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Improved Penalization for Determining the Number of Factors

in Approximate Factor Models
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Abstract

The procedure proposed by Bai and Ng (2002) to identify the number of factors in static
factor models is revisited. In order to improve its performance, we introduce a tuning
multiplicative constant in the penalty, an idea that was proposed by Hallin and Liška
(2007) in the context of dynamic factor models. Simulations show that our method in
general delivers more reliable estimates, in particular in the case of large idiosyncratic
disturbances.
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1 Introduction

Factor analysis is a very popular dimension reduction technique used in many disciplines

as e.g. econometrics, statistics, signal processing, psychometrics, chemometrics. It allows

to account for the “pervasive” cross-correlations present among the observed series of large

datasets. Such correlations are summarized by means of few latent variables (the factors)

which are common to all variables. We assume to observe an infinite sequence of nested

vector stochastic processes {xnt = (x1t . . . xnt)
′, n ∈ N, t ∈ Z}, driven by a finite number r of

unobserved factors:

xnt = ΛnFt + ξnt, t ∈ Z. (1)

Ft is the r × 1 vector of factors, and Λ are the corresponding n × r loadings. The process

xnt is therefore represented as the sum of two components which we assume to be orthogonal:

a common component ΛnFt, and an idiosyncratic component ξnt. The latter is allowed to

be mildly cross-correlated and this sense we say that (1) is an approximate factor model.

Typically r << n, but r is unknown, and its estimation is a crucial step in the identification

of the model.

The common and idiosyncratic components are disentangled for n going to infinity, while

consistency of the estimation is achieved when both n and T (the sample size) go to infinity.

From this double-asymptotic result it is clear the necessity of having a large cross section of

long time series in order to estimate consistently (1). When datasets are large in both the

time (T ) and the cross-section (n) dimensions, determining the number of common factors is

particularly difficult as traditional information criteria as BIC or AIC, which are consistent for

T diverging but for finite n, cannot be applied anymore. In this double-asymptotic framework

the reference criterion for determining r is by Bai and Ng (2002), who propose a consistent

estimator as both n and T diverge. In practice, the method they propose is known to often

deliver non-robust results as the number of factors can be over- or under- estimated (see e.g.

the application on U.S. macroeconomic data in Forni et al., 2009).

The aim of this paper is to improve the penalization in the criterion by Bai and Ng (2002).

Following Hallin and Liška (2007), who propose a similar criterion in the case of the Generalized
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Dynamic Factor Model by Forni et al. (2000), we introduce in the penalty function a new

parameter in order to tune its penalizing power. We get estimates of the number of static

factors which are relatively more robust to different specifications of the criterion, namely

when we have heteroskedastic and/or large idiosyncratic components. Finally, the consistency

properties of our estimator are exactly the same as those of the original one by Bai and Ng

(2002).

The criterion we use is based on the key identifying assumption of this class of models. Namely,

we want to find r such that all the eigenvalues of the idiosyncratic covariance matrix are

bounded for n diverging. The simplest method to determine r is the “Scree-test”. Cattel

(1966) observed that the graph of the eigenvalues (in descending order) of an uncorrelated

data set forms a straight line with an almost horizontal slope. Therefore, the point in the

eigenvalue graph where the eigenvalues begin to level off with a flat and steady decrease is

an estimator of the sufficient number of factors. Obviously such a criterion is often fairly

subjective, because it is not uncommon to find more than one major break in the eigenvalue

graph and there is no unambiguous rule to use. Following this intuition, the criterion by Bai

and Ng (2002) minimizes the variance of the idiosyncratic component. Other recent criteria

based on the eigenvalues of the covariance matrix are in Yao and Pan (2008) and Onatski

(2010). Our procedure could be adapted also to these other studies, but we limit ourselves to

Bai and Ng (2002), being this the most known criterion in the field of time series analysis.

