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Tail behaviour ofβ-TARCH models

Péter Eleka,1,∗, László Márkusa

aDepartment of Probability Theory and Statistics, Eötvös Loránd University, Hungary
H-1117 Budapest, Pázmány Péter sétány 1/c.

Abstract

It is now common knowledge that the simple quadratic ARCH process has regularly

varying tail even when generated by a normally distributed noise, and the tail behaviour

is well-understood under more general conditions as well. Much less studied is the case

of β-ARCH-type processes, i.e. when the conditional variance is a 2β-power function

with 0 < β <1. Being a little more general and allowing for asymmetry, we consider

thresholdβ-ARCH models, driven by noises with Weibull-like tails. (Special cases

include the Gaussian or the Laplace distributions.) We showthat the generated process

has approximately Weibull like tail, too, albeit with different exponent: 1-β times that

of the noise, in the sense that the tail can be bounded from both sides by Weibull distri-

butions of this exponent but slightly different constants.The proof is based on taking

an appropriate auxiliary sequence and then applying the general result of Klüppelberg

and Lindner (2005) for the tail of infinite MA sequences with light-tailed innovations.

Keywords: ARCH-type model, conditional heteroscedasticity, extreme value theory,

tail behaviour

1. Introduction

In this paper we examine the tail behaviour of the stationarydistribution of certain

ARCH-type models defined by the equation

Xt =
(
ω + α+

(
X+

t−1

)2β
+ α−

(
X−

t−1

)2β
)1/2

Zt, (1)
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where we apply the usual notationsx+ = max (x, 0) andx− = −min (x, 0) . The

model parametersω, α+ andα− satisfymin (α+, α−) ≥ 0, max (α+, α−) > 0 and

ω > 0, andZt is an i.i.d. sequence with zero mean and finite variance.

An important feature of this process is that – if the autocorrelation function is de-

fined at all – it is an uncorrelated but not an independent sequence because its condi-

tional variance is changing over time as a function of the lagged values (conditional

heteroscedasticity). Ifβ = 1 andα+ = α− > 0, we obtain the well-known ARCH

(autoregressive conditionally heteroscedastic) model (Engle, 1982), where the condi-

tional variance has a quadratic functional form. Since thisprocess can reproduce the

stylised facts (e.g. uncorrelatedness, conditional heteroscedasticity, nonnormality) of

financial time series in an easily estimable way, it has become a basic tool in financial

econometrics in the past two decades, and gave rise to various generalisations. For

instance, in order to model the fact that the variance of stock returns responds more

strongly to negative shocks than to positive ones, Glosten et al. (1993) defined the

TARCH (threshold ARCH) process by allowingα+ 6= α− in the equation withβ = 1.

(Henceα+ < α− generally holds in financial applications.) For a broad overview of

the various generalisations of ARCH models and some of theirproperties we refer the

reader to Terasvirta (2009).

Due to the popularity of the quadratic ARCH models in finance,their probabilis-

tic properties are quite much studied and well understood. It is a well-known fact for

β = 1 (see e.g. Embrechts et al. (1997)) that not all choices of(ω, α+, α−) and of the

distribution ofZt permit a stationary solution of equation (1). For instance,if Zt is nor-

mally distributed, the quadratic ARCH model (i.e. the caseα+ = α−) has a stationary

solution if and only ifα+ = α− < 2 exp (δ) ≈ 3.562, whereδ is the Euler-constant.

(A different choice for the noise distribution yields a different domain of stationarity.)

Also, much is known about the tail behaviour of the stationary distribution if β = 1.

It was proven two decades ago (Goldie, 1991) that the simple ARCH process has reg-

ularly varying tail (roughly speaking: polynomially decaying tail) even whenZt is

normally distributed. This phenomenon is often summarisedas: "light-tailed input can

cause heavy-tailed output". More generally, Borkovec and Klüppelberg (2001) proved

that the AR(1) model driven by a quadratic ARCH(1) innovation has regularly varying
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tail for a very general class of noise distributions. Using the concepts of extreme value

theory (EVT) it follows that the stationary distribution ofquadratic ARCH processes

belongs to the maximum domain of attraction of the Frechet extreme value distribu-

tion or, equivalently, their tail can be approximated by a generalised Pareto distribution

(GPD) with shape parameterξ > 0. (For an introduction into EVT we refer the reader

to Embrechts et al. (1997).)

