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Abstract. In this paper, we study how the locally concentration of the spectral measure expresses in the temporal
domain for stationary processes. For this purpose, we establish an equivalence between the proximity of the shift
operators (which are unit operators) and the associated projector-valued spectral measures. An illustration is given.

Keywords. Random measures, Stationnary processes, Fourier transform, Stochastic integrals, Spectral measures

AMS subject classification. 60G57, 60G10, 60B15, 60H05

0 Introduction

Every unit operator can be univoquely associated with a projector valued spectral measure (cf. Riesz and Nagy, 1991).
Therefore, when P is an orthogonal projector, U = (I − P ) + eiλP is a unit operator associated with the spectral
measure δ0(.)(I − P ) + δλ(.)P (δ0 and δλ are the Dirac measures at 0 and λ). In the same way, the unit operator I is
associated with the spectral measure δ0(.)I.

We naturally think that when two unit operators U and U ′ are close together, the same thing happens for their
associated spectral measures E and E ′, in a way to be defined.

The proximity between the operators U and U ′ is evaluated by the well known norm ‖U − U ′‖L = sup{‖U(X) −
U ′(X)‖; ‖X‖ = 1}. In order to evaluate the neighborhood between the spectral measures E and E ′ we could consider
the quantity sup{‖E(A)− E ′(A)‖L ; A ∈ B}. However, such a choice is not appropriate because, for example, when
U = (I−P ) + eiλP and U ′ = I, we get ‖U − U ′‖L ≤ |λ| and sup{‖E(A)− E ′(A)‖L ; A ∈ B} = 1. This means that the
unit operators U and U ′ can be very close, when λ is small, but the quantity sup{‖E(A)− E ′(A)‖L ; A ∈ B}, equal to
1, do not translate, in any way, the proximity between the spectral measures.

In paragraph 2, in order to express the neighborhood between two spectral measures, we introduce the notion of
α-equivalence of spectral measures, notion based on a well known relation of partial order between projectors.

In the following paragraph, we show that the proximity between unit operators, when they commute, implies that of
associated spectral measures from an α-equivalence point of view. Conversely, the α-equivalence of spectral measures
which commute implies proximity of the corresponding unit operators. Therefore, it is clear that the notion of α-
equivalence in the frequency domain restitutes correctly the proximity between unit operators.

This way of studying proximity is different from what we can find usually (Kato, 1980), because the type of perturbation
is not parametrized. An application of this study could be the study of quasi-periodicity, following the ideas of
Dehay (2007).

Then we have a tool to deal with problems of perturbation concerning unit operators. This aspect is important in the
study of stationary processes, since shift operators (Brillinger, 2001, Bosq, 2000, Rozanov, 1967) are unit operators.
Thanks to the previous results we can prove that if the unit operator U : Xn 7−→ Xn+1, associated with a stationary
series (Xn)n∈Z, is such that Uk is close to I, and so, Xk+n close to Xn, then the random measure Z, whose Fourier
transform is (Xn)n∈Z, is concentrated into the neighborhood of the points λq such that (eiλq )k = 1. Conversely, if
Z is concentrated in the neighborhood of such points of the spectrum, then the shift operator U associated with the
stationary series (

∫
ei.n dZ)n∈Z is such that Uk is close to I. This result illustrates the duality between the temporal

and the frequencial points of vue. We obtain similar results for stationary random functions.

1 Notation and preliminary results

This paragraph is devoted to recall the necessary tools for the understanding of the text, to precise notation and to
establish some preliminary results.