2 Determining the number of factors

Bai and Ng (2002) consider an approximate factor model where they allow for serial depen-

dence and heteroskedasticity of ξnt, and for weak dependence between factors and idiosyncratic

series (we refer to their paper for a detailed description of the assumptions). In such a model,

when both n and T diverge, the factors Ft and the loadings Λn can be estimated by means

of asymptotic principal components. If T > n, then, after imposing Λ′
nΛn/n = Ir, the esti-

mated covariance matrix of the observables Γ̂T
n is n×n and Λ̂T

n are
√

n times the eigenvectors

associated to the r largest eigenvalues of Γ̂T
n , and F̂T

t = Λ̂T ′
n xnt/n. If instead T < n analogous

2
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estimators can be obtained from a T × T estimator of the covariance matrix simply by ex-

changing the roles of the factors and their loadings. Theorem 1 in Bai and Ng (2002) proves

consistency of these estimators and for a more general class of factors’ estimators, provided

that they all span the r-dimensional space of the common components.

The number of factors r is such that all eigenvalues of the idiosyncratic covariance matrix are

bounded for n diverging (see assumption C in Bai and Ng, 2002). Assume to have a given

number of factors k, then the cross-sectional average variance of the idiosyncratic component

is a function of k estimated factors F̂
(k)T
t , hence is a function of k:

V (k) =
1

nT

n∑
i=1

T∑
t=1

(
xnit − λ̂

(k)T ′
ni F̂

(k)T
t

)2

. (2)

Clearly V (k) is minimized for k = n, but overparametrization can be avoided by introducing

a penalty function p(n, T ). Therefore, the resulting criterion is (we consider here only the

log-version of the Bai and Ng (2002) criterion being the recommended one by the authors):

r̂T
n = argmin

0≤k≤rmax

ICT
n (k) = argmin

0≤k≤rmax

log [V (k)] + kp(n, T ), (3)

rmax being the maximum number of factors allowed. Finally, provided that p(n, T ) has the

required asymptotic properties, r̂T
n is consistent as n and T diverge (see Theorem 2 in Bai and

Ng, 2002, for details).

3 Improved penalization and the choice of r

The information criterion (3) has the property, exploited also by Hallin and Liška (2007) in the

context of dynamic factor models, that a penalty function p(n, T ) leads to a consistent estimate

of r if and only if cp(n, T ) does, where c is an arbitrary positive real number. Thus, multiplying

the penalty by c has no influence on the asymptotic performance of the identification method.

However, for given finite n and T , the value of a penalty function p(n, T ) satisfying (3) can be

arbitrarily small or arbitrarily large, and this indeterminacy can affect the actual result quite

dramatically. Bai and Ng (2002) propose three choices for the penalty function and indicate

3
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the corresponding criteria as IC1, IC2, and IC3. However, only the first two are known to

behave well in empirical applications. We therefore propose the two “modified” information

criteria:

ICT∗
1,c,n(k) = log [V (k)] + c k

(
n + T

nT

)
log

(
nT

n + T

)
, c ∈ R+,

ICT∗
2,c,n(k) = log [V (k)] + c k

(
n + T

nT

)
log(min{√n,

√
T})2, c ∈ R+.

The estimated number of factors is now also a function of c and, depending on the chosen

criterion, is given by

r̂T
c,n = argmin

0≤k≤rmax

ICT∗
i,c,n(k) with i = 1, 2,

the consistency proof in Theorem 2 by Bai and Ng (2002) being still valid.

The degree of freedom represented by c can be exploited when implementing the criterion in

practice. We follow the procedure proposed by Hallin and Liška (2007).1 The only available

information about the asymptotic behavior of r̂T
c,n comes from considering subsamples of sizes

(nj , τj) with j = 0, . . . , J such that n0 = 0 < n1 < n2 < . . . < nJ = n and τ0 = 0 < τ1 <

τ2 < . . . < τJ = T . For any j, we can compute r̂
τj
c,nj , which is a non-increasing function of c.

Assume r > 0. According to the value of c, we have different behaviors of r̂
τj
c,nj as function of

j.

No penalty If c = 0 then r̂
τj

0,nj
= rmax, indeed no penalization is imposed.

Underpenalization If c > 0, but small, Theorem 2 applies but, in practice, as j increases

r̂
τj
c,nj increases to rmax and would converge to r only if n and T would increase without limits.

In this case we overestimate r.

Overpenalization When c becomes large, r̂
τj
c,nj tends to zero for any j and r is underestimated.

