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It is now common knowledge that the simple quadratic ARCH process has regularly varying tail even when generated by a normally distributed noise, and the tail behaviour is well-understood under more general conditions as well. Much less studied is the case of β-ARCH-type processes, i.e. when the conditional variance is a 2β-power function with 0 < β <1. Being a little more general and allowing for asymmetry, we consider threshold β-ARCH models, driven by noises with Weibull-like tails. (Special cases include the Gaussian or the Laplace distributions.) We show that the generated process has approximately Weibull like tail, too, albeit with different exponent: 1-β times that of the noise, in the sense that the tail can be bounded from both sides by Weibull distributions of this exponent but slightly different constants. The proof is based on taking an appropriate auxiliary sequence and then applying the general result of Klüppelberg and Lindner (2005) for the tail of infinite MA sequences with light-tailed innovations.

Introduction

In this paper we examine the tail behaviour of the stationary distribution of certain ARCH-type models defined by the equation

X t = ω + α + X + t-1 2β + α -X - t-1 2β 1/2 Z t , (1) 
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where we apply the usual notations x + = max (x, 0) and x -= -min (x, 0) . The model parameters ω, α + and α -satisfy min (α + , α -) ≥ 0, max (α + , α -) > 0 and ω > 0, and Z t is an i.i.d. sequence with zero mean and finite variance.

An important feature of this process is that -if the autocorrelation function is defined at all -it is an uncorrelated but not an independent sequence because its conditional variance is changing over time as a function of the lagged values (conditional heteroscedasticity). If β = 1 and α + = α -> 0, we obtain the well-known ARCH (autoregressive conditionally heteroscedastic) model [START_REF] Engle | Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation[END_REF], where the conditional variance has a quadratic functional form. Since this process can reproduce the stylised facts (e.g. uncorrelatedness, conditional heteroscedasticity, nonnormality) of financial time series in an easily estimable way, it has become a basic tool in financial econometrics in the past two decades, and gave rise to various generalisations. For instance, in order to model the fact that the variance of stock returns responds more strongly to negative shocks than to positive ones, [START_REF] Glosten | On the relation between the expected value and the volatility of the normal excess return on stocks[END_REF] defined the TARCH (threshold ARCH) process by allowing α + = α -in the equation with β = 1.

(Hence α + < α -generally holds in financial applications.) For a broad overview of the various generalisations of ARCH models and some of their properties we refer the reader to [START_REF] Terasvirta | An introduction to univariate GARCH models[END_REF].

Due to the popularity of the quadratic ARCH models in finance, their probabilistic properties are quite much studied and well understood. It is a well-known fact for β = 1 (see e.g. [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF]) that not all choices of (ω, α + , α -) and of the distribution of Z t permit a stationary solution of equation (1). For instance, if Z t is normally distributed, the quadratic ARCH model (i.e. the case α + = α -) has a stationary solution if and only if α + = α -< 2 exp (δ) ≈ 3.562, where δ is the Euler-constant.

(A different choice for the noise distribution yields a different domain of stationarity.) Also, much is known about the tail behaviour of the stationary distribution if β = 1.

It was proven two decades ago [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] that the simple ARCH process has regularly varying tail (roughly speaking: polynomially decaying tail) even when Z t is normally distributed. This phenomenon is often summarised as: "light-tailed input can cause heavy-tailed output". More generally, [START_REF] Borkovec | The tail of the stationary distribution of an autoregressive process with ARCH(1) errors[END_REF] proved that the AR(1) model driven by a quadratic ARCH(1) innovation has regularly varying
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tail for a very general class of noise distributions. Using the concepts of extreme value theory (EVT) it follows that the stationary distribution of quadratic ARCH processes belongs to the maximum domain of attraction of the Frechet extreme value distribution or, equivalently, their tail can be approximated by a generalised Pareto distribution (GPD) with shape parameter ξ > 0. (For an introduction into EVT we refer the reader to [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF].)