We denote by H a separable C-Hilbert space and P(H) the set of its orthogonal projectors. Of course, when H is
L2(Ω,A, P ) or L2

Cp(Ω,A, P ), this study becomes part of the studies of stochastic processes.
1Corresponding author : viguier@math.univ-toulouse.fr
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1.1 The topologic group Π

The set Π = [−π;π[ is a compact commutative group for the binary operation ⊕ : (λ1, λ2) ∈ Π × Π 7−→λ1 + λ2 −
2π[λ1+λ2+π

2π ] ∈ Π ([x] is the integer part of x) and for the distance d : (λ1, λ2) ∈ Π × Π 7−→|λ1 	 λ2| ∈ R+, which
is invariant by translation. This last one induces a topology, for which the applications w : λ ∈ Π 7−→ 	λ ∈ Π and
S : (λ1, λ2) ∈ Π× Π 7−→ λ1 ⊕ λ2 ∈ Π are continuous (where, of course, 	λ denotes the symmetric of λ). The family
of compact (or closed) subsets for this topology is denoted K, and B denotes the family of borelians.

For all (A, λ) of B ×Π, the set A⊕ λ is the reciprocal image of A by the application λ′ ∈ Π 7−→ λ′ 	 λ ∈ Π which is,
from the properties of the topologic group, continuous. We can then give the

Lemma 1.1 For all λ of Π, when A is an element of B (resp. an open subset of Π; a closed subset of Π), then A⊕ λ
is an element of B (resp. an open subset of Π; a closed subset of Π).

For each couple (A,B) of subsets of Π, we denote by A⊕B the set of the elements of Π that can be writen λA ⊕ λB ,
where (λA, λB) belongs to A×B. Let examine the

Lemma 1.2 For all α of [0, π[, when B is an element of B, the same happens for B ⊕ [−α, α].

Proof. The result is obvious when α = 0. When α is different from 0, it is the consequence of

B ⊕ [−α, α] = (B⊕]− α, α[) ∪ (B ⊕ (	α)) ∪ (B ⊕ α) = (∪λ∈B(λ⊕]− α, α[)) ∪ (B ⊕ (	α)) ∪ (B ⊕ α) . �
In the particular case where B is compact, from S(B × [−α, α]) = B ⊕ [−α, α], the previous result becomes

Lemma 1.3 For all α of [0, π[, when B is a compact subset of Π, the same happens for B ⊕ [−α, α].

Let end this section by a result that will be used in paragraph 2.

Lemma 1.4 If (αn)n∈N is a decreasing sequence of elements of [0, π[ which converges towards α, then, for all B of K,
we have B ⊕ [−α, α] = ∩n∈N(B ⊕ [−αn, αn]).

Proof. Let γ be an element of ∩n∈N(B ⊕ [−αn, αn]). With every n of N we can associate an element (λn, λ′n) of
B× [−αn, αn] such that γ = λn⊕λ′n. The compacity of Π authorizes to say that a convergent sub-sequence (λnk)k∈N,
of (λn)n∈N exists. Its limit λ belongs to B. We then establish that γ 	 λ is the limit of the sequence

(
λ′nk
)
n∈N. From

the relations
∣∣λ′nk

∣∣ ≤ αnk and limkαnk = α, we deduce that γ	λ ∈ [−α, α], and γ = λ⊕(γ	λ) belongs to B⊕ [−α, α].

As besides, (B ⊕ [−α, α]) ⊂ (∩n∈N(B ⊕ [−αn, αn])), the expected equality stands. �

1.2 Random measures, stationary functions

In this section, we shortly recall the well-known biunivoque correspondence between a random measure and a stationary
continuous random function.

Let G be a locally compact abelian group whose dual Ĝ admits a countable basis. So G may be any of the sets Z, Zk,
R, Rk, Π or Πk.

A stationary continuous random function (c.r.f.) (Xg)g∈G, defined on G and with values in H, is a family of elements
of H such that < Xg, Xg′ >=< Xg−g′ , X0 >, for all couple (g, g′) of elements of G, and such that the application
g ∈ G 7−→ Xg ∈ H is continuous. When G = Z we talk about stationary series.