Due to the monotonicity of r̂
τj
c,nj as a function of c, between the “small” underpenalizing values

of c and the “large” overpenalizing values, there must exist a range of “moderate” values of c

such that r̂
τj
c,nj is a stable function of the subsample size (nj , τj). The stability with respect to

1All estimations in this paper were performed using Matlab (R2007a). The code is available at
http://www.barigozzi.eu/research.html.
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sample size can be measured by the empirical variance of r̂
τj
c,nj as a function of j, i.e.

Sc =
1

J

J∑
j=1

[
r̂τj
c,nj

− 1

J

J∑
j=1

r̂τj
c,nj

]2

.

In Figures 1(a)-1(c) and 1(b)-1(d) we show respectively the behavior of r̂
τj
c,nj as a function of nj

and of r̂T
c,n and of Sc as functions of c, when simulating data from 2 different Data Generating

Processes (DGP1 or DGP2 as defined in the next Section) with r = 5. These Figures suggest

that the selection of the number of factors can be based on the inspection of the family of

curves (nj , τj) �→ r̂
τj
c,nj , indexed by c ∈ (0, cmax], trying to find values of c (i.e. curves) such

that for c±δ (δ > 0), r̂
τj

c−δ,nj
↑ r̂

τj
c,nj and r̂

τj

c+δ,nj
↓ r̂

τj
c,nj , as j → J , see Figures 1(a) and 1(c). The

search can be made automatic by considering the mapping c �→ Sc and by choosing r̂T
c,n = r̂T

bc,n,

where ĉ belongs to an interval of c implying Sc = 0 and therefore a constant value of r̂T
c,n as a

function of c, see Figures 1(b) and 1(d).

[FIGURE 1 HERE]

Notice that, there could be more than one interval of c satisfying these requirements, as the ex-

amples shows. In these cases, an explanation analogous to the theoretical argument by Hallin

and Liška (2007) in the case of dynamic factor models suggests that the relevant interval is

the second stability interval, i.e. the smallest values of c for which r̂
τj
c,nj is a constant function

of j (the first stability interval corresponds always to the boundary solution r̂T
c,n = rmax and

it is thus a non-admissible solution). The intuition behind this goes as follows: if the correct

number of factors is r and the second stability interval correctly identifies it, by increasing the

penalty it is generally possible to have another stability interval corresponding to a smaller

number of factors r∗ < r, but in this case we are overpenalizing. As an empirical test of

the above argument, in Figure 6 we show the estimated number of factors averaged over 100

simulations of the 4 DGPs considered in the next Section. The number of factors is r = 5

and we see that the second stability interval always delivers an estimated number r̂T
c,n which is

closer to r than the number suggested by the other intervals. In the next Section we show by

5
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simulations that our criterion, that considers the second stability interval corresponding to ĉ,

delivers a number of factors that is always lower or equal to the correct number of factors, but

it is never greater. Therefore, considering stability intervals corresponding to higher values

c > ĉ can never improve the estimate.

[FIGURE 2 HERE]

4 Simulations

In this Section, we conduct a set of simulation experiments to evaluate the performance of our

proposed criterion, relative to that of the Bai and Ng (2002) criterion, in finite samples. The

baseline model for all simulations is:

xit =

r∑
j=1

λijFtj +
√

θξit i = 1, . . . , n, t = 1, . . . , T,

with factors and factor loadings distributed as N(0, 1). We consider four Data Generating

Processes (DGPs) similar to those in Bai and Ng (2002).

DGP1 Homoskedastic idiosyncratic components ξit ∼ N(0, 1).

DGP2 Heteroskedastic idiosyncratic components

ξit =

⎧⎪⎨⎪⎩ ξ1
it if t odd

ξ1
it + ξ2

it if t even
, ξ1

it, ξ
2
it ∼ N(0, 1).

DGP3 Cross-sectional correlations among idiosyncratic components

ξit = vit +

J∑
j �=0 j=−J

βvi−jt, vit ∼ N(0, 1), β = 0.2, J = max{n/20, 10}.

DGP4 Serial correlation among idiosyncratic components

ξit = ρξit−1 + vit , ξit ∼ N(0, 1), vit ∼ N(0, 1), ρ = 0.5.