The 0 < β < 1 case -where the conditional variance is increasing slower than a quadratic function of the lagged values -is very different from the usual β = 1 parameter choice, and is much less studied in the literature. The model may then be called the β-TARCH process and was analysed e.g. by [START_REF] Guegan | Probabilistic properties of the β-ARCH-model[END_REF]. It follows relatively easily from the drift condition for Markov chains [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF] that in the 0 < β < 1 case the X t process defined by ( 1) is stationary irrespective of the choice for the parameters and for the distribution of Z t (provided that the latter has a finite second moment and some basic conditions for its density are fulfilled). Moreover, if the mth moment of Z t is finite, the mth moment of the stationary distribution of X t will be finite, too (see [START_REF] Guegan | Probabilistic properties of the β-ARCH-model[END_REF], or in a more general setting [START_REF] Elek | A light-tailed conditionally heteroscedastic time series model with an application to river flows[END_REF]). Hence, if all moments of Z t is finite and its distribution has infinite support, the distribution of X t may only belong to the maximum domain of attraction of the Gumbel law and, equivalently, the shape parameter of the GPD fitted to it may only be zero -if the distribution belongs to the maximum domain of attraction of an extreme value law at all.

This result already yields that the β-TARCH model is lighter tailed than the usual, quadratic specification: for light-tailed Z t noises the tail of X t decays faster to zero than a polynomial function. The finding, however, does not determine the exact tail behaviour: the maximum domain of attraction of the Gumbel law contains many different types of distributions (e.g. normally, exponentially or lognormally decaying ones). In this paper we give a more precise estimate for the tail decay by showing that X t has approximately Weibull-like tail provided that Z t has a Weibull-like distribution. Our research is motivated by the fact that β-TARCH models proved useful to model conditional heteroscedasticity in areas where the quadratic ARCH model was considered too heavy-tailed, such as in the analysis of water discharge series of rivers with large
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catchments. (See e.g. [START_REF] Elek | A light-tailed conditionally heteroscedastic time series model with an application to river flows[END_REF] or in a broader context [START_REF] Szilágyi | Hybrid, Markov chain-based model for daily streamflow generation at multiple catchment sites[END_REF].)

Throughout the paper we will use the notations FX (u) = 1 -F X (u) for the survival function and f X (u) for the density function of the random variable X.

Tail behaviour

To examine the tail behaviour of X t let us introduce an assumption on the tail of

Z t :
Assumption 1. Z t is an i.i.d. sequence with a symmetric, absolutely continuous probability distribution. Moreover, there exist u 0 > 0, γ > 0, κ > 0, K 1 > 0 and K 2 such that its probability density satisfies

f Zt (u) = K 1 |u| K2 exp (-κ|u| γ ) (2)
for every |u| > u 0 , and f Zt (u) is bounded away from zero on [-u 0 , u 0 ] .

According to this assumption, Z t has a Weibull-like tail with exponent γ. The Gaussian (γ = 2) or the Laplace (γ = 1) distributions are obtained as special cases. [START_REF] Guegan | Probabilistic properties of the β-ARCH-model[END_REF] showed under the assumption min (α + , α -) > 0 that if β > (γ -1)/γ, X t has no exponential moment (i.e. it is heavier tailed than the exponential distribution) while if β < (γ -1)/γ, X t has a moment generating function defined around the neighbourhood of zero. This finding already suggests that X t may possess (approximately) a Weibull-like tail with exponent γ(1 -β). Assuming a normally distributed noise (i.e. γ = 2), α + = α -and 1/2 < β < 1, [START_REF] Robert | Extremes of alpha-ARCH models[END_REF] argued that this is indeed the case: under his assumptions X t has Weibull-like tail with exponent 2 (1 -β) . Although the proof of his conjectures seems to be incomplete, 2

2 He derives a functional equation for the logarithm of the moment generating function L Y (s) = E (exp (sXt)) of Yt = log X 2 t and estimates the tail of Yt based on the behaviour of L Y (s) around ∞. During the calculations he assumes (see Appendix 1 of his paper) that if a function g satisfies

g(x) -g(αx) = O(1/x) as x → ∞, then g(x) = O(1/x)
. However, this is not the case: if e.g.

g(x) = sin (2π log x/ log α) then g(x) -g(αx) = 0.
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Theorem 1. Assume that X t satisfies equation (1), Assumption 1 holds, and ω > 0, min (α + , α -) > 0, 0 < β < 1. Then, using the notation α = max (α + , α -) , the survival function of the stationary distribution of X t satisfies

exp - α -γ/2 κγβ -β 1-β 2 u γ(1-β) + O u γ(1-β)/2 ≤ FXt (u) ≤ exp - (α + ω) -γ/2 κγβ -β 1-β 2 u γ(1-β) + O u γ(1-β)/2 . (3) Clearly, since (K -ǫ) z < Kz + O z 1/2 < (K + ǫ) z as z → ∞ for any K > 0
and ǫ > 0, the exponent and the bounds for the multiplier of u γ(1-β) are exact in the above given Weibull like approximation, but (even if the constants were the same in the upper and lower bound) there still remains room for a deviation from an asymptotically exact Weibull limit distribution.