A random measure (r.m.) Z is a vector measure defined on BĜ, with values in H such that < Z(A), Z(B) >= 0, for
all couple (A,B) of disjoint elements of BĜ.
The application µZ : A ∈ BĜ 7−→ ‖Z(A)‖2 ∈ R+ is obviously a bounded measure. The stochastic integral, with respect
to Z, can be defined as the unique isometry from L2(Ĝ,BĜ, µZ) onto HZ = vect

{
Z(A) ; A ∈ BĜ

}
which associates

Z(A) (=
∫

1A dZ) with 1A, for all A of BĜ.
The family (

∫
(., g)ĜG dZ)g∈G is a stationary c.r.f.. Conversely, with each stationary c.r.f. (Xg)g∈G, we can associate

one and only one r.m. Z, called r.m. associated with the stationary c.r.f. (Xg)g∈G, such that
∫

(., g)ĜG dZ = Xg, for
all g of G.

If ϕ is an element of L2(Ĝ,BĜ, µZ), (
∫

(., g)ĜGϕ(.) dZ)g∈G is a stationary c.r.f., called image of (Xg)g∈G by the filter
ϕ; its associated r.m. is the application Zϕ : A ∈ BĜ 7−→

∫
1AϕdZ ∈ BĜ.

In the particular case where G = Z (resp. G = R) the dual group is identified with Π (resp. R), the r.m. Z associated
with a stationary series (Xn)n∈Z (resp. with a stationary c.r.f. (Xt)t∈R) is defined on B (resp. BR the Borel σ−field
of R), for all n of Z (resp. for all t of R) we have

∫
ei.n dZ = Xn (resp.

∫
ei.t dZ = Xt).

We can show that to r.m.’s defined on B that match on K are equal.
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1.3 Spectral measures

In this section, we define the spectral measure and associated various notions, as the convolution product.

Let (T, T ) and (T ′, T ′) be measurable spaces.

A spectral measure (s.m.) E on T for H is an application from T onto P(H) such that:

i) E(A1 ∪A2) = E(A1) + E(A2) , for all couple (A1, A2) of disjoint elements of T ;
ii) E(T ) = IH ;

iii) limnE(An)(X) = 0 for each decreasing sequence (An)n∈N of elements of T converging to ∅ and for all X of H.

Hence, it can be shown that, for all couple (A,B) of elements of T , E(A) ◦ E(B) = E(A ∩B), and that E(∅) = 0.

For all X of H, the application ZXE : A ∈ T 7−→ E(A)X ∈ H is a r.m..

We also can establish that limnE(An)X = E(∩n∈NAn)X, when (An)n∈N is a decreasing sequence of elements of T .
When f is a measurable application from T to T ′, the application f(E) : A′ ∈ T ′ 7−→ E(f−1A′) ∈ P(H) is a s.m.
called the image by f of the spectral measure E.
In the all following text, except explicit mention of the opposite, all the considered s.m.’s are s.m.’s on B for H.

When E is a s.m., the application X ∈ H 7−→
∫
ei. dZXE ∈ H is a unit operator called unit operator deduced from the

s.m. E . In this way, with each s.m. corresponds a unit operator.

Conversely, with a unit operator U , we can associate a s.m. in the following way: let X be an element of H, then the
series (UnX)n∈Z is stationary. If we denote by ZX the r.m. associated with this series, we can prove that

i) for all A of B the application E(A) : X ∈ H 7−→ ZX(A) ∈ H is an orthogonal projector,

ii) the application E : A ∈ B 7−→ E(A) ∈ P(H) is a s.m. called s.m. associated with the unit operator U .

The unit operator deduced from the s.m. E is U .

The s.m. associated with the unit operator IH is the s.m. EΠ defined by A ∈ B 7−→ δ0(A)IH ∈ P(H).

If E is the s.m. associated with the unit operator U , w(E) is the s.m. associated with the unit operator U∗ = U−1.