The0 < β < 1 case – where the conditional variance is increasing slower than a

quadratic function of the lagged values – is very different from the usualβ = 1 param-

eter choice, and is much less studied in the literature. The model may then be called

theβ-TARCH process and was analysed e.g. by Guegan and Diebolt (1994). It follows

relatively easily from the drift condition for Markov chains (Meyn and Tweedie, 1993)

that in the0 < β < 1 case theXt process defined by (1) is stationary irrespective of

the choice for the parameters and for the distribution ofZt (provided that the latter has

a finite second moment and some basic conditions for its density are fulfilled). More-

over, if themth moment ofZt is finite, themth moment of the stationary distribution

of Xt will be finite, too (see Guegan and Diebolt (1994), or in a moregeneral setting

Elek and Márkus (2008)). Hence, if all moments ofZt is finite and its distribution has

infinite support, the distribution ofXt may only belong to the maximum domain of at-

traction of the Gumbel law and, equivalently, the shape parameter of the GPD fitted to

it may only be zero – if the distribution belongs to the maximum domain of attraction

of an extreme value law at all.

This result already yields that theβ-TARCH model is lighter tailed than the usual,

quadratic specification: for light-tailedZt noises the tail ofXt decays faster to zero

than a polynomial function. The finding, however, does not determine the exact tail be-

haviour: the maximum domain of attraction of the Gumbel law contains many different

types of distributions (e.g. normally, exponentially or lognormally decaying ones). In

this paper we give a more precise estimate for the tail decay by showing thatXt has

approximately Weibull-like tail provided thatZt has a Weibull-like distribution. Our

research is motivated by the fact thatβ-TARCH models proved useful to model con-

ditional heteroscedasticity in areas where the quadratic ARCH model was considered

too heavy-tailed, such as in the analysis of water dischargeseries of rivers with large
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catchments. (See e.g. Elek and Márkus (2008) or in a broader context Szilágyi et al.

(2006).)

Throughout the paper we will use the notationsF̄X (u) = 1 − FX (u) for the

survival function andfX(u) for the density function of the random variableX.

2. Tail behaviour

To examine the tail behaviour ofXt let us introduce an assumption on the tail of

Zt :

Assumption 1. Zt is an i.i.d. sequence with a symmetric, absolutely continuous prob-

ability distribution. Moreover, there existu0 > 0, γ > 0, κ > 0, K1 > 0 andK2 such

that its probability density satisfies

fZt (u) = K1|u|K2 exp (−κ|u|γ) (2)

for every|u| > u0, andfZt (u) is bounded away from zero on[−u0, u0] .

According to this assumption,Zt has a Weibull-like tail with exponentγ. The Gaus-

sian(γ = 2) or the Laplace(γ = 1) distributions are obtained as special cases.

Guegan and Diebolt (1994) showed under the assumptionmin (α+, α−) > 0 that

if β > (γ − 1)/γ, Xt has no exponential moment (i.e. it is heavier tailed than the

exponential distribution) while ifβ < (γ − 1)/γ, Xt has a moment generating func-

tion defined around the neighbourhood of zero. This finding already suggests thatXt

may possess (approximately) a Weibull-like tail with exponentγ(1 − β). Assuming a

normally distributed noise (i.e.γ = 2), α+ = α− and1/2 < β < 1, Robert (2000)

argued that this is indeed the case: under his assumptionsXt has Weibull-like tail with

exponent2 (1− β) . Although the proof of his conjectures seems to be incomplete,2

2He derives a functional equation for the logarithm of the moment generating functionLY (s) =

E (exp (sXt)) of Yt = log X2
t and estimates the tail ofYt based on the behaviour ofLY (s) around

∞. During the calculations he assumes (see Appendix 1 of his paper) that if a functiong satisfies

g(x) − g(αx) = O(1/x) as x → ∞, then g(x) = O(1/x). However, this is not the case: if e.g.

g(x) = sin (2π log x/ log α) theng(x)− g(αx) = 0.

4
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some of his ideas are useful to prove thatXt has approximately Weibull-like tail even

if we consider the more general case, i.e.α+ 6= α−, γ 6= 2 and0 < β < 1.

