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INARCH(1) Processes: Higher-Order Moments and Jumps

Christian H. Weif3®

% Department of Mathematics, Darmstadt University of Technology, Germany.

Abstract

The INARCH(1) model is a simple but practically relevant, two-parameter model for
processes of overdispersed counts with an autoregressive serial dependence structure.
We derive closed-form expressions for the joint (central) moments and cumulants of the
INARCH(1) model up to order 4. These expressions are applied to derive moments of
jumps in INARCH(1) processes. We illustrate this kind of application with a real-data
example, and outline further potential applications.

Keywords: Count-data time series; cumulants; INARCH(1) model; jumps; moments;
overdispersion.

1. Introduction

During the last years, a number of articles considered the analysis and modeling of
count-data time series with overdispersion, i. e., with a variance greater than the mean,
such that the marginal process distribution cannot be described by the popular Poisson
model. Typical reasons for such overdispersion are the presence of positive correlation be-
tween the monitored events or a variation in the probability of the monitored events, see
Weifl (2009a) and references therein, which are commonly observed in real-world appli-
cations. Some of these articles discuss ARMA-type models based on an appropriate type
of thinning operation, see the survey by Weify (2008a), but recently, another approach for
modeling time series of overdispersed counts became quite popular: the INGARCH mod-
els, the integer-valued counterpart to the usual generalized autoregressive conditional
heteroskedasticity models. The INGARCH models were introduced by Heinen (2003)
and further investigated by Ferland et al. (2006); Fokianos et al. (2009); Fokianos &
Fried (2010); Weif3 (2009a, 2010); Zhu & Wang (2009, 2010). We consider the particular
case of the INGARCH(1,0) model in the following, and refer to it as the INARCH(1)
model. This simple two-parameter model with its AR(1)-like serial dependence structure
has already proved to be of great practical relevance, with concrete applications being
reported for monthly claims counts (Wei}, 2009a), for download counts (Zhu & Wang,
2010), and for monthly strike data (Weif}, 2010).

1.1 Definition (INARCH(1) Model) Let (X;)z be a process with state space Ny =
{0,1,...}, let 8 >0 and 0 < o < 1. The process (X¢)z is said to follow an INARCH(1)
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model if X, conditioned on X¢_1,Xt—a, ..., is Poisson distributed according to Po(3 +
« - thl)-

The INARCH(1) model of Definition 1.1 is a stationary, ergodic Markov chain (Fer-
land et al., 2006; Zhu & Wang, 2009) with simple Poisson probabilities as the transition
probabilities. All moments exist (Ferland et al., 2006), and its autocorrelation func-
tion p(k) := Corr[X;, X;—x] = o like in the standard AR(1) case (Wei}, 2009a). The
marginal distribution of the INARCH(1) model can be expressed in terms of its cu-
mulants, which can be determined according to the recursive scheme provided by Weif3
(2009a, 2010). In particular, using the abbreviation fi := 3/ Hle(l — o), the first four
cumulants are given by

K1 = fl» Ko = f2, K3 = f3-(1+2a2), K4 = f4-(1+6a2—|—5a3+6a5), (1)

see Weifl (2009a). As a consequence of formula (1), mean pu, variance o2, skewness and
excess of X; are given by

B B 14202 | [1ta 1+60%+5a°4+6a°
1—a? (1—a)(1—a?)’ 1+a+a? 6] and B(l+a+a?)(1+a?)’ (2)

respectively. Since 02 > i, the INARCH(1) model allows to describe overdispersion.

In this article, we shall consider joint (central) moments and cumulants of the INARCH(1)
model. In Section 2, we derive closed-form expressions for such moments and cumulants
up to order 4. These expressions are applied in Section 3 to derive moments of jumps in
INARCH(1) processes, and we illustrate this kind of application with a real-data example.
Further potential applications are outlined in context of the conclusions in Section 4.

2. Moments and Cumulants of INARCH(1) Processes

The aim of this section is to provide closed-form expressions for the joint (central) mo-
ments and cumulants of the INARCH(1) model up to order 4. For this purpose, we
introduce the following notations:

/14(31,...,87‘71) = E[Xt 'Xt+51 "'Xt+8r71]7
fis1,.ovsrm1) = Bl(Xe = 1) (Xewsy — 1) (Xegs, oy — 1)), (3)
H(Sl,...,sr_l) = Cum[Xt7Xt+sl,...,XH_ST_IL

with 0 < 57 < ... < s,_7 and r € N. The case r = 1 would correspond to the marginal
mean 4= E[X] = 6/(1 — a) = f1.

