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Abstract

We present and study a method for constructing multivariate copulas, which includes both
the shuffles of Min and the ordinal sums. Such a method has been used in order to show
that suitable transformations of a given copula constitute a dense set in the class of all
copulas with respect to the L∞ norm.
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2010 MSC: 62H05, 60E05

1. Introduction

Let I be the unit interval [0, 1] and let Id be the d–dimensional unit cube (d ≥ 2). A
d-dimensional copula (copula, for brevity) is a distribution function on Id whose univariate
margins are uniformly distributed on I. Copulas have been widely studied in Probability
and Statistics due to the fact that they capture the scale-invariant dependence of continuous
random vectors, as shown by Sklar’s Theorem (Sklar, 1959). For more information about
copulas and their applications, see, e.g., Jaworski et al. (2010); McNeil et al. (2005); Nelsen
(2006); Salvadori et al. (2007).

A shuffle of Min (where Min indicates the comonotonicity copula Md(u1, . . . , ud) =
min{u1, . . . , ud}) is a construction principle that generates new copulas by means of a
suitable rearrangement of the mass distribution of Md (Mikusiński et al., 1992, 2009). It
has been used in several studies about approximations of copulas. In particular, it has
been observed that shuffles of Min are dense in the class of bivariate copulas endowed with
the L∞ norm (Mikusiński et al., 1992; Vitale, 1990).

Recently, Durante et al. (2009) have generalized the notion of shuffles of Min in order
to allow that the probability mass of any bivariate copula, not only M2, can be used as
a starting point for further rearrangements. Such a generalization is based on the use
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of special measure-preserving transformations, which conveniently describe the geometric
approach commonly used in defining shuffles of Min.

In this paper, we aim at providing a further construction principle that is directly
inspired by the idea of shuffle of Min (see section 2). Such a method encompasses both
the multivariate shuffle of Min presented by Mikusiński et al. (2009) and the ordinal sum
construction by Mesiar and Sempi (2010). Remarkably, copulas obtained by the introduced
method have an interesting stochastic representation.

Moreover, starting with any copula C, it has been shown that the set of all transforma-
tions of C by means of such a construction is dense in the set of copulas endowed with the
L∞ norm (see section 3). A feature of particular interest when one wants to approximate
copulas by means of elements from a given basis set.

In order to reach our goal, we rely on measure-theoretic techniques that are grounded
on the well-known one-to-one correspondence between copulas and special probability mea-
sures.

2. Definitions and basic properties

Let d ∈ N, d ≥ 2. Let λ be the Lebesgue measure on R. Let Copd be the set
of all d–dimensional copulas, i.e. the set of all distribution functions C : Rd → I whose
univariate margins are uniformly distributed on I. Notice that, since a copula C is uniquely
determined by the values that it assumes on Id, we usually refrain from specifying the value
of C outside Id. For basic results and notations about copulas, we refer to Durante and
Sempi (2010).

We recall that a copula C induces a probability measure µC defined, for every non-
empty orthotope R ⊆ Id, by µC(R) := VC(R), where VC(R) denotes the C–volume of R,
and extended by means of standard arguments to the Borel σ–algebra B(Id) (Nelsen, 2006).
Such a µC is d–fold stochastic, i.e. the push-forward of µC under any projection pi coincides
with Lebesgue measure on I, µC(p−1

i (A)) = λ(A) for any Borel set A ⊆ I. In particular, 2–
fold stochastic measures (better known as doubly stochastic measures) represent an infinite-
dimensional generalization of doubly stochastic matrices and originated from an idea by
Birkhoff (1948, Problem 111). Notably, such measures also appear in several problems
connected with optimal transportation (Ahmad et al., 2009; Gangbo and McCann, 2000;
Rachev and Rüschendorf, 1998).