Theorem 1. Assume thatXt satisfies equation(1), Assumption 1 holds, andω > 0,

min (α+, α−) > 0, 0 < β < 1. Then, using the notationα = max (α+, α−) , the

survival function of the stationary distribution ofXt satisfies

exp

(
−α

−γ/2κγβ−
β

1−β

2
uγ(1−β) + O

(
uγ(1−β)/2

))
≤ F̄Xt (u)

≤ exp

(
− (α+ ω)−γ/2

κγβ−
β

1−β

2
uγ(1−β) +O

(
uγ(1−β)/2

))
. (3)

Clearly, since(K − ǫ) z < Kz+O
(
z1/2

)
< (K + ǫ) z asz →∞ for anyK > 0

andǫ > 0, the exponent and the bounds for the multiplier ofuγ(1−β) are exact in the

above given Weibull like approximation, but (even if the constants were the same in the

upper and lower bound) there still remains room for a deviation from an asymptotically

exact Weibull limit distribution.

Proof. We may assume without loss of generality thatα = α+ ≥ α−. Let Yt =

log(X2
t ), Ut,1 = log

(
α+Z

2
t

)
, andUt,2 = log

(
α−Z2

t

)
. Furthermore, let us introduce

the functions

h1 (y) = log (ω/α+ + exp (βy)) ,

h2 (y) = log (ω/α− + exp (βy))

and the random variablesVt,i = hi (Yt−1)− βYt−1 (i = 1, 2) . Then

Yt = h1 (Yt−1) + Ut,1 = βYt−1 + Ut,1 + Vt,1 if Zt−1 > 0,

Yt = h2 (Yt−1) + Ut,2 = βYt−1 + Ut,2 + Vt,2 if Zt−1 ≤ 0.

Sincehi (y) ≥ βy (i = 1, 2) , Vt,i ≥ 0 a.s. Moreover, sinceZt is a symmetrically

distributed i.i.d. sequence,Yt can be written as

Yt = βYt−1 + Ut + Vt,

whereUt = Ut,1χ{Zt−1>0}+Ut,1χ{Zt−1≤0} is an independent 1/2-1/2 mixture ofUt,1

andUt,2, and is itself an i.i.d. process. SimilarlyVt = Vt,1χ{Zt−1>0} +Vt,1χ{Zt−1≤0}

is an independent 1/2-1/2 mixture ofVt,1 andVt,2.

5
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Let us introduce the auxiliary autoregressive sequence

Y ∗t = βY ∗t−1 + Ut =
∞∑

i=0

βiUt−i.

As we uselog in the definition ofUt, the convergence of the sum cannot be taken for

granted. However, the distribution ofZt is absolutely continuous (at zero as well) and

it has finite variance, henceE
(
U2

t

)
< ∞, thereforeY ∗t has a stationary distribution

andE (Y ∗t )2 <∞.
The importance of this process comes from the fact that it is stochastically smaller

thanYt, i.e. F̄Y ∗
t

(u) ≤ F̄Yt (u) . To see this, let̂Y0 = Y0 and definêYt recursively as

Ŷt = βŶt−1 + Ut. (4)

Using thatVt ≥ 0 a.s., we can prove by induction thatŶt ≤ Yt :

Ŷt = βŶt−1 + Ut ≤ βYt−1 + Ut ≤ Yt. (5)

SinceŶt tends in distribution to the stationary distribution ofY ∗t as t → ∞, Y ∗t is

indeed stochastically smaller thanYt. Therefore, by examining the tail behaviour of

Y ∗t we can obtain a lower bound for the tail ofYt as well. (A similar majorisation

technique is used in a different context in Lemma 2.2. of Brachner et al. (2009).)

To determine the tail ofY ∗t , we will apply the framework of Klüppelberg and Lind-

ner (2005) who examined the tail behaviour of linear moving average processes with

increments lighter tailed than the exponential distribution. Let
∑∞

−∞ ciWt−i be the

examined process and assume that the probability density ofthe i.i.d. sequenceWt

satisfies

f(u) = ν(u) exp (−ψ(u)) , u ≥ u0 (6)

for someu0, andψ(u) is C2, ψ′(u0) = 0, ψ′(∞) = ∞ andψ′′ is strictly positive on

[u0,∞]. Moreover, using the notationφ = 1/
√
ψ′′, we assume that the functionν is

flat forφ, i.e.

lim
u→∞

ν (u+ xφ (u))
ν (u)

= 1

uniformly on boundedx-intervals, and also thatφ is self-neglecting, i.e. flat for itself.