2.1 Theorem (Moments of INARCH(1) Process) Let (X;)y be a stationary INARCH(1)
process according to Definition 1.1.

(i) For any k >0, we have pu(k) = f2- (o +B(1+a)).
(ii) For any !l > k > 0, we have

plk,l) = 22 ool + fifa-a™F — f3-(1—a)- ot b (k).
2



(iii) For any m > 1>k > 0, we have

u(k,Lm) = @t (@252 (1 - a)(2+ 20 - ?)
—(B42) fs- a2t (1{2&% . (04-1—25) R I
+ EE kD) — foep(k)- (a4 B+ ) + fipk,D).

The proof of Theorem 2.1 is provided in Appendix A.1. Now, we can apply Theorem 2.1
to derive analogous expressions for the joint central moments and cumulants.

2.2 Corollary (Central Moments and Cumulants) Let (X;)y be a stationary INARCH(1)
process according to Definition 1.1.

(i) For any k >0, we have fi(k) = (k) = fa-ar.
(ii) For any | >k > 0, we have
ﬂ(kal) = K/(kJ) = f3 ol (1 +a+a2 - (1 —Ck) 'akJrl)'
(iii) For any m > 1>k > 0, we have

k(k,L,m) = o™ f1- (1 —a)(2+2a —a?) - ol ThF2
—(1=a")- 2o+ + (IT+a+a?)(1+a?)- (1+a+a=F)),

and
p(k,l,m) = wk(k,l,m) + f3-(am HF f2qmti=k),

The proof of Corollary 2.2 is provided in Appendix A.2.

3. Jumps in INARCH(1) Processes

An interesting feature of a count-data process are jumps J; := X; — X;—1. Such jumps
have already been investigated for the case of a Poisson INAR(1) process (Weif3, 2008b,
2009b) and a binomial AR(1) process (Weif}, 2009c). The extent of jumps in a count-data
process reflects the extent of serial dependence: If the given count-data process exhibits
an only small degree of serial dependence, then quite large jumps can be observed and vice
versa. Therefore, the monitoring of jumps offers the potential of application to estimate
model parameters related to the serial dependence structure, see, e. g., Weifl (2008b),
or to construct control charts to detect changes in the serial dependence structure, as
proposed by Weif3 (2009b,c).

In view of these potential applications, we shall now investigate stochastic properties
of jumps J; := X; — X;—1 in an INARCH(1) process. The distribution of J; might
be described in terms of its cumulants. As shown in Appendix A.3, the following
relation between the cumulant generating function (cgf) of J; and that of X; holds for
an INARCH(1) process:

ki(z) = B-(®—1) + rx(a-(ef—1)—2). 4)
3
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Figure 1: Distribution of J; for INARCH(1) process with 8 =2 and a = 0.6.

So taking derivatives on both sides of this equation, the cumulants of J; can be expressed
in terms of the cumulants of X;, also see formula (1). Alternatively, and we shall follow
this approach in the following, one can apply the results of the previous Section 2 to
derive expressions for moments of J; directly.

3.1 Proposition (Moments of Jumps in INARCH(1) Processes) Let (X;)y bea
stationary INARCH(1) process according to Definition 1.1. Then

E[J] =0, E[Jf] = 2fs-(1-a) = VL], E[J] = -3fsa*(1-a)?
E[J}]

2f1- (1 —a)?(1 4+ a+ 402 + 403 + 2a* + 8a® — 2a8) + 127 (1 — )2,
VIJE] = 2f1- (1 —a)? (1 + a+4a® +4a® + 20t + 8a° — 2a%) + 8fF- (1 — ).

The proof is provided in Appendix A.4. It is quite interesting to note that in contrast
to the case of the Poisson INAR(1) or binomial AR(1) process (Weif3, 2008b, 2009c¢), the
distribution of jumps in an INARCH(1) process is not symmetric but negatively skewed.

The effect of the dependence parameter o on the absolute extent of jumps becomes clear
from E[J?] = 28/(1 — a?).