Actually, d–fold stochastic measures on (Id, B(Id)) are in a one-to-one correspondence
to the set of d–copula. In fact, from any d–fold stochastic measure µ a copula can be
constructed by setting, for any u ∈ Id,

Cµ(u) := µ ([0,u]) ,

where [0,u] = [0, u1] × · · · × [0, ud]. In the following, when no confusion may arise, we may
identify a copula and its corresponding measure.

Based on the isomorphism between copulas and measures, we propose the following
construction principle for copulas.
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Definition 2.1. Let J 1, . . . , J d be systems of closed and non-empty intervals of I, J i =
(J i

n = [ai
n, b

i
n])n∈N such that:

(S1) N represents a finite or countable index set, i.e. N = {0, 1, . . . , ñ} or N = Z+;

(S2) for every i ∈ {1, 2, . . . , d} and n, m ∈ N , n 6= m, J i
n and J i

m have at most one
endpoint in common;

(S3) for every i ∈ {1, 2, . . . , d},
∑

n∈N λ(J i
n) = 1;

(S4) for every n ∈ N , λ(J1
n) = λ(J2

n) = · · · = λ(Jd
n).

A system S = (J i)
d

i=1 satisfying the above properties is called shuffling structure (shortly,
S–structure). The set of all S-structures based on an index set N is indicated by SN , while
S = ∪SN .

Definition 2.2. Let N be an index set as in (S1). Let (µn)n∈N be a system of probability

measures on
(
Id, B(Id)

)
such that, for every n ∈ N , µn

(
(0, 1)d

)
= 1. Let (J i)

d

i=1 be an

S–structure. Let µ : B(Id) → R+ be the set-function defined, for every A ∈ B(Id), by

µ(A) =
∑

(n1,...,nd)∈Nd

µn1,...,nd
(A ∩ (Jn1 × · · · × Jnd

)) , (1)

where, for all (n1, . . . , nd) ∈ Nd, µn1,...,nd
is the set-function defined on the Borel sets of

J1
n1

× · · · × Jd
nd

in the following way:

(M1) µn1,...,nd
= 0 if nk 6= nk′ for some k, k′;

(M2) for every Borel set A ⊆ J1
n × · · · × Jd

n

µn,...,n(A) = λ(J1
n)µn (ϕn(A)) , (2)

where ϕn : J1
n × · · · × Jd

n → Id is given by

ϕn(x1, . . . , xd) =

(
x1 − a1

n

λ(J1
n)

, . . . ,
xd − ad

n

λ(J1
n)

)
. (3)

The set-function µ is called shuffling set-function related to the S-structure (J i)
d

i=1 and

to (µn)n∈N . It is indicated by the symbol µ =
〈
(J i)

d

i=1 , (µn)n∈N ,
〉
.

Notice that, by definition, a shuffling set-function µ is a measure, since any µn1,...,nd
is

a measure and ∪(n1,...,nd)∈Nd(J1
n1

× · · · × Jd
nd

) = Id. Moreover, the following result can be
proved.

Proposition 2.1. Let µ =
〈
(J i)

d

i=1 , (µn)n∈N ,
〉

be a shuffling set-function. Then µ is a

probability measure. Moreover, if each µn is d–fold stochastic, then µ is d–fold stochastic.

3
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Proof. Let µ =
〈
(J i)

d

i=1 , (µn)n∈N ,
〉

be a shuffling set-function. Then

µ
(
Id
)

=
∑

(n1,...,nd)∈Nd

µn1,...,nd

(
∪(n1,...,nd)∈Nd(J1

n1
× · · · × Jd

nd
)
)

=
∑

n∈N

µn,...,n

(
J1

n × · · · × Jd
n

)
=
∑

n∈N

λ(J1
n)µn

(
ϕn

(
J1

n × · · · × Jd
n

))
= 1,

that is µ is a probability measure.
Now, suppose that each µn is d–fold stochastic. In order to prove that µ is d–fold

stochastic, we have to show that, for every every i ∈ {1, . . . , d} and for every xi ∈ I,

µ
(
Ii−1 × [0, xi] × Id−i

)
= λ([0, xi]).