(Roughly speaking, these assumptions require thatψ(u) should be strictly convex and

ν(u) should behave approximately as a constant asu→∞.)

6
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Furthermore, following the original notations of Klüppelberg and Lindner (2005),

defineq(τ) = ψ′−1(τ) and

Q(τ) =
∞∑

i=−∞
ciq(ciτ), σ2

i (τ) = c2i q
′(ciτ), σ2

∞(τ) =
∞∑

i=−∞
σ2

i (τ).

It follows from the conditions thatQ is a strictly increasing function. Then, provided

thatci is a summable sequence of non-negative real numbers, not allzero, and assuming

that the two conditions below hold:

lim
m→∞ lim sup

τ→∞

∑
|j|>m σ2

j (τ)

σ2∞ (τ)
= 0, (7)

lim
m→∞ lim sup

τ→∞

∑
|j|>m σj (τ)

σ2∞ (τ)
= 0, (8)

the following theorem is true:

Theorem 2. (Klüppelberg and Lindner, 2005) Under the above conditions, asu→∞,

P

( ∞∑
i=−∞

ciWt−i > u

)

∼
1/
√

2π
Q−1 (u)σ∞ (Q−1 (u))

exp

(
−
∫ u

u0
∑

ci

(
Q−1 (v) + ρ

(
Q−1 (v)

))
dv

)

whereρ (τ) = o (1/σ∞ (τ)) . It is also true that1/σ∞ (τ) = o (τ) so the first term in

the integral is the leading term.

In our case, this theorem will be used with the choiceUt = Wt so the conditions

of the theorem should be checked first. Here,

fUt (u) =
1
2

(
K1 exp (K2u) exp

(
−κα−γ/2

+ e
γu
2

))
+

1
2

(
K3 exp (K4u) exp

(
−κα−γ/2

− e
γu
2

))
= ν(u) exp (−ψ(u))

with appropriate constantsK1 > 0, K3 > 0 andK2, K4. To satisfy the necessary

assumptions withu0 = 0 in (6),ψ(u) can be defined as

ψ (u) = κα−γ/2e
γu
2 − eκα−γ/2/2 if u ≥ 2/γ,

ψ (u) = eκα−γ/2 (γ/2)2 u2/2 if u < 2/γ.

7
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Then it is a matter of routine to check that the resultingν(u) function is flat forφ(u)

and thatφ(u) is self-neglecting (see also Example 2.4. (c) in Klüppelberg and Lindner

(2005)), so the tail ofY ∗t can in principle be approximated usingci = βi for i ≥ 0 and

ci = 0 for i < 0. (Conditions (7)-(8) will be checked, see below.) Using the notation

τ0 = eκα−γ/2γ/2, we obtain

ψ′ (u) = κα−γ/2 (γ/2) e
γu
2 = e−1τ0e

γu
2 if u ≥ 2/γ,

ψ′ (u) = eκα−γ/2 (γ/2)2 u = τ0 (γ/2)u if u < 2/γ

and hence

q (τ) = 2γ−1 log (eτ/τ0) = 2γ−1 (log τ − log τ0 + 1) if τ ≥ τ0,

q(τ) = 2γ−1τ/τ0 if τ < τ0.

Then

Q (τ) =
∞∑

j=0

βjq
(
βjτ

)
= 2γ−1

∞∑
j=0

βj log
(
βjeτ/τ0

)
+ 2γ−1

∑
j: βjτ<τ0

βj
(
βjτ/τ0 − log

(
βjeτ/τ0

))
. (9)

For any0 < θ < 1 (we shall chooseθ appropriately from this range later), the sum in

the second term can be written as∑
j: βjτ<τ0

βj
(
βjτ/τ0 − log

(
βjeτ/τ0

))
= (eτ/τ0)

−θ
∑

j: βjτ<τ0

(
β1−θ

)j (
eθ
(
βjτ/τ0

)1+θ − (βjeτ/τ0
)θ

log
(
βjeτ/τ0

))
.