Two unit operators U1 and U2 commute if and only if their respectively associated s.m.’s, E1 and E2, commute, that
is are such that (E1A1) ◦ (E2A2) = (E2A2) ◦ (E1A1) for all couple (A1, A2) of elements of B.
If two s.m.’s, E1 and E2, commute, we can affirm that it exists one and only one s.m. on B ⊗ B for H, denoted by
E1 ⊗ E2, such that E1 ⊗ E2(A1 ×A2) = (E1A1) ◦ (E2A2) for all couple (A1, A2) of elements of B.
When two s.m.’s E1 and E2 commute we call convolution product of E1 and E2, that we denote E1 ∗ E2, the image by
S of E1 ⊗ E2. Then we have: E1 ∗ E2 = E2 ∗ E1.
If two unit operators U1 and U2, of respectively associated s.m.’s E1 and E2, commute, then E1∗E2 is the s.m. associated
with the unit operators U1 ◦ U2.

Let end this section by the examen of some algebraic properties.

The s.m. EΠ commutes with each s.m. E and: EΠ ∗ E=E .
If E1, E2 and E3 are three s.m.’s, on B for H, that commute two by two, then E1 ∗ (E2 ∗ E3) = (E1 ∗ E2) ∗ E3.
If f and g are two measurable applications from Π into itself, then:

i) the application f ⊕ g : λ ∈ Π 7−→ f(λ)⊕ g(λ) ∈ Π is measurable,

ii) when E is a s.m., the s.m.’s f(E) and g(E) commute and: (f ⊕ g)E = f(E) ∗ g(E).

1.4 Order relation in the set of orthogonal projectors

When P1 and P2 are two elements of P(H), the two following assertions are equivalent:

i) P1 ◦ P2 = P1,

ii) imP1 ⊂ imP2.

Then, we say that P1 is lower or equal to P2, what we will note P1 � P2. The relation � is a partial order relation
in P(H). The inclusion in B is a partial order relation which is transposed in P(H) by a s.m. as follows:

Lemma 1.5 If E is a s.m. on X for H, then for all couple (A,B) of elements of X such that A ⊂ B, we have:
(EA)� (EB).
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2 The α-equivalence of spectral measures

In this paragraph we define and study a relation which is intended to measure the proximity between spectral measures:
the α-equivalence.

Definition 2.1 Let α be an element of [0, π[. We will say that two s.m.’s E1 and E2 are α-equivalent, what we will
denote E1 α∼ E2, when for all B of K, we have:

i) E1(B)� E2(B ⊕ [−α, α]),

ii) E2(B)� E1(B ⊕ [−α, α]).

Remarks.

i) this relation is reflexive and symmetric;

ii) two s.m.’s E1 and E2 0-equivalent are equal. Indeed, for all B of K, we have E1(B) = E2(B). Consequently, for all
X of H, the r.m.’s ZXE1 and ZXE2 match on K and so are equal, hence: E1 = E2.
The α-equivalence has a property close to transitivity.

Lemma 2.1 When (α1, α2) is a couple of elements of [0, π[ such that α1 + α2 < π, if three s.m.’s E1, E2 and E3 are
such that E1 α1∼ E2 and E2 α2∼ E3 then: E1 α1+α2∼ E3.

Proof. This comes from the relation [−α1, α1]⊕ [−α2, α2] ⊂ [−(α1 + α2), α1 + α2], and the fact that B ⊕ [−αi, αi],
i = 1, 2, is compact as soon as B is compact. �
When a s.m. is α-equivalent to EΠ, it is close to EΠ in the following sense:

Proposition 2.1 A s.m. E is α-equivalent to EΠ if and only if E([−α, α]) = IH .

Proof. Let E be a s.m. such that E([−α, α]) = IH . Consider B an element of K. If 0 ∈ B ⊕ [−α, α], then
E(B) � IH = EΠ(B ⊕ [−α, α]). If 0 /∈ B ⊕ [−α, α], then B ∩ [−α, α] = ∅ and hence E(B) ◦ EΠ(B ⊕ [−α, α]) = 0 =
E(B ∩ [−α, α]) = E(B) ◦ E([−α, α]) = E(B). In both cases we have E(B)� EΠ(B ⊕ [−α, α]).