Suppose that i = 1 (the other cases can be treated analogously). Let x1 ∈ I. Since
µ
(

{x1} × Id−1
)

= 0, we can assume, without loss of generality, that x1 /∈ {a1
n, b

1
n} for every

n ∈ N . Let N1 be the following index set

N1 = {n ∈ N : J1
n ∩ [0, x1] 6= ∅ and x1 /∈ J1

n }.

Let n̂ ∈ N such that x1 ∈ [a1
n̂, b

1
n̂]. It follows that

µ
(
[0, x1] × Id−1

)
=

(∑

n∈N1

λ(J1
n)µn

(
ϕn

(
J1

n × · · · × Jd
n

))
)

+λ(J1
n̂)µn̂

(
ϕn̂

((
J1

n̂ ∩ [0, x1]
)

× J2
n̂ × · · · × Jd

n̂

))

=
∑

n∈N1

λ(J1
n) + λ(J1

n̂)µn̂

([
0,

x1 − a1
n̂

b1
n̂ − a1

n̂

]
× Id−1

)

=
∑

n∈N1

(
b1
n − a1

n

)
+ λ(J1

n̂)
x1 − a1

n̂

b1
n̂ − a1

n̂

= x1,

which is the desired assertion.

A copula C is a shuffling copula (S–copula, for short) if its induced measure µC can be
represented as a shuffling measure that is d–fold stochastic. Such a C is indicated by the

symbol
〈
(J i)

d

i=1 , (Cn)n∈N

〉
, where Cn is the copula such that µn = µCn .

Remark 2.1. Intuitively, an S–copula C is obtained by the following procedure:

1. define a suitable partition {J1
n1

× · · · × Jd
nd

}(n1,...,nd)∈Nd of Id formed by d–dimensional
orthotopes (the S-structure);

2. given a system of copulas (Cn)n∈N , plug a transformation of the probability mass of
Cn in J1

n × · · · × Jd
n,

3. define C as the copula whose associated measure coincides in each J1
n1

× · · · × Jd
nd

with the previous transformation of µCn.

4
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An explicit expression of an S–copula is given by the following result.

Proposition 2.2. Let C =
〈
(J i)

d

i=1 , (Cn)n∈N

〉
be an S–copula. Then, for all u ∈ Id,

C(u) =
∑

n∈N

λ(J1
n) Cn

(
u1 − a1

n

λ(J1
n)

, . . . ,
ud − ad

n

λ(J1
n)

)
. (4)

Proof. Since Definition 2.2 it follows that, for every u ∈ Id,

C(u) = µC([0,u]) =
∑

n∈N

λ(J1
n)µCn

(
ϕn([0,u] ∩

(
J1

n × · · · × Jd
n

)
)
)

=
∑

n∈N

λ(J1
n) Cn

(
u1 − a1

n

λ(J1
n)

, . . . ,
ud − ad

n

λ(J1
n)

)
,

which is the desired assertion.

Thanks to eq. (4), an S–copula can be interpreted as a convex combination (with co-

efficients λ(J1
n)) of the d–variate distribution functions Fn(x) = Cn

(
x1−a1

n

λ(J1
n)

, . . . , xd−ad
n

λ(J1
n)

)
. As

such, an S–copula C =
〈
(J i)

d

i=1 , (Cn)n∈N

〉
has the following probabilistic interpretation,

which is inspired by the methods of Mikusiński et al. (1991).
Let (Ω, A , P) be a probability space. Assume that, for every n ∈ N , the random vector

Un = (Un
1 , . . . , Un

d ) is distributed according to Cn. Let Z be a discrete random variable
assuming values in N such that, for every n ∈ N , P (Z = n) = λ(J1

n). For every n ∈ N ,
consider the random vector

Vn = (V n
1 , . . . , V n

d ) =
(
λ(J1

n)Un
1 + a1

n, . . . , λ(J1
n)Un

d + ad
n

)
.