Proof. We may assume without loss of generality that α = α + ≥ α -. Let Y t = log(X 2 t ), U t,1 = log α + Z 2 t , and U t,2 = log α -Z 2 t . Furthermore, let us introduce the functions h 1 (y) = log (ω/α + + exp (βy)) , h 2 (y) = log (ω/α -+ exp (βy))

and the random variables

V t,i = h i (Y t-1 ) -βY t-1 (i = 1, 2) . Then Y t = h 1 (Y t-1 ) + U t,1 = βY t-1 + U t,1 + V t,1 if Z t-1 > 0, Y t = h 2 (Y t-1 ) + U t,2 = βY t-1 + U t,2 + V t,2 if Z t-1 ≤ 0.
Since h i (y) ≥ βy (i = 1, 2) , V t,i ≥ 0 a.s. Moreover, since Z t is a symmetrically distributed i.i.d. sequence, Y t can be written as

Y t = βY t-1 + U t + V t ,
where

U t = U t,1 χ {Zt-1>0} + U t,1 χ {Zt-1≤0} is an independent 1/2-1/2 mixture of U t,1
and U t,2 , and is itself an i.i.d. process.

Similarly V t = V t,1 χ {Zt-1>0} + V t,1 χ {Zt-1≤0}
is an independent 1/2-1/2 mixture of V t,1 and V t,2 .
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Let us introduce the auxiliary autoregressive sequence

Y * t = βY * t-1 + U t = ∞ i=0 β i U t-i .
As we use log in the definition of U t , the convergence of the sum cannot be taken for granted. However, the distribution of Z t is absolutely continuous (at zero as well) and it has finite variance, hence E U 2 t < ∞, therefore Y * t has a stationary distribution and E (Y * t ) 2 < ∞. The importance of this process comes from the fact that it is stochastically smaller than Y t , i.e. FY * t (u) ≤ FYt (u) . To see this, let Ŷ0 = Y 0 and define Ŷt recursively as

Ŷt = β Ŷt-1 + U t . (4) 
Using that V t ≥ 0 a.s., we can prove by induction that Ŷt ≤ Y t :

Ŷt = β Ŷt-1 + U t ≤ βY t-1 + U t ≤ Y t . (5) 
Since Ŷt tends in distribution to the stationary distribution of Y * t as t → ∞, Y * t is indeed stochastically smaller than Y t . Therefore, by examining the tail behaviour of Y * t we can obtain a lower bound for the tail of Y t as well. (A similar majorisation technique is used in a different context in Lemma 2.2. of [START_REF] Brachner | Extremes of autoregressive threshold processes[END_REF].)

To determine the tail of Y * t , we will apply the framework of [START_REF] Klüppelberg | Extreme value theory for moving average processes with light-tailed innovations[END_REF] who examined the tail behaviour of linear moving average processes with increments lighter tailed than the exponential distribution. Let ∞ -∞ c i W t-i be the examined process and assume that the probability density of the i.i.d. sequence W t satisfies

f (u) = ν(u) exp (-ψ(u)) , u ≥ u 0 (6)
for some u 0 , and

ψ(u) is C 2 , ψ ′ (u 0 ) = 0, ψ ′ (∞) = ∞ and ψ ′′ is strictly positive on [u 0 , ∞].
Moreover, using the notation φ = 1/ √ ψ ′′ , we assume that the function ν is flat for φ, i.e.

lim u→∞ ν (u + xφ (u)) ν (u) = 1
uniformly on bounded x-intervals, and also that φ is self-neglecting, i.e. flat for itself.

(Roughly speaking, these assumptions require that ψ(u) should be strictly convex and ν(u) should behave approximately as a constant as u → ∞.)
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Furthermore, following the original notations of [START_REF] Klüppelberg | Extreme value theory for moving average processes with light-tailed innovations[END_REF], define q(τ ) = ψ ′-1 (τ ) and

Q(τ ) = ∞ i=-∞ c i q(c i τ ), σ 2 i (τ ) = c 2 i q ′ (c i τ ), σ 2 ∞ (τ ) = ∞ i=-∞ σ 2 i (τ ).
It follows from the conditions that Q is a strictly increasing function. Then, provided that c i is a summable sequence of non-negative real numbers, not all zero, and assuming that the two conditions below hold:

lim m→∞ lim sup τ →∞ |j|>m σ 2 j (τ ) σ 2 ∞ (τ ) = 0, (7) 
lim m→∞ lim sup τ →∞ |j|>m σ j (τ ) σ 2 ∞ (τ ) = 0, (8) 
the following theorem is true:

Theorem 2. [START_REF] Klüppelberg | Extreme value theory for moving average processes with light-tailed innovations[END_REF] Under the above conditions, as u → ∞,

P ∞ i=-∞ c i W t-i > u ∼ 1/ √ 2π Q -1 (u) σ ∞ (Q -1 (u)) exp - u u0 ci Q -1 (v) + ρ Q -1 (v) dv where ρ (τ ) = o (1/σ ∞ (τ ))
. It is also true that 1/σ ∞ (τ ) = o (τ ) so the first term in the integral is the leading term.

In our case, this theorem will be used with the choice U t = W t so the conditions of the theorem should be checked first. Here,

f Ut (u) = 1 2 K 1 exp (K 2 u) exp -κα -γ/2 + e γu 2 + 1 2 K 3 exp (K 4 u) exp -κα -γ/2 - e γu 2 = ν(u) exp (-ψ(u))
with appropriate constants K 1 > 0, K 3 > 0 and K 2 , K 4 . To satisfy the necessary assumptions with u 0 = 0 in (6), ψ(u) can be defined as

ψ (u) = κα -γ/2 e γu 2 -eκα -γ/2 /2 if u ≥ 2/γ, ψ (u) = eκα -γ/2 (γ/2) 2 u 2 /2 if u < 2/γ.
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because τ → ∞ implies that j → ∞ in the summation condition.

Therefore the sum in (10) (and so the second term in ( 9)) is o τ -θ . As a consequence, using the notations

A = 2γ -1 (1 -β) -1 and B = β (1 -β) -1 log β + 1 -log τ 0 , we obtain for τ → ∞ Q (τ ) = 2γ -1 ∞ j=0 β j log β j τ + 1 -log τ 0 + o τ -θ = 2γ -1 (1 -β) -1 log τ + β (1 -β) -1 log β + 1 -log τ 0 + o τ -θ = A (log τ + B) + o τ -θ . Trivially, Q -1 (u) → ∞ and hence exp -o Q -1 (u) -θ = 1 + o Q -1 (u) -θ = 1 + o (1) (11) 
as u → ∞, therefore

Q -1 (u) = exp A -1 u -B exp -o Q -1 (u) -θ = exp A -1 u -B (1 + o (1)) . (12) 
Using again (11) and then (12) we obtain a better estimate for Q -1 (u) :

Q -1 (u) = exp A -1 u -B 1 + o Q -1 (u) -θ = exp A -1 u -B 1 + o exp -θA -1 u = κγα -γ/2 β -β 1-β 2 exp γ (1 -β) 2 u + o exp γ (1 -β) (1 -θ) 2 u .
Let us also check conditions ( 7)-( 8). We obtain that q ′ (τ

) = 2γ -1 /τ 0 if τ < τ 0 and q ′ (τ ) = 2γ -1 /τ if τ ≥ τ 0 , hence σ 2 i (τ ) = 2γ -1 β 2i /τ 0 if β i τ < τ 0 and σ 2 i (τ ) = 2γ -1 β i /τ if β i τ ≥ τ 0 . Thus σ 2 ∞ (τ ) = 2γ -1   j: β j τ ≥τ0 β j /τ + j: β j τ <τ0 β 2j /τ 0   ∼ 2γ -1 (1 -β)
-1 /τ, so ( 7)-( 8) are easily seen for the c i = β i sequence, consequently Theorem 2 can be applied. It also follows that ρ (τ ) = O τ 1/2 and u 0 = 0 in that Theorem. If we
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choose θ > 1/2, we obtain

FY * t (u) = exp -log Q -1 (u) -log σ ∞ Q -1 (u) - u 0 Q -1 (v) + O e γ(1-β) 4 v dv = exp - κα -γ/2 β -β 1-β 1 -β e γ(1-β) 2 u + O e γ(1-β) 4 u . (13) 
Taking into account that Y * t is stochastically smaller than Y t = log X 2 t , the lower bound is obtained for FXt (u) in (3).

To show the upper bound for the tail, we can first prove with a similar majorisation technique as used in the proof of FY * t (u) ≤ FYt (u) (equations ( 4)-( 5)) that the increase of either α + or α -does not make the tail of Y t any lighter. Therefore, we can assume that α = α + = α -and get an upper bound for the tail of this restricted model.