Concerning the autocorrelation structure of the process of jumps, we can simply adapt
the result of Theorem 3 in Weif (2009c), since it is determined only by the autocorrelation
function of (X;)n. So

l—a 1-a

pJ(k) = — 5 « 5 ppart,J(k) = _2+(k_1).(1_a)

for k>1, (5)

which is always negative.

Let us conclude with a real-data example to see if and how the properties of Propo-
sition 3.1 about theoretical moments can also be identified empirically in a given time
series.

3.2 Example (Jumps in Strikes Data) We continue the real-data example from Section 5

of Weif} (2010), where a time series of monthly strike counts (January 1994 to December 2002)

of total length 7' = 108 was discussed and shown to be modeled very well by an INARCH(1)
4



model with parameter values of about 8 = 2 and a = 0.6. For such an INARCH(1) model, the
jumps J; should have a 2°¢ order moment (=variance) of E[J?] = 6.25, a 3'¢ order moment of
E[J}] = —1.72 and thus a skewness of ~ —0.11. The moderate degree of negative skewness also
becomes obvious from the estimated distribution shown in Figure 1, which was obtained from
a simulated INARCH(1) time series of length 10°.

From the strikes data, we obtain a time series of 107 jumps. The empirical 2*¢ order moment is
computed as ~ 6.47, which is close to the theoretical value of 6.25 given above. For the empirical
3*4 order moment and skewness, we indeed observe negative values, but deviating more clearly
from the theoretical ones given above: —8.64 and —0.53, respectively. This, however, is no
contradiction to the assumption of an underlying INARCH(1) process, but can be explained
with the inherent variability of the estimators for these quantities: We simulated 10,000 time
series of length 108 from an INARCH(1) process with parameters § = 2 and o = 0.6. Each
time, we computed the relevant empirical moments and used this data to analyze their stochastic
properties. It turned out that

e the empirical 2"¢ order moment has mean 6.28, standard error 1.13 and skewness 0.63
such that the observed value of 6.47 is indeed very close to the expected one,

e the empirical 3" order moment has mean —1.82, standard error 4.63 and skewness —0.80
such that the observed value of —8.64 deviates by less than 2 standard errors from the
expected one,

e the skewness has mean —0.11, standard error 0.26 and skewness —0.14 such that the
observed value of —0.53 deviates by less than 2 standard errors from the expected one.

These results also show that the three estimators are at most moderately biased, but especially
the 3™ order statistics have quite large standard errors that do not allow to detect a significant
deviation from 0.

The last observation is somehow disappointing, since the property of asymmetric jumps
distinguishes the INARCH(1) model, e. g., from the Poisson INAR(1) model and there-
fore offers the potential of deciding between both models. Such tools that allow to
discriminate between different model families are generally of great practical impor-
tance, see, e. g., the discussion in Jung et al. (2006). Certainly, the standard errors
decrease for an increasing length T of the available time series, but only slowly (approx-
imately with 1/4/T)) as shown by the following examples (for 7' = 250, 500, 1000, 2500):
standard errors 2.99,2.10, 1.49, 0.93 of empirical 3" order moments and standard errors
0.18,0.13,0.09,0.06 of empirical skewness, respectively. These numbers are again ob-
tained from simulating 10,000 time series each, and they show that quite long time series
are necessary to be able to detect a significant asymmetry if empirical skewness or 3'4
order moments are used as statistics. Therefore, future research should try to find al-
ternative statistics related to the symmetry behaviour of jumps, which might be applied
already to short time series of counts.

4. Conclusions and Future Research

The INARCH(1) model is a simple but practically relevant, two-parameter model for
processes of overdispersed counts with an AR(1)-like serial dependence structure. We
derived closed-form expressions for its joint (central) moments and cumulants up to
order 4. These expressions are particularly important for several types of application.
As an example, we showed how to use them to derive moments of jumps in INARCH(1)

5



processes. Such jumps offer themselves a lot of applications like parameter estimation
or process monitoring, but in this context, see the discussed real-data example, it is also
important to analyze moment properties of empirical quantities based on jumps. So an
obvious issue for future research would be to apply the expressions for the joint moments
presented in this article to derive (asymptotic) moments of jumps-based statistics. Jumps
to the power of 3 might be useful for showing a significant asymmetry of the distribution of
jumps (and therefore excluding, e. g., a Poisson INAR(1) model, see above), while squared
jumps may be applied for parameter estimation: The squared difference estimator

T T
SDE = ﬁ . thg (X — Xt—l)2 = ﬁ ’ Zt:Q Jt2

is an obviously unbiased estimator of the quantity ¢ - (1 — «) and hence a possible
alternative to the first-order sample autocovariance as a (biased) estimator of o - a.

