 a.s., we can prove by induction tHet < Y; :
Y, =BV 1+ U < BYq + U < Vi (5)

SinceY; tends in distribution to the stationary distribution 5f ast — oo, Y;* is
indeed stochastically smaller thaf. Therefore, by examining the tail behaviour of
Y;* we can obtain a lower bound for the tail ®f as well. (A similar majorisation
technique is used in a different context in Lemma 2.2. of Brag et al. (2009).)

To determine the tail of}*, we will apply the framework of Kluppelberg and Lind-
ner (2005) who examined the tail behaviour of linear movingrage processes with
increments lighter tailed than the exponential distriwti Let> "> ¢;W;_; be the
examined process and assume that the probability densityeoffi.d. sequencé;
satisfies

f(u) =v(u)exp (=¢(u)), u=uo (6)
for someug, andy(u) is C?, ¢’ (ug) = 0, ¢’ (00) = oo and)” is strictly positive on
[ug, 0o]. Moreover, using the notatiop = 1/1/1”, we assume that the functionis

flat for ¢, i.e.
NACEZI0)
e v(u)

uniformly on bounded:-intervals, and also that is self-neglecting, i.e. flat for itself.

=1

(Roughly speaking, these assumptions requiretia} should be strictly convex and

v(u) should behave approximately as a constant as ~.)



Furthermore, following the original notations of Kliippetly and Lindner (2005),
defineq(r) = ¢'~1(7) and

[e o] oo

Q(r) = Z cqleT),  of(r)=dd(ar),  ox(r)= Y oi(r).

1=—00 1=—00
It follows from the conditions thaf) is a strictly increasing function. Then, provided
thatc; is a summable sequence of non-negative real numbers, @etalland assuming

that the two conditions below hold:

o T2 (T
lim limsup M =0, @)
i TP or )
oo 0 (T
lim limsup M =0, (8)
m—oo ;o0 05 (7’)

the following theorem is true:

Theorem 2. (Klippelberg and Lindner, 2005) Under the above conditi@ass — oo,

P( i Cth_z' > u)

- Q1! (U)li;{i_;_l (u)) exXp (_/u e (Q71 (v)+p (Q71 (U))) dv)

wherep (1) = 0(1/0 (7)) . Itis also true thatl /o, (7) = o (1) so the first term in

the integral is the leading term.

In our case, this theorem will be used with the chdige= W, so the conditions

of the theorem should be checked first. Here,
1 _ ~u
fu, (u) = 5 (K1 exp (Kau) exp (—/{a+7/2e7))
1 _ ~u
+ 5 (K3 exp (Kqu) exp (—,K;a_WZeT)) = v(u) exp (= (u))

with appropriate constants; > 0, K3 > 0 and K, K,4. To satisfy the necessary

assumptions withuy = 0 in (6), ¢»(u) can be defined as

¥ (u) = ka2 —ena™/?)2 it u>2/7,

¥ (u) = era™ % (v/2)* u? /2 it w<2/y.



Then it is a matter of routine to check that the resultirig) function is flat fore(u)

and thatp(u) is self-neglecting (see also Example 2.4. (c) in Kluppajtzerd Lindner
(2005)), so the tail oF;* can in principle be approximated using= 3° fori > 0 and
¢; = 0 fori < 0. (Conditions (7)-(8) will be checked, see below.) Using tlo¢ation

70 = eka /%y /2, we obtain

Y (u) = ka2 (v/2)eF = e lrgeT if w>2/y,
Y (1) = era” " (v/2)% u =10 (v/2) u if u<2/y
and hence
q (1) =27y tlog (er/70) = 2y~ (log 7 — log 70 + 1) if 7>,
q(r) =2v"'7/70 if <7

Then

Q(r)=>_Aa(B'r) =207" 3 #log (Fer/m)

j=0
+ 2971 Z 8 (ﬂjT/To —log (/BjeT/TQ)) . (9)
Ji BIT<T0
For any0 < 6 < 1 (we shall choosé@ appropriately from this range later), the sum in

the second term can be written as

Z G (ﬂjT/TQ — log (ﬁjeT/To))

J: BiT<To
— _o\J ; 0 i 0 ;
= (er/70) o Z (,61 9)] (ee (537'/70)1+ — (ﬂjeT/T(]) log (5367/70)) .
j BIiT<To
(10)
For0 < 6 < 1 the functiong(z) = 2%logz is bounded on0, e], hence both
(ﬂje'r/To)elog (ﬁjeT/To) ande? (ﬁj7/70)1+9 are bounded i < 877/m < 1. This

way we have forr — oo
> (B (& (/)T = (Ber/m) tog (Ber/m))
Ji BiT<To

o) Y (8 =o()

3 BiT<to



because — oo implies thatj — oo in the summation condition.
Therefore the sum in (10) (and so the second term in (9))is?) . As a conse-

quence, using the notations
A=2y"11-8)"" and B=g(1-0) "logf+ 1 —logTo,
we obtain forr — oo

Q(r) = 2971 Zﬁj (log (ﬁjr) +1—logm) +o0 (7’*0)
j=0

2y (1 - ﬂ)71 (logT +08(1 - 6)71 log 5+ 1—log T()) +o0 (770)

A(logT+ B)+o (7'79) .