In this case, let us introduce for each t a random variable U * * t ≥ 0 such that U t ≤ U * * t a.s. and f U * * t (u) = Kf Ut (u) for all u > 0 with an appropriate K > 0. (Such a variable can easily be constructed.) Define also h(y) = βyχ {y≥0} + log (1 + ω/α) .

It follows from α + = α -that h i (y) ≤ h(y) (i = 1, 2) and thus it can be shown again with a majorisation argument that FY * * t (u) ≥ FYt (u) holds for the stationary distribution of the model defined by

Y * * t = h Y * * t-1 + U * * t .
Indeed, let Ỹ0 = Y 0 and define Ỹt recursively as

Ỹt = h Ỹt-1 + U * * t .
Using U t ≤ U * * t we can prove by induction that Y t ≤ Ỹt :

Y t ≤ h (Y t-1 ) + U t ≤ h Ỹt-1 + U t ≤ h Ỹt-1 + U * * t = Ỹt .
Since the distribution of Ỹt tends to the stationary distribution of Y 

Y * * t = βY * * t-1 + U * * t + log (1 + ω/α) = ∞ i=0 β i U * * t-i + log (1 + ω/α) 1 -β . ( 14 
)
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The result of [START_REF] Klüppelberg | Extreme value theory for moving average processes with light-tailed innovations[END_REF] again gives that the tail of

∞ i=0 β i U * * t-i
has the same form as the tail of Y * t (equation ( 13)). Completing the above reasoning with the effect of the last constant term in ( 14) it is easy to derive the upper bound for the tail of X t in (3).

In some applications (e.g. [START_REF] Elek | A light-tailed conditionally heteroscedastic time series model with an application to river flows[END_REF]) the α -= 0 restriction is used.

Then the upper bound in (3) certainly holds and a slightly weaker lower bound can also be proven easily: Proposition 1. Assume the assumptions of Theorem 1 but allow α -= 0. Then for every δ > 0 there exists a K > 0 such that exp -Ku (1+δ)γ(1-β) ≤ FXt (u) . with a possibly different K > 0, and transforming Y t to X t gives the statement of the proposition.

YFY

  Let us use the same notations as in the proof of Theorem 1 and let Y * * * α 0 Z 2 t . It is easily shown that Y * * * t ≤ Y t stochastically in this case.Moreover, as Z t is symmetrically distributed, for every n ∈ Z + with probability 2 -n + t-i + β n Y * * * t-n .Therefore, using the notations q = FY * * * t-n (0) andY t,n = n-1 i=0 β i U + t-i , FY * * * t (u) ≥ q2 -n FYt,n (u) .Moreover, similarly to the derivation of the tail of Y * t , it follows again from Theorem 2 K > 0. Choosing n such that 1/ (1 -β n ) < 1 + δ we obtain
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Then it is a matter of routine to check that the resulting ν(u) function is flat for φ (u) and that φ(u) is self-neglecting (see also Example 2.4. (c) in [START_REF] Klüppelberg | Extreme value theory for moving average processes with light-tailed innovations[END_REF]), so the tail of Y * t can in principle be approximated using c i = β i for i ≥ 0 and c i = 0 for i < 0. (Conditions ( 7)-(8) will be checked, see below.) Using the notation

and hence

Then

For any 0 < θ < 1 (we shall choose θ appropriately from this range later), the sum in the second term can be written as j: β j τ <τ0

β 1-θ j e θ β j τ /τ 0 1+θ -β j eτ /τ 0 θ log β j eτ /τ 0 .

(10)

For 0 < θ < 1 the function g(x) = x θ log x is bounded on (0, e], hence both β j eτ /τ 0 θ log β j eτ /τ 0 and e θ β j τ /τ 0 1+θ are bounded if 0 < β j τ /τ 0 < 1. This way we have for τ → ∞ j: β j τ <τ0
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Conclusions

In this paper we showed that the tail of a β-TARCH model can be approximated by

Weibull-like distributions with exponent γ (1 -β) if the generating noise has Weibulllike tail with exponent γ. We conjecture that the lower bound in Theorem 1 gives the precise asymptotics for the tail of the model but we could not prove this conjecture yet.

It is a natural question to ask how the tail behaviour is modified when AR-or MA-terms are added to the simple uncorrelated β-TARCH model, as e.g. in [START_REF] Elek | A light-tailed conditionally heteroscedastic time series model with an application to river flows[END_REF]. This question is not yet settled but we conjecture that the more general ARMA-β-TARCH model has approximately a Weibull-like tail with the same exponent as the more restricted model examined in this paper.