Acknowledgements. The author would like to thank the referees for carefully reading the
paper and for their comments which greatly improved the paper.
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Appendix A. Proofs

Appendiz A.1. Proof of Theorem 2.1

Let (X¢)n be a stationary INARCH(1) process according to Definition 1.1. Using the notations
of formula (3), an explicit expression for the case r = 2 is easily derived using that V[X;] = fo
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according to formula (1) and that the autocorrelation function equals p(k) = o:

(k) = CovlXe, Xes] + EXU? = fo-o* + 2 = fo- (" + (1 +a)).

Before we continue with higher-order moments, we need the following conditional moments:

E[Xt ‘ Xt717-~~] = Oé'thl + /85
BIX? | X, ] = o X7y + a(28+1)- Xee1 + B(B+1), (Appendix A.1)
E[X}| Xi1,..] = o® X2, + 302(B+1)- X2,

+ (382 +68+1) Xim1 + B(B*+368+1).
These expressions follow from the first three moments of the Poisson distribution, since the

conditional distribution of X; given X;_1,...is Po(f + a - Xi—1).

Third-Order Moments

In the following, we shall use the well-known formula E[X] = E[E[X | Z]] for conditional
expectations together with formula (Appendix A.1). To derive an explicit expression for p(k, 1)
with 0 < k < I, we distinguish between the following three cases:

Case 1: I > k. Then we have
p(k,l) = B[XiXepr - B[Xeq | Xeyio1,..]] = a-p(k,l—1) + 8- u(k)
= o=k k) + Bepk) X0
= o (uk,K) ~ fuop®) + freopdk).
Case 2: | = k > 0. Then we have
nik,k) = B[X;- B[XPy | Xegron,.. ]
— a2 ulk—1k—1) + a8+ 1) p(k=1) + B(B+1)-p
= puk—1,k—1) + 28+1) fo-a® + a@B+1)-f2 + (B+1)-(1—a)- f?
= o’ puk—1k—1) + (28+1) - fa-a® + (1—0a®)- f1-p(0)
= ... =0 pu0,0) + 28+ 1) f2- >0 + (1—a®) - fiop(0) - h2) ¥
= o™ (w0,0) = L fo— fi-p(0) + L fo-ab + fi-p(0).

Case 3: | = k = 0. Then we have according to formula [1,5] in Douglas (1980) and formula (1)
that

1(0,0) = EIXP] = k3 +3-ko-p+p’ = f3-(1+22%) + 3-fo- i + fi

= (&~ fa(l-a) + for 25 4 o T

= & .(1+28) + 1f—a~6(1+6(1+a)) - fira(l—a) = 8.6 4+ fipu0) — fs-a(l—a).
So the above formula for u(k, k) simplifies to

plkk) = =f3-a(l—a)-o® + 2. fr.a" + fi-p(0),

which also holds for £ = 0, and it follows that

(k) = o' (u (lak)—fl-u(k)) + fi (k)

= ( fara(l=a)-a®™ + (B —f) foa" + fi- (u0) = f2-B1+a))) + fi-plk)
Fol=fsral—a)-o® + 22 6.0 + fi-f2) + fr-pk)

holds for any 0 < k < I.



Fourth-Order Moments
To derive an explicit expression for p(k,l, m) with 0 < k <1 < m, we proceed in a similar way
as above and distinguish between the following four cases:

Case 1: m > [. Then we have as above that
plk,b,m) = o= o™ (ulk, 1) = ek D)+ fue p(k D).
Case 2: m =1 > k. Then we have
p(k,1,1) = B[XiXern BIX2y, | Xepio,.. ]
= o pulk,l—1,1-1) + a2B+1)-p(kl—1) + BB+1)- u(k)

= o plk,l—1,1-1) + B(B+1)-puk) + a28+1)- fi - u(k)
+ao - (28+1) - (—fs-all—a)-of + 2. fo + fi- fo-a™F)

= OKZ'M(k,l—l,l—l) + f1(1+ﬁ(1+0())u(k)
+a - (28+1) (= fsra(l—a)-of + L. + £ fo-a7F)

k-1 2j
a?