6
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For each model we set r ∈ {1, 5} and θ ∈ {
1
2
r, r, 3r, 5r

}
, thus assigning to the idiosyncratic

component a variance that is respectively one half, one, three or five times the variance of the

common component. All parameters are set as in Bai and Ng (2002). We generate samples

having size n = 200 and T = 200. We thus have four variance-ratio settings, and for each of

them we have two values of r, one sample size and four DGPs. We set rmax = 10, n1 =
[

3
4
n
]
,

nj+1 = nj +1, where [x] denotes the integer part of x, and c ∈ (0, 5] with step size of 0.01. For

simplicity, we do not consider subsamples in the time dimension. For each case, we simulate

1000 samples and every time we run the original Bai and Ng (2002) criterion IC1, and its

modified version IC∗
1 .2

[TABLES 1 AND 2 HERE]

Tables 1 and 2 show, for θ ∈ {
1
2
r, r, 3r, 5r

}
, the number of times in which a given number of

factors is selected by IC1 and IC∗
1 . First, we consider the baseline scenario of equal variance

for idiosyncratic and common components (θ = r). When there is only one factor, our

criterion performs slightly worse than the original criterion. There is however one exception:

when we allow for cross-correlation of the idiosyncratic components (DGP3) our criterion

does not diverge and is able to detect the correct number of factors in more than 80% of

the cases. Instead, the Bai and Ng (2002) criterion applied to DGP3 always diverges giving

r̂T
c,n = rmax = 10. Similar results hold for the case of a common variance which is double than

the idiosyncratic variance (θ = 1
2
r). IC∗

1 performs similarly to IC1 for DGP1, DGP2 and

DGP4, and performs much better for DGP3. The advantages of our criterion become clear

when we raise the idiosyncratic variance to three times the common variance (θ = 3r). As

already observed by Bai and Ng (2002), a high idiosyncratic variance negatively affects the

ability of ICs criteria in determining the correct number of factors. IC∗
1 is able to work also

under such noisy conditions. When considering DGP3, IC1 diverges and suggest the maximum

possible number of factors. When there is only one factor in the DGP, IC∗
1 performs slightly

worse than IC1 for DGPs 1, 2 and 3, although this happens in less than 10% of cases. When
2We only show a selection of results. Results for smaller samples with n = 50 and T = 50, for r = 3, and

for the IC2 and IC∗
2 criteria, are available upon request.
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the number of factors is higher, our criterion outperforms the IC1 providing in almost all

the cases the right number of factors. See for example the case of 5 factors: out of 1000

replications, our criterion was able to retrieve the right number of factors in 999 cases for

DGP1 (against 967), in 999 cases for DGP2 (against 32), and in 977 cases for DGP4 (against

418). If the idiosyncratic variance is raised to five times the common variance (θ = 5r) and we

still consider 5 factors, the gain obtained by our proposed criterion is even more evident: out

of 1000 replications, the right number of factors is retrieved in 998 cases for DGP1 (against 1),

in 969 cases for DGP2 (against 0), and in 482 cases for DGP4 (against 0). For DGP3, again

we have the same qualitative results: IC1 diverges, while IC∗
1 suggests 0 factors in 674 cases

and a number between 1 and 9 factors for the remaining cases. Summing up, our refinement

makes the Bai and Ng (2002) criterion a much more useful tool in practical contexts. Indeed,

it enormously reduces the probability of large mistakes and always provides a reliable answer,

even when, in the presence of a factor structure in the DGP, the dataset presents some features

of high idiosyncratic variance or heteroskedasticity that would prevent the traditional criteria

from suggesting a finite positive number of factors. Notice that this success is not a technical

artifact depending on a tendency to always retrieve a positive number of factors. It is easy

to check that when there is no factor structure in the simulated data, the proposed criterion

suggests a number of factors equal to zero, exactly as the Bai and Ng (2002) criterion would

do.