Finally, let us consider the random vector W given by

W =
∑

n∈N

σn(Z)Vn,

where, for every n ∈ N , σn(x) = 1 if x = n, σn(x) = 0 otherwise. For every u ∈ Id

P (W ≤ u) =
∑

n∈N

P (W ≤ u | Z = n) P (Z = n)

=
∑

n∈N

λ(J1
n)P (Vn ≤ u)

=
∑

n∈N

λ(J1
n)Cn

(
u1 − a1

n

λ(J1
n)

, . . . ,
ud − ad

n

λ(J1
n)

)
,

which coincides with (4).
Now, we show two relevant examples of S–copulas.

5
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Example 2.1. In the bivariate case, a copula C is said to be shuffle of Min (Mikusiński
et al., 1992, Definition 2.1) if there is a natural number n, two partitions

0 = s0 < s1 < · · · < sñ = 1 and 0 = t0 < t1 < · · · < tñ = 1

of I, and a permutation ς of {1, . . . , ñ} such that each [si−1, si] × [tς(i)−1, tς(i)] is a square
in which C distributes a mass si − si−1 uniformly spread along one of the diagonals.

Now, it can be easily proved that every shuffle of Min can be represented as an S–copula
of the form

〈
(J 1, J 2) , (Ci)i∈N

〉
, where:

• N = {0, 1, . . . , ñ − 1};

• J 1 = (J1
i )i∈N is the partition given by J1

i = [si−1, si];

• J 2 = (J2
i )i∈N is the partition given by J2

i = [tς(i−1), tς(i)];

• (Ci)i∈N is a system of copulas where Ci = M2, if the mass is distributed along the
main diagonal of [si−1, si] × [tς(i)−1, tς(i)], Ci = W2, otherwise.

Recently, shuffles of Min have been also extended to the d–dimensional case (see (Mikusiński
et al., 2009, section 6)). It is not difficult to show that also this extension can be represented
in terms of S–copulas.

Example 2.2. Following Mesiar and Sempi (2010) (see also (Jaworski and Rychlik, 2008)),
an ordinal sum of copulas can be introduced in the following way. Let L be a finite or
countable set, let ([ak, bk])k∈L be a system of sub–intervals of I, and let (Ck)k∈L be a
system in Copd. It is required that any two of the intervals [ak, bk] (k ∈ L) have at most
one endpoint in common. Then the ordinal sum C of (Ck)k∈L with respect to family of
intervals ([ak, bk])k∈L is the d–copula defined, for all u ∈ Id by

C(u) =





ak + (bk − ak) Ck

(
min{u1,bk }−ak

bk −ak
, . . . , min{ud,bk }−ak

bk −ak

)
,

if min{u1, u2, . . . , ud} ∈ ]ak, bk[ for some k ∈ L,

min{u1, u2, . . . , ud}, elsewhere.

(5)

Now, such a C can be represented as a suitable S–copula. In order to show this, without
loss of generality, suppose that ([ak, bk])k∈L is a partition of I. Then, C given by (5) is an

S–copula of type
〈
(J i)i=1,2,...,d , (Ck)k∈L

〉
, where, for i = 1, . . . , d, J i = (J i

k)k∈L is the

partition given by J i
k = [ak, bk].

Finally, we end the section with a characterization of S–copulas in terms of measure-
preserving transformations. We recall that it is known from Vitale (1996) (see also de Amo
et al. (2010); Kolesárová et al. (2008)) that every copula can be represented in the form

Cf1,...,fd
(u) = λ

(
f −1

1 [0, u1] ∩ · · · ∩ f −1
d [0, ud]

)
(6)

for some measure-preserving transformations f1, . . . , fd of I.