In order to prove that EΠ(B)� E(B ⊕ [−α, α]), we also consider two cases: EΠ(B) = IH and EΠ(B) = 0. In the first
case 0 ∈ B and so [−α, α] ⊂ B ⊕ [−α, α], what allows to write EΠ(B) = IH = E([−α, α]) � E(B ⊕ [−α, α]). In the
second case it comes: EΠ(B) = 0� E(B ⊕ [−α, α]).

We then conclude that E is α-equivalent to EΠ.
The reverse comes from the relations IH = EΠ({0})� E({0} ⊕ [−α, α]) = E([−α, α])� E(Π) = IH . �
The α-equivalence has the following property of continuity.

Proposition 2.2 Let (αn)n∈N be a sequence of elements of [0, π[ that decreasingly converges towards α, then two s.m.’s
E1 and E2 such that E1 αn∼ E2, for all integer n, are α-equivalent.

Proof. Let B be a compact set of Π. As (B ⊕ [−αn, αn])n∈N is a decreasing sequence of elements of B, the lemma
1.4 allows to write

limnE2(B ⊕ [−αn, αn])X = E2(∩n∈N(B ⊕ [−αn, αn]))X = E2(B ⊕ [−α, α])X,

hence
limnE1(B)(E2(B ⊕ [−αn, αn])X) = E1(B)(E2(B ⊕ [−α, α])X).

Besides, as E1(B)◦(E2(B⊕[−αn, αn])) = E1(B), the above equality becomes limnE1(B)X = E1(B)((E2(B⊕[−α, α])X)),
hence E1(B) � (E2(B ⊕ [−α, α]). The relation E2(B) � E1(B ⊕ [−α, α]) can be proved in a same way, changing the
roles of E1 and of E2. This completes the proof. �
Let now examine how the convolution product keeps the property of α-equivalence. Consider first the case of a s.m.
concentrated on a finite number of elements of Π.2

Lemma 2.2 Let two s.m.’s E1 and E2, α-equivalent, and E a third s.m. concentrated on a finite number of elements
of Π that commute with E1 and with E2, then the s.m.’s E ∗ E1 and E ∗ E2 are α-equivalent.

Proof. There exists a finite family {λj ; j ∈ J} of elements of Π such that E({λj ; j ∈ J}) = IH .

Let B be a compact subset of Π, we have:
2Let recall that a s.m. E is said to be concentrated on a finite number of elements of Π when there exists a finite family {λj ; j ∈ J}

of elements of Π such that E({λj ; j ∈ J}) = IH , if E ′ is a second s.m. which commutes with E, then, for all A of B, we have:
E ∗ E ′(A) =

∑
j∈J E({λj}) ◦ E ′(A	 λj).
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(E ∗ E1(B)) ◦ (E ∗ E2(B ⊕ [−α, α])) =
∑
j∈J

∑
j′∈J E({λj}) ◦ E1(B 	 λj) ◦ E({λj′}) ◦ E2((B ⊕ [−α, α])	 λj′).

Moreover, as E1(B 	 λj) ◦ E2((B 	 λj)⊕ [−α, α]) = E1(B 	 λj) we can write:
(E ∗ E1(B)) ◦ (E ∗ E2(B ⊕ [−α, α])) =

∑
j∈J E({λj}) ◦ E1(B 	 λj) = E ∗ E1(B).

In a similar way, we can prove that (E ∗ E2(B)) ◦ (E ∗ E1(B ⊕ [−α, α])) = E ∗ E2(B). �
The following result also deals with the convolution product.

Lemma 2.3 If E is a s.m. α-equivalent to EΠ and E ′ a second s.m. which commutes with E, then for all B of B we
have:

i) E ′ ∗ E(B)� E ′(B ⊕ [−α, α]),

ii) E ′(B)� E ′ ∗ E(B ⊕ [−α, α]).