= .= 2wk kk) + fre (14 B+ @) - (k) - 2500
+(28+1) - (—farall—a)-a" + E2fo + fi-fora ) - X0 oY

= ok, b k) + for (14 B(1+a)) - pu(k) - (1—a?0=F)
+ 2 (—fsrall—a)-af + EEL .+ fifora k) (ol —a?TF)

11—« j et

= Pk, koK) — 31+ B(L+a)) ok — 2L O g g2k

_ f22 . (1_,_5(1 +a)) ~ﬁ(1+a)~a2(l_k) _ 21l3__+al “f1- fa . a2=k)

+ 3 fal—a)-a® 4 fa- (14801 +a)) - (k)

+32l (—fsral—a)-0* + - fs + fi-foraF)

= ®Bu(k, kk) — R (B4 (1) + (1+a)(26+ 1)(5+1))
—f5-(14+a)-a®M . (B4 (1+a) + 28+1)

+(28+1) - fa- T 4+ p(0) - u(k) + - (uk, 1) - fi- k)

= &Nk k) — g (T a+ (4+30)6+3(1+)8%) + (28+1)- fs-a®H

= 7 (f1 - u(0,0) + fo - aB) + (kD) — for (k) - (a+B(1+a)).




Case 3: m =1 =k > 0. Then we have
[L(k, kz k) = E[Xt : E[Xf+k ‘ Xf+k—la . H

= uwk-1L,k-1,k-1) + 30*(B+1) puk—1,k—1)
+aB6+66+1) - uk—1) + BB*+38+1)-pu

= puk-1,k-1,k—1) — 3B+1) fz-a(l —a)-a**
+3a(B+1)- 3 foraf + (36 +65+1)- fo-

+3a*(B+1)- f1-p(0) + a3 +68+1) - f2-B(Ll+a) + B(B°+36+1) fi
= uwk-Lk-1,k=1) — 364+1)-f3-a(l —a)-a*

+ 2 (1+2a+32+a@)B+3(1+a)p?) - a”

+ fife- (14202 +3(1+a+a”)B+ (1+a)(1+a+a?)s?)

= pulk—-1,k—1k—1) — 3(8+1)  fz-a(l—a) o>
+ 12 (1+2a+32+a)B+3(1+a)8%) " + fi-(1—a®)- u(0,0)

T—o
= ... =™ p(0,0,0) = 3(B+1)- fs-all —a) 3IT; @t
+ i (1420432 +a)8+3(1+a)F%) - X550 oM 4+ fi-(1-a%) - p(0,0)- 32555 o
= o™ 0(0,0,0) — 3(B+1) f3-a-(a® —a’)
+ aoatamey - (L4204 32+ @) +3(1+ @)B%) - (o = a™) + f1-4(0,0) - (1 - )
= o . 14(0,0,0) + 3(B+1) f3-a-a®*
— o=y (1420432 + )8 +3(1+)f%) - o™ — fi-p(0,0)-a®"

+ By (1420 32+ )8 +3(1+0)8%) + fi-p(0,0) — 3(B+1) fy-a?*!

— ok (u(o7 0,0) — 2y . (1430 +50° + (T+Ta + 110> + 8a%)8
+6(1+a)1+a+a®)8+(1+a)?(1+a+ a2)53))

+ B (1420 132+ a)f +3(1+a)%) + fi-u(0,0) — 3(B+1) fy-a® !

= a® - (1(0,0,0) — fi- (1+4a? +50° + 30" +50° + (1 + a?)(7 + Ta + 11a® + 8a°)4
+6(1+ a)(1+ a®)(1+a+a?)g + (14 a)2(1 +a®)(1 + a +a?)5))

+ s (1420 4+ 32+ a)B+ 3L+ )B%) + fi-p(0,0) — 3(B+1) f- o,
Case 4: m =1 =k = 0. Then we have according to formula [1,5] in Douglas (1980) and formula
(1) that

£#(0,0,0) = E[X{] = ka+4 kg p+3k3+6- k- p”+p'
= fa- (1+6a° +50° +6a° + (1+a°)(7+Ta+ 11a” + 8a°)B
+6(1+a)(1+a®)1+a+a®)8” + (1+a)’(1+a®)(1+a+a®)s?).
So the above formula for pu(k, k, k) simplifies to

wlk, kk) = o - f1-0?(1—a)(2+2a—0a?) — 3(B+1)- f3- a2+

+ s (14 20+ 32+ a)B +3(1+a)%) + fi u(0,0).