5 Empirical applications

We test the performance of our procedure by means of two empirical applications on macroeco-

nomic and financial datasets. In the first case we take a dataset which has been used in many

applications of factor models, (see e.g. Stock and Watson, 2005; Hallin and Liška, 2007). It

comprises 132 series of monthly macroeconomic indicators of the U.S. economy from January

1960 to December 2003 for a total of 528 time observations.3 In a second exercise we consider

daily volatilities (proxied by the adjusted high-low range) of 93 assets belonging to the New
3Data are available at http://www.princeton.edu/˜mwatson
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York S&P100, from 1st January 2001 to 31st December 2008 for a total of 2008 time observa-

tions. In Figures 3(a) and 3(b) we report results obtained for the macroeconomic application.

IC∗
1 indicates the presence of 6 factors. The original criteria IC1 and IC2 suggests 7 factors.

In Figures 3(c) and 3(d) we report the results for the financial dataset. IC∗
1 indicates the

presence of 3 factors, while the original ICs always indicates 5 factors.

[FIGURE 3 HERE]

6 Conclusions

In this paper we refine the Bai and Ng (2002) criterion, which is one of the most popular criteria

available for addressing this issue. The appeal of our new method is three-fold: (i) it builds on

a well known criterion, whose theoretical properties have been proved and are preserved; (ii) it

improves the finite sample performance of the original criterion; (iii) it is easy to implement. In

particular, our procedure is capable of giving an answer even when the original criterion does

not converge. In general, we obtain more robust results with respect to the Bai and Ng (2002)

criterion, especially when the variance explained by the common factors is relatively low.

This result constitutes an improvement in the analysis of datasets where comovements among

variables are hidden by large idiosyncratic disturbances. For example, in financial applications

we often find few common factors explaining a small percentage of the total variance. These

factors are however of great importance for the structural analysis of financial markets (see

e.g. Engle et al., 1990, where the unique factor is interpreted as the “market factor”). Although

some authors identify the factor decomposition by requiring the idiosyncratic components to be

“small” or “negligible” (e.g. in the case of principal component analysis), such characterization

is not reflecting the fundamental nature of factor models: idiosyncratic components indeed

can be “large” and strongly autocorrelated, while the common component can be just white

noise, i.e. serially uncorrelated. The ability of identifying the correct number of factors in

large but finite and apparently heterogeneous datasets is therefore highly desirable.
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Figure 1: IC∗
1 criterion on data simulated from the DGPs defined in Section 4 with r = 5

factors; top row: DGP1; bottom row: DGP2; left column: r̂T
c,nj

as function of nj for different
values of c; right column: r̂T

c,n (solid line) and Sc (dashed line) as functions of c.
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(d) Financial data r̂T
c,n and Sc

Figure 3: IC∗
1 criterion for the two observed datasets; top row: macroeconomic data; bottom

row: financial data; left column: r̂T
c,nj

as function of nj for different values of c; right column:
r̂T
c,n (solid line) and Sc (dashed line) as functions of c.
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ACCEPTED MANUSCRIPT

Ratio between idiosyncratic and common variance = 1

Estimated number of factors brTc,n

r DGP 0 1 2 3 4 5 6 7 8 9 10 RMSD

1 1 IC1 0 1000 0 0 0 0 0 0 0 0 0 0
IC∗

1 0 999 1 0 0 0 0 0 0 0 0 0.03
1 2 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 998 2 0 0 0 0 0 0 0 0 0.04

1 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 9
IC∗

1 0 825 27 6 7 5 0 12 38 80 0 2.76
1 4 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 966 32 2 0 0 0 0 0 0 0 0.20

5 1 IC1 0 0 0 0 0 1000 0 0 0 0 0 0
IC∗

1 0 0 0 0 0 998 2 0 0 0 0 0.04
5 2 IC1 0 0 0 0 0 1000 0 0 0 0 0 0

IC∗
1 0 0 0 0 0 1000 0 0 0 0 0 0

5 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 5
IC∗

1 734 95 42 29 36 49 9 3 1 2 0 4.52
5 4 IC1 0 0 0 0 0 1000 0 0 0 0 0 0

IC∗
1 0 0 0 0 0 957 41 2 0 0 0 0.22

Ratio between idiosyncratic and common variance = 0.5

Estimated number of factors brTc,n

r DGP 0 1 2 3 4 5 6 7 8 9 10 RMSD

1 1 IC1 0 1000 0 0 0 0 0 0 0 0 0 0
IC∗

1 0 999 1 0 0 0 0 0 0 0 0 0.03
1 2 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 998 2 0 0 0 0 0 0 0 0 0.04