Trivially, Q! (u) — oo and hence

exp <—0 ((Qfl (u))%)) =140 ((Qfl (u)) 79) =1+4+0(1) (12)

asu — oo, therefore

Q' (u) =exp (A 'u— B)exp (70 <(Q_1 (u))fg)) =exp (A7'u—B) (1+0(1)).
(12)
Using again (11) and then (12) we obtain a better estimat@fdr(u) :

Q7w = ew(au-B) (1+o(@ W) "))
= exp(A7'u— B) (140 (exp (—04 'u)))

L T (2020 ¢ (o (10220=0,)

Let us also check conditions (7)-(8). We obtain thiatr) = 2y~ 1/ if 7 < 79
andq’ (1) =2y~ Y/7if 1 > 79, henceo? (1) = 2y~ 1% /7 if BiT < 19 ando? (1) =

2y~ 13t /7 if Bit > 7. Thus
ol (1) =27"" ( oo+ Y 62%) ~2y7t(1=p)H
J: Bit>T70 J: Bit<mo

so (7)-(8) are easily seen for the = 3° sequence, consequently Theorem 2 can be

applied. It also follows thap () = O (7%/2) anduy = 0 in that Theorem. If we



choose > 1/2, we obtain

F}/t* (u) = exp (— log Q™! (u) — log ooo (Q_l (u)) — /Ou (Q‘l (v) + O (67(147‘8)11) dv))

—v/2 7% ~(1— ~(1—
= exp (—Me (2ﬁ)“+0<e (4‘;)“)>. (13)

1-p

Taking into account that,* is stochastically smaller tha¥, = log (X?), the
lower bound is obtained fafy, (u) in (3).

To show the upper bound for the tail, we can first prove withnailar majorisa-
tion technique as used in the proof Bf.- (u) < Fy, (u) (equations (4)-(5)) that the
increase of eithetv, or o does not make the tail &f, any lighter. Therefore, we can
assume that = oy = «_ and get an upper bound for the tail of this restricted model.
In this case, let us introduce for each random variablé&’;”* > 0 such that/, < U;*
a.s. andfy;« (u) = K fy, (u) for all w > 0 with an appropriatéX’ > 0. (Such a
variable can easily be constructed.) Define dl§g) = Byx(y>0y + log (1 +w/a).

It follows from ay = «a_ thath; (y) < h(y) (¢ = 1,2) and thus it can be shown
again with a majorisation argument th& -« (u) > Fy, (u) holds for the stationary

distribution of the model defined by
Y =h (Y + U
Indeed, letty = Y, and definé’; recursively as
Y,=h (}%_1) + U™,
UsingU; < U;* we can prove by induction thag < Y; :
Vi h (Vo) + U < b (Yiea ) + U < b (Vi) + U =T

Since the distribution of; tends to the stationary distribution Bf* ast — oo, Y; is
stochastically smaller tharj**.

As h(y) > 0 for all y andU;* > 0 a.s., an alternative definition faf** is

log (1 +
= BY;™, + U™ +1log (1 + w/a) = Zﬁ’U,**Z Og(f;’/a). (14)

10



The result of Kltippelberg and Lindner (2005) again gives theutail of Y7 ) 3°U;,

has the same form as the tail Bf (equation (13)). Completing the above reasoning
with the effect of the last constant term in (14) it is easy ok the upper bound for
the tail of X; in (3). |

In some applications (e.g. Elek and Mérkus (2008))the= 0 restriction is used.
Then the upper bound in (3) certainly holds and a slightlykeetower bound can also

be proven easily:

Proposition 1. Assume the assumptions of Theorem 1 but atlow= 0. Then for

everyd > 0 there exists & > 0 such that
exp (—Ku(lw)'y(lfﬂ)) < Fx, (u). (15)

Proof. Let us use the same notations as in the proof of Theorem 1 &nig*té be
defined by

Y = BY Y + U if Z,>0
Y =UY if Z, <0
whereUy = log (e Z7) . Itis easily shown that;*** <Y, stochastically in this case.

Moreover, asZ; is symmetrically distributed, for every € Z* with probability2—"

n—1
=0

Therefore, using the notatiops= Fy -~ (0) andY; ,, = Zf__’ol BU .,
Fyree (u) > q27"Fy, , (u).

Moreover, similarly to the derivation of the tail 4§, it follows again from Theorem
2 that

_ y(1-5) y(1-=3)

Fy, . (u) = exp (_Ke2(1,gn> +0 (640,5") ))
with a suitableX” > 0. Choosingn such thatl/ (1 — ™) < 1 4 ¢ we obtain

- (+6)7(1-5)
Fys« (u) > exp (fKe & )

with a possibly differenf > 0, and transforming’; to X, gives the statement of the

proposition. O

11



3. Conclusions

In this paper we showed that the tail ofaTARCH model can be approximated by
Weibull-like distributions with exponent (1 — () if the generating noise has Weibull-
like tail with exponenty. We conjecture that the lower bound in Theorem 1 gives the
precise asymptotics for the tail of the model but we couldprove this conjecture yet.

It is a natural question to ask how the tail behaviour is medifivhen AR- or
MA-terms are added to the simple uncorrelate@ARCH model, as e.g. in Elek and
Markus (2008). This question is not yet settled but we cdojethat the more general
ARMA- 3-TARCH model has approximately a Weibull-like tail with tt@me exponent

as the more restricted model examined in this paper.
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