Inserting into the formula for u(k,!,1), we obtain

pk, L) = 0® (kb k) — fR s (1 a+ (4+3a)8 + 3(1 + a)52)
R (f1 o p(0,0) + fs - aB) + (2B+1) f3- T
+ B uk, D) = for (k) (a4 B8(1+a))
PR (1 —a)24+2a— ) — 3(B41)- f3-®F + (26841) - f3- 2!

21—k

+ 72 (1 + 20432+ @)B+3(1+@)8?) — (1+a+(d+3a)0+3(1+0)8%))

+ 02 £ (0,0 — 02079 (fip(0,0) + f3 - aff)
+ 2Lk, 1) — fa-p(k) - (a+ B+ a))

= o™ f a2 (1-a)2+20—0?) — (B+2) f- o 4 GO (a+20)
@*B - fy-aB + L ulk D) — fo (k) - (ot B+ ).

So it follows that for all 0 < k <1 < m, we have
pk,m) = o™t (u(k, 1,0 = fr-p(k, 1) + fo-pk,0)
21—k
= o ( B0 (1-a)(2+2a—a®) — (B+2)- fo-a®t 4+ R (a4 20)

™R fyaB 4 D) = fo- (k) (a+ B0+ @) + fi-ulkD).

Appendix A.2. Proof of Corollary 2.2

In the following, we shall apply the general relations between joint moments and joint cumulants
stated by Bakouch (2010), as well as the notations of formula (3).

Second-Order Central Moments and Cumulants
For k > 0, we have r(k) = (k) —p®> = Cov[X:, Xi1k] = fo-aF, and obviously, also
f(k) = Cov[X¢, Xi4k] coincides with this expression.

Third-Order Central Moments and Cumulants
For | > k > 0, we have

w(k, ) = p(k,0) —p-plk) — p- (pl = k) + p(l) —2p%)
= 2 fad + fifrd™ = fio(l-a)-a™ = fi (f2dd TRt fo )
= f— a = fy-(1—a) oftF = f3-al-(1+a+a2—(1—o¢)-ak+l).
Furthermore, it follows that simply
i(k,1) = B[(Xe — p)(Xewr — 1) (Xewr — )]
B[(XeXepr —p- Xe — p- Xoyr + %) - Xewt] — p- u(k)
(b, ) = - p(l) — - p(l = k) + p® — - (k) + 4 = w(k,1).
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Fourth-Order Central Moments and Cumulants
For m > 1>k > 0, we have

’%(ky L m) = M(kvl7m) - M(k7 l)
— - (= kym = k) — - p(l = k) + p(l,m) — p-p(l) + plk,m) — p- p(k))
— (k) = p?) - (ulm =1) = p®) = (p) = p®) - (p(m = k) = p*)
— (ul = k) = p?) - (u(m) — p®) + - (p(m) + p(m — k) + p(m — 1) — 3p°)
= am ! (aQHk fira?(1l—a)2+2a—a?) — (B+2)- fz-a?t!

ey (a+20) — @Y 0B 4 S (k) — for (k) (a+ B0+ a))

—h(Erfa™ ™ fifaa™ — fa(L-a)- o o
—fa-(l—a)- o™+ fifsra™t 4 ZH o™ 4 fifaa™h
— fs-(I—a)- o™ — (@R 20T 4 fR (@ o™ R o™

m+l—k

= a2 (1—a)24 20— a%) — (B+2) fa-a™HH 4 et s (a4 25)
— QM g BB (k) = fop(k)) 4 @™ foe (u(k) — fD)
—fi (B e 4 2fifeam T — fy(1—a) R
+28 L oo™ — fy(1—a) o™ — fy(1—a) o™
_ f22.(amfl+k+2am+lfk) 4 f12f2.(am+amfk+2amfl)

L=kt
— QMR p (1 ) (24 20— a?) — 2 f3 Q™ 4 W
§ Bl (85 ol g fify ol fy (1)) f 2 amtk
- fl'(% fara™h 4 %'ﬁ'am - f3'(1—a)'am+k+l) — f3-amTiE
= QM (1 a)(2 4 20— a?) — 2. fy-alt 4 Bl
+ (1f2a)2 Q™ — fs QMR
=a" fi-(1-a)2+2a—0a?) o' — (1-0a)-(2-a' + o)
+ (I+a+a®)(1+a®) (1+a+a ).