1 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 9
IC∗

1 0 805 37 11 3 3 9 12 32 88 0 2.83
1 4 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 959 35 5 0 1 0 0 0 0 0 0.27

5 1 IC1 0 0 0 0 0 1000 0 0 0 0 0 0
IC∗

1 0 0 0 0 0 997 3 0 0 0 0 0.05
5 2 IC1 0 0 0 0 0 1000 0 0 0 0 0 0

IC∗
1 0 0 0 0 0 995 5 0 0 0 0 0.07

5 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 5
IC∗

1 0 0 1 0 2 927 39 17 8 6 0 0.53
5 4 IC1 0 0 0 0 0 1000 0 0 0 0 0 0

IC∗
1 0 0 0 0 0 954 41 4 1 0 0 0.26

Table 1: Number of times in which a criterion estimates the correct number of factors; results
are obtained over 1000 Monte Carlo replications; r is the number of factors imposed in the
simulated data; the DGPs are defined in Section 4; IC1: Bai and Ng (2002) criterion; IC∗

1 our

criterion; RMSD =
√

1
1000

∑1000
i=1 (r̂T

i,c,n − ri)
2.
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ACCEPTED MANUSCRIPT

Ratio between idiosyncratic and common variance = 3

Estimated number of factors brTc,n

r DGP 0 1 2 3 4 5 6 7 8 9 10 RMSD

1 1 IC1 0 1000 0 0 0 0 0 0 0 0 0 0
IC∗

1 0 1000 0 0 0 0 0 0 0 0 0 0
1 2 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 998 2 0 0 0 0 0 0 0 0 0.04

1 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 9
IC∗

1 2 834 30 5 1 2 4 14 37 71 0 2.66
1 4 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 961 36 2 1 0 0 0 0 0 0 0.23

5 1 IC1 0 0 0 0 33 967 0 0 0 0 0 0.18
IC∗

1 0 0 0 0 0 999 1 0 0 0 0 0.03
5 2 IC1 1 33 214 460 260 32 0 0 0 0 0 2.14

IC∗
1 0 0 0 0 0 999 1 0 0 0 0 0.03

5 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 5
IC∗

1 910 42 9 5 5 3 5 6 5 10 0 4.87
5 4 IC1 0 0 7 146 429 418 0 0 0 0 0 1.04

IC∗
1 0 0 0 0 0 977 21 2 0 0 0 0.17

Ratio between idiosyncratic and common variance = 5

Estimated number of factors brTc,n

r DGP 0 1 2 3 4 5 6 7 8 9 10 RMSD

1 1 IC1 0 1000 0 0 0 0 0 0 0 0 0 0
IC∗

1 0 1000 0 0 0 0 0 0 0 0 0 0
1 2 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 1000 0 0 0 0 0 0 0 0 0 0

1 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 9
IC∗

1 350 504 24 5 0 2 3 4 36 72 0 2.64
1 4 IC1 0 1000 0 0 0 0 0 0 0 0 0 0

IC∗
1 0 969 29 1 1 0 0 0 0 0 0 0.20

5 1 IC1 28 230 436 259 46 1 0 0 0 0 0 3.06
IC∗

1 0 0 0 0 0 998 2 0 0 0 0 0.04
5 2 IC1 947 52 1 0 0 0 0 0 0 0 0 4.95

IC∗
1 3 1 1 4 21 969 1 0 0 0 0 0.37

5 3 IC1 0 0 0 0 0 0 0 0 0 0 1000 5
IC∗

1 674 37 6 4 2 5 15 39 68 150 0 4.55
5 4 IC1 637 319 42 2 0 0 0 0 0 0 0 4.63

IC∗
1 141 71 63 82 143 482 17 1 0 0 0 2.39

Table 2: Number of times in which a criterion estimates the correct number of factors; results
are obtained over 1000 Monte Carlo replications; r is the number of factors imposed in the
simulated data; the DGPs are defined in Section 4; IC1: Bai and Ng (2002) criterion; IC∗

1 our

criterion; RMSD =
√

1
1000

∑1000
i=1 (r̂T

i,c,n − ri)
2.
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