6
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Proposition 2.3. Let C =
〈
(J i)

d

i=1 , (Cn)n∈N

〉
be an S–copula. Suppose that every

Cn can be represented in the form (6) by means of suitable fn
1 , . . . , fn

d . Then, C can be
represented in the form (6) where fi, for i = 1, 2, . . . , d, is given by

fi(t) =





fn
i

(
t − ai

n

bi
n − ai

n

)
(bi

n − ai
n) + ai

n, t ∈ ]ai
n, bi

n[

0, otherwise.

(7)

Proof. Let C =
〈
(J i)

d

i=1 , (Cn)n∈N

〉
be an S–copula. Let C∗ be the copula that can be

represented in the form (6) where, for i = 1, 2, . . . , d, fi is given by (7). In order to prove
the assertion, it is enough to show that µC coincides with µC∗ on every orthotope of type
J1

n × · · · × Jd
n. Now, let u ∈ J1

n × · · · × Jd
n. Then, it follows that:

µC∗
((

a1
n, u1

)
× · · · ×

(
ad

n, ud

))
= λ

({
t : f1(t) ∈

(
a1

n, u1

)
, . . . , fd(t) ∈

(
ad

n, ud

)})

=
(
b1
n − a1

n

)
λ

({
t : f 1

n(t) ∈
(

0,
u1 − a1

n

λ(J1
n)

)
, . . . , f d

n(t) ∈
(

0,
ud − ad

n

λ(J1
n)

)})

= (bn − an) µ
Cn

((
0,

u1 − a1
n

λ(J1
n)

)
× . . . ×

(
0,

ud − ad
n

λ(J1
n)

))

= µC

((
a1

n, u1

)
× . . . ×

(
ad

n, ud

))
.

It follows that µC∗(A) = µC(A) for every Borel set A ⊆ J1
n × · · · × Jd

n, which is the desired
assertion.

3. Approximation of copulas by means of shuffles

Here we show how the construction principle that we have introduced can be used in
order to provide a way for approximating (in the L∞ norm) any copula. Firstly, we will
consider some general aspects of the shuffling transformation.

Let N be an index set as in (S1). Let Ψ: SN × CopN
d → Copd be the shuffling mapping

defined by ((
J i
)d

i=1
, (Cn)n∈N

)
Ψ−→
〈(

J i
)d

i=1
, (Cn)n∈N

〉
, (8)

which associates to each S–structure and to each system of copulas, the corresponding
S–copula.

Now, for a fixed S–structure S ∈ SN , consider the function

Ψ(S,·) : CopN
d → Copd, (Cn)n∈N 7→

〈
S, (Cn)n∈N

〉
. (9)

Let dsup be the distance on Copd induced by the L∞- norm. Let dN
sup be the distance defined

on CopN
d by

dN
sup ((Cn)n∈N , (C ′

n)n∈N) = sup
n∈N

sup
u∈Id

|Cn(u) − C ′
n(u)| (10)

The following result holds.

7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Proposition 3.1. For any S ∈ SN , Ψ(S,·) is a Lipschitz mapping between (Copd, d
N
sup) and

(Copd, dsup).

Proof. Let S ∈ SN . Let (Cn)n∈N and (C ′
n)n∈N be in CopN

d . Set Ψ(S,·) ((Cn)n∈N) = C
and Ψ(S,·) ((C ′

n)n∈N) = C ′. We have

sup
u∈Id

|C(u) − C ′(u)| = sup
n∈N

(
sup

u∈J1
n× · · ·×Jd

n

|C(u) − C ′(u)|
)

≤ sup
n∈N

λ(J1
n) sup

u∈Id

|Cn(u) − C ′
n(u)|

≤
(

sup
n∈N

λ(J1
n)

)
dN

sup ((Cn)n∈N , (C ′
n)n∈N) ,

which is the desired assertion.

Roughly speaking, for a given S ∈ SN , when two systems of copulas are close each
other, so are the corresponding S–copulas.