For the corresponding central moment, we have

ik, l,m) = E[(Xe — 1) (Xein — 1) (Xt = ) (Xem — )]

= B[(XeXinXenr —p- Xe Xt — po- Xeyn Xewr + p2 - Xeyt) - Xt+m]
—B[(p- XeXopr — p° - Xo — pi - Xogw + %) - X ] — - ik, 1)

= ,u(k,Lm) - M (IU/(l - kvm y k) + :u'(lvm) + /’L(kvl) + /j‘(kvm))
+ 12 (k) + p(l) 4+ p(m) + p(l = k) + p(m — k) + p(m — 1)) — 3p*

= k(k,l,m) + (u(k) —p®) - (wm =10 —p?) + () —p®) - (pOm — k) — p?)
+ (p(m) = ) - (u(l = k) = 4°)

= Kl(k,l,m) + f22 4 O/n—l-Hc 4+ 2. f22 . O/n-ﬁ»l—k‘

Appendiz A.3. Proof of Formula (4)

A Poisson random variable Y ~ Po()) has the moment generating function (mgf) py(z) =
exp ()\(ez — 1)) Using that X, conditioned on X;_1,..., is Poisson distributed according to
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Po(B+ a- Xy—1), see Definition 1.1, it follows that the mgf of J; is given by
pi(z) = Elexp (2(X: — Xit-1))] = E[exp(—2Xt-1) - Elexp (2X¢) | Xe-1,..]]
E[exp (—2Xi1) -exp (B+ - Xi1)(e® — 1))}
exp (B(e” — 1)) - E]exp (—2X¢—1) - exp (ae” — 1) - X¢—1)]
= exp(B(e® —1)) - px (afe® — 1) — z).

Taking the logarithm on both sides, we obtain the relation of formula (4).

Appendiz A.4. Proof of Proposition 3.1

Since Jy = (Xt —p) — (X¢—1 — ), we can express moments of J; in terms of the central moments
given in Corollary 2.2. For this purpose, we need the following results:

[(0,1) = fi-a(l+22%),  @(1,1) = fs-a(l+a+a),

7(0,0,0) = fa-(146a%+5a° +6a°) + 3f3, 7(0,0,1) = a- 1(0,0,0),
7(0,1,1) fi-a(l+a+2a%+ 60>+ 4a* +4a°) + f7-(1+202),
a(1,1,1) = fi-a(l +3a+a®+5a% 4+ 501 +2a° +a") + 3fF-a.

Now it follows that
ElJZ) = B[(Xi = p)* + (Xem1 — )2 = 2(Xe1 — )(Xe = )] = 2(7(0) = (1) = 2f2- (1 — )
(

Bl = (0,0) — 3i(1,1) + 3(0,1) — /i(0,0)
= 3f3~a((1+2a2)—(1+a+a3)) = —3f3-a*(1 — a)?;

E[J{] = 2i(0,0,0) — 4/(1,1,1) + 6(0,1,1) — 4f(0,0,1)

= 2(1—2a)-f(0,0,0) — 4f(1,1,1) + 6/(0,1,1)

= 2(1-2a)- f1-(1+6a%+50°4+6a°) — 4f1-a(l+3a+a® + 503 4+ 5a* +2a° +a7)
+ 6fs-a(l+a+2a% 4+ 6a° +4a* +4a8) + 2(1—-2a)-3fF — 12f3 - a + 6f5 - (1+2a?)

= 2f;s - (1 =20+ 6a% — 7a® — 10a* + 60° — 12a°) — 4fs - (a +30* + a® + 5a* + 5a° 4 2a° + o)
+ 6f1- (a+a®+20° +6a* +4a® +4a7) + 6f3 - (1 —2a — 2a+ 1+ 2a?)

= 2fs- (1 —a+3a% —3a® — 20" +8a° — 16a° + 122" — 20%) + 12f; - (1 —a)?

= 2f1-(1—a)?(1 + o+ 40® + 40> + 2a* +8a° — 22°%) + 12f7 - (1 — )2
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