(10)

For 0 < θ < 1 the functiong(x) = xθ log x is bounded on(0, e], hence both(
βjeτ/τ0

)θ log
(
βjeτ/τ0

)
andeθ

(
βjτ/τ0

)1+θ
are bounded if0 < βjτ/τ0 < 1. This

way we have forτ →∞∑
j: βjτ<τ0

(
β1−θ

)j (
eθ
(
βjτ/τ0

)1+θ − (βjeτ/τ0
)θ

log
(
βjeτ/τ0

))
= O (1)

∑
j: βjτ<τ0

(
β1−θ

)j
= o (1)

8
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becauseτ →∞ implies thatj →∞ in the summation condition.

Therefore the sum in (10) (and so the second term in (9)) iso
(
τ−θ

)
. As a conse-

quence, using the notations

A = 2γ−1 (1− β)−1 and B = β (1− β)−1 log β + 1− log τ0,

we obtain forτ →∞

Q (τ) = 2γ−1
∞∑

j=0

βj
(
log
(
βjτ
)

+ 1− log τ0
)

+ o
(
τ−θ

)
= 2γ−1 (1− β)−1

(
log τ + β (1− β)−1 log β + 1− log τ0

)
+ o

(
τ−θ

)
= A (log τ +B) + o

(
τ−θ

)
.

Trivially, Q−1 (u) →∞ and hence

exp
(
−o
((
Q−1 (u)

)−θ
))

= 1 + o
((
Q−1 (u)

)−θ
)

= 1 + o (1) (11)

asu→∞, therefore

Q−1 (u) = exp
(
A−1u−B) exp

(
−o
((
Q−1 (u)

)−θ
))

= exp
(
A−1u−B) (1 + o (1)) .

(12)

Using again (11) and then (12) we obtain a better estimate forQ−1 (u) :

Q−1 (u) = exp
(
A−1u−B) (1 + o

((
Q−1 (u)

)−θ
))

= exp
(
A−1u−B) (1 + o

(
exp

(−θA−1u
)))

=
κγα−γ/2β−

β
1−β

2
exp

(
γ (1− β)

2
u

)
+ o

(
exp

(
γ (1− β) (1− θ)

2
u

))
.

Let us also check conditions (7)-(8). We obtain thatq′ (τ) = 2γ−1/τ0 if τ < τ0

andq′ (τ) = 2γ−1/τ if τ ≥ τ0, henceσ2
i (τ) = 2γ−1β2i/τ0 if βiτ < τ0 andσ2

i (τ) =

2γ−1βi/τ if βiτ ≥ τ0. Thus

σ2
∞ (τ) = 2γ−1

 ∑
j: βjτ≥τ0

βj/τ +
∑

j: βjτ<τ0

β2j/τ0

 ∼ 2γ−1 (1− β)−1
/τ,

so (7)-(8) are easily seen for theci = βi sequence, consequently Theorem 2 can be

applied. It also follows thatρ (τ) = O
(
τ1/2

)
andu0 = 0 in that Theorem. If we

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

chooseθ > 1/2, we obtain

F̄Y ∗
t

(u) = exp
(
− logQ−1 (u)− log σ∞

(
Q−1 (u)

)− ∫ u

0

(
Q−1 (v) +O

(
e

γ(1−β)
4 v

)
dv
))

= exp

(
−κα

−γ/2β−
β

1−β

1− β e
γ(1−β)

2 u +O
(
e

γ(1−β)
4 u

))
. (13)

Taking into account thatY ∗t is stochastically smaller thanYt = log
(
X2

t

)
, the

lower bound is obtained for̄FXt (u) in (3).

To show the upper bound for the tail, we can first prove with a similar majorisa-

tion technique as used in the proof ofF̄Y ∗
t

(u) ≤ F̄Yt (u) (equations (4)-(5)) that the

increase of eitherα+ orα− does not make the tail ofYt any lighter. Therefore, we can

assume thatα = α+ = α− and get an upper bound for the tail of this restricted model.

In this case, let us introduce for eacht a random variableU∗∗t ≥ 0 such thatUt ≤ U∗∗t

a.s. andfU∗∗t
(u) = KfUt (u) for all u > 0 with an appropriateK > 0. (Such a

variable can easily be constructed.) Define alsoh(y) = βyχ{y≥0} + log (1 + ω/α) .