Remark 3.1. Let S ∈ SN . Let (Cn)n∈N and (C ′
n)n∈N be in CopN

d such that, for every
u ∈ Id, Cn(u) ≤ C ′

n(u) for every n ∈ N . Then it can be easily proved that Ψ(S,·) (Cn) (u) ≤
Ψ(S,·) (C ′

n) (u) for every u ∈ Id. For more information about such a dependence order and
its uses, see, for instance, (Joe, 1997; Nelsen, 2006).

A particular case of shuffling mapping is obtained when there exists C ∈ Copd such
that Cn = C for any n ∈ N . In such a case, for any S ∈ SN the following mapping from
Copd to Copd can be considered

Ψ̃(S,·) : Copd → Copd, C 7→
〈
S, (Cn = C)n∈N

〉
, (11)

A closer look at the proof of Proposition 3.1 allows to say that Ψ̃(S,·) is a contraction and,
hence, it has a unique fixed point. A possible way for for determining the fixed point of
Ψ̃(S,·) is described below.

Example 3.1. This example is based on some results about self-similar measures. For
more details see (Hutchinson, 1981, section 4).

Let X be a complete metric space and let P be the family of all probability measures
defined on the Borel σ-algebra associated with X . For every (finite or countable) family
{Ft}t∈T of contraction maps on X and every set of positive real numbers {ρt}t∈T , we
can define the mapping Fρ : P → P such that Fρ(µ)(A) =

∑
t∈T ρtµ(F −1

t (A)) for every
Borel set A. It follows from (Hutchinson, 1981, subsection 4.4) that there exists a unique
probability measure µ such that Fρ(µ) = µ.

Now, let S ∈ SN . It can be easily proved that the fixed point of Ψ̃(S,·) is the copula
C such that its induced measure µC is associated with the family of contraction maps
{Fn}n∈N , where Fn : Id → J1

n × · · · × Jd
n is given by

Fn(x1, . . . , xd) = λ(J1
n)(x1, . . . , xd) + (a1

n, . . . , ad
n),

8
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where, for i ∈ {1, 2, . . . , d}, J i
n = [ai

n, b
i
n] and the set of positive real numbers is given by

{λ(J1
n)}n∈N .

Now, given a copula C, let us consider the set {Ψ̃(S,·)(C) | S ∈ S } formed by all S–

copulas generated from C and any S-structure S by means of Ψ̃(S,·). The following result
holds.

Proposition 3.2. Let C ∈ Copd. Then the set {Ψ̃(S,·)(C) | S ∈ S } is dense in Copd with
respect to the L∞ norm.

Proof. Let C ∈ Copd. Let p ∈ N, p ≥ 2. Divide Id into pd orthotopes of type

Bp
m =

[
a1

m

p
,
a1

m + 1

p

]
× · · · ×

[
ad

m

p
,
ad

m + 1

p

]
(12)

where m ∈ M = {0, 1, . . . , pd − 1}, ai
m ∈ {0, 1, . . . , p − 1} for every i ∈ {1, . . . , d}, and m

can be written in the form

m = a1
m + a2

mp + · · · + ad
mpd−1. (13)

We denote by Mk,i the subset of M formed by all m ∈ M such that m can be written in
the form (13) with ai

m = k.
Notice that, since µC is d–fold stochastic, for every m ∈ Mk,i

∑

m∈Mk,i

µC(Bp
m) = λ

(
Ii−1 ×

[
k

p
,
k + 1

p

]
× Id−i

)
=

1

p
.

Let i ∈ {1, 2, . . . , d}. Along the i-th axis, divide each interval of type

[
k

p
,
k + 1

p

]
into

a system of closed intervals (J i
m)m∈Mk,i

such that:

(a) λ (J i
m) = µC (Bp

m) for every m ∈ Mk,i;

(b) if ai
m1

< ai
m2

, then sup
(
J i

m1

)
≤ inf

(
J i

m2

)
;

(c) if ai
m1

= ai
m2

and m1 < m2, then sup
(
J i

m1

)
≤ inf

(
J i

m2

)
.

Notice that, because of condition (a), some of the intervals J i
m may be of measure zero. In

such a case, they will not be considered.
By means of previous procedure, I can be partitioned into intervals in the following

way:

I = ∪p−1
k=0

[
k

p
,
k + 1

p

]
= ∪p−1

k=0

(
∪m∈Mk,i

J i
m

)
. (14)

Let J i = (J i
m)m∈M be the system of intervals of eq. (14). Then it is easily proved that

(J i)
d

i=1 forms an S–structure (which depends on p). Let Cp be the S–copula of type

9
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〈(J i)
d

i=1 , (Cm = C)m∈M 〉. For every Bp
m of type (12), it can be proved that µCp (Bp

m) =
µC (Bp

m).
Now, consider a continuous function f on Id. Then, for every ε > 0 and for every m ∈

M , there exists q ∈ N such that, for every p > q and for every x,x′ ∈ Bp
m, |f(x)−f(x′)| < ε.

Therefore
∑

m

min
x∈Bp

m

(f(x)) µC(Bp
m) =

∑

m

min
x∈Bp

m

(f(x))µCp(B
p
m)

≤
∫

Id

f(x)dµCp ≤
∑

m

max
x∈Bp

m

(f(x))µCp(B
p
m)

≤
∑

m

max
x∈Bp

m

(f(x))µC(Bp
m) ≤

∑

m

min
x∈Bp

m

(f(x))µC(Bp
m) + ε,

where the sums are taken over all possible indices m. It follows that
∣∣∣∣
∫

Id

f(x)dµCp −
∫

Id

f(x)dµC

∣∣∣∣ < ε

when p > q. For the arbitrariness of f , we can conclude that Cp converges pointwise to C
as p tends to +∞.

Remark 3.2. By using the same idea of the proof of Proposition 3.2, it should be noticed
that, any C ∈ Copd could be approximated by means of S–copulas constructed from
systems of copulas formed by elements not necessarily coinciding.

In the bivariate case, Proposition 3.2 was already known for the case C = M2 (see
(Mikusiński et al., 1992, Theorem 3.1)). In particular, since Proposition 3.2, it follows that
the independence copula Πd(u) = u1 · · · ud can be approximated by means of elements of

the set {Ψ̃(S,·)(Md) | S ∈ S }. Intuitively speaking, taking into account the probabilistic
interpretation of S–copulas and the fact that Md describe comonotone dependence, it
follows that any sequence of independent random variables can be approximated by a
sequence of random variables that are completely dependent (in the sense that each random
variable is a deterministic function of the others). This intriguing fact was noted for the
first time by Kimeldorf and Sampson (1978).

However, we want to stress that Proposition 3.2 strongly depends on the topology that
we are considering over Copd.

Consider, for example, the set of all finite signed measures on
(
Id, B(Id)

)
. Such a set

is a real vector space that, equipped with the total variation norm, forms a Banach space.
It is known that a sequence of finite signed measure (µn)n converges to µ if, and only if,
for every B ∈ B(Id), µn(B) → µ(B) as n → +∞.

Now, we can consider Copd (precisely, its induced measure) as subset of the set of all
signed measures. Then Copd can be equipped with the topology induced by the total

variation norm. In such a topology, it holds that, given C ∈ Copd, the set {Ψ̃(S,·)(C) |
S ∈ S } need not be dense in Copd. In fact, consider C = M2. Then the elements

10
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of {Ψ̃(S,·)(M2) | S ∈ S } concentrates the probability mass on a set of 2–dimensional
Lebesgue measure 0 and, thus, they cannot approximate in the total variation norm the
copula Π2 (or, in general, any copula with a non-trivial absolutely continuous component).
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