Proof. Let consider B an element of B. From ((Π× [−α, α]) ∩ (S−1B)) ⊂ ((B ⊕ [−α, α])× [−α, α]) we deduce:
E ′ ∗ E(B) = E ′ ⊗ E((Π× [−α, α]) ∩ (S−1B))� E ′ ⊗ E((B ⊕ [−α, α])× [−α, α]) = E ′(B ⊕ [−α, α]).

Moreover, as (B × [−α, α]) ⊂ S−1(B ⊕ [−α, α]), we can write:
E ′(B) = E ′ ⊗ E(B × [−α, α])� E ′ ⊗ E(S−1(B ⊕ [−α, α])) = E ′ ∗ E(B ⊕ [−α, α]),

and the proof is complete. �
As K is a subset of B, from this last result we deduce the

Corollary 2.1 If a s.m. E is α-equivalent to EΠ, then for all s.m. E ′ that commutes with E, we have: E ∗ E ′ α∼ E ′.
Now we will examine how a s.m. can be approximated by a s.m. concentrated on a finite number of elements of Π
thanks to a partition of Π.

For this, consider the measurable application Lk =
∑q=k−1
q=0 (−π + q 2π

k )1[−π+q 2π
k ,−π+(q+1) 2π

k [, k being an integer ≥ 3.
Hence we have the equality (Lk ⊕ w)−1([− 2π

k ,
2π
k ]) = Π, that plays a fundamental role for the proof of the

Lemma 2.4 When k is an integer ≥ 3, for all s.m. E we can say that:

i) (LkE) ∗ (wE) is 2π
k -equivalent to EΠ;

ii) LkE is 2π
k -equivalent to E.

Proof. The point i) is a consequence of the equality (Lk ⊕ w)−1([− 2π
k ,

2π
k ]) = Π and of proposition 2.1.

The point ii) is deduced from the point i) thanks to corollary 2.1. �
It is possible to generalize lemma 2.2 and corollary 2.1.

Proposition 2.3 Let two s.m.’s E1 and E2, α-equivalent, and E a third s.m. which commutes with E1 and with E2,
then the s.m.’s E ∗ E1 and E ∗ E2 are α-equivalent.

Proof. Let two s.m.’s E1 and E2 be α-equivalent and E a third s.m. which commutes with E1 and with E2. Consider
an integer k ≥ [ 4π

π−α ] + 1.

The successive use of lemma 2.4 and of corollary 2.1 let us write (LkE) ∗ E1
2π
k∼ E ∗ E1 and (LkE) ∗ E2

2π
k∼ E ∗ E2.

From the fact that LkE is a s.m. concentrated on a finite number of elements of Π, the lemma 2.2 allows to write
(LkE) ∗ E1 α∼ (LkE) ∗ E2.
From the above relations and from lemma 2.1, we can say that the s.m.’s E ∗ E1 and E ∗ E2 are (α+ 4π

k )− equivalent,
for all integer k ≥ [ 4π

π−α ] + 1. From proposition 2.2, we finally deduce the α-equivalence of the s.m.’s E ∗ E1 and E ∗ E2.
�
The previous result and corollary 2.1 allow to establish a link between the α-equivalence of two s.m.’s E1 and E2, that
commute, and the α-equivalence of the s.m.’s (wE1) ∗ E2 and EΠ.
Proposition 2.4 Two s.m.’s E1 and E2 that commute are α-equivalent if and only if the s.m.’s (wE1) ∗ E2 and EΠ are
α-equivalent.

We can now give a new formulation of the α-equivalence when the s.m.’s commute:

Proposition 2.5 Two s.m.’s E1 and E2 which commute are α-equivalent if and only if for all B of B, we have:

i) E1(B)� E2(B ⊕ [−α, α]),

ii) E2(B)� E1(B ⊕ [−α, α]).

Proof. If relations i) and ii) are verified for all B of B, the α-equivalence comes from the fact that K ⊂ B.

5
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Conversely, consider two s.m.’s E1 and E2 which commute and are α-equivalent. From proposition 2.4, we have
(wE1) ∗ E2 α∼ EΠ