It follows from α+ = α− that hi (y) ≤ h(y) (i = 1, 2) and thus it can be shown

again with a majorisation argument thatF̄Y ∗∗
t

(u) ≥ F̄Yt (u) holds for the stationary

distribution of the model defined by

Y ∗∗t = h
(
Y ∗∗t−1

)
+ U∗∗t .

Indeed, letỸ0 = Y0 and definẽYt recursively as

Ỹt = h
(
Ỹt−1

)
+ U∗∗t .

UsingUt ≤ U∗∗t we can prove by induction thatYt ≤ Ỹt :

Yt ≤ h (Yt−1) + Ut ≤ h
(
Ỹt−1

)
+ Ut ≤ h

(
Ỹt−1

)
+ U∗∗t = Ỹt.

Since the distribution of̃Yt tends to the stationary distribution ofY ∗∗t ast →∞, Yt is

stochastically smaller thanY ∗∗t .

As h(y) ≥ 0 for all y andU∗∗t ≥ 0 a.s., an alternative definition forY ∗∗t is

Y ∗∗t = βY ∗∗t−1 + U∗∗t + log (1 + ω/α) =
∞∑

i=0

βiU∗∗t−i +
log (1 + ω/α)

1− β . (14)

10
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The result of Klüppelberg and Lindner (2005) again gives that the tail of
∑∞

i=0 β
iU∗∗t−i

has the same form as the tail ofY ∗t (equation (13)). Completing the above reasoning

with the effect of the last constant term in (14) it is easy to derive the upper bound for

the tail ofXt in (3).

In some applications (e.g. Elek and Márkus (2008)) theα− = 0 restriction is used.

Then the upper bound in (3) certainly holds and a slightly weaker lower bound can also

be proven easily:

Proposition 1. Assume the assumptions of Theorem 1 but allowα− = 0. Then for

everyδ > 0 there exists aK > 0 such that

exp
(
−Ku(1+δ)γ(1−β)

)
≤ F̄Xt (u) . (15)

Proof. Let us use the same notations as in the proof of Theorem 1 and let Y ∗∗∗t be

defined by

Y ∗∗∗t = βY ∗∗∗t−1 + U+
t if Zt ≥ 0

Y ∗∗∗t = U0
t if Zt < 0

whereU0
t = log

(
α0Z

2
t

)
. It is easily shown thatY ∗∗∗t ≤ Yt stochastically in this case.

Moreover, asZt is symmetrically distributed, for everyn ∈ Z+ with probability2−n

Y ∗∗∗t =
n−1∑
i=0

βiU+
t−i + βnY ∗∗∗t−n .

Therefore, using the notationsq = F̄Y ∗∗∗
t−n

(0) andYt,n =
∑n−1

i=0 β
iU+

t−i,

F̄Y ∗∗∗
t

(u) ≥ q2−nF̄Yt,n (u) .

Moreover, similarly to the derivation of the tail ofY ∗t , it follows again from Theorem

2 that

F̄Yt,n (u) = exp
(
−Ke γ(1−β)

2(1−βn) +O
(
e

γ(1−β)
4(1−βn)

))
with a suitableK > 0. Choosingn such that1/ (1− βn) < 1 + δ we obtain

F̄Y ∗∗∗
t

(u) ≥ exp
(
−Ke (1+δ)γ(1−β)

2

)
with a possibly differentK > 0, and transformingYt toXt gives the statement of the

proposition.
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3. Conclusions

In this paper we showed that the tail of aβ-TARCH model can be approximated by

Weibull-like distributions with exponentγ (1− β) if the generating noise has Weibull-

like tail with exponentγ. We conjecture that the lower bound in Theorem 1 gives the

precise asymptotics for the tail of the model but we could notprove this conjecture yet.

It is a natural question to ask how the tail behaviour is modified when AR- or

MA-terms are added to the simple uncorrelatedβ-TARCH model, as e.g. in Elek and

Márkus (2008). This question is not yet settled but we conjecture that the more general

ARMA-β-TARCH model has approximately a Weibull-like tail with thesame exponent

as the more restricted model examined in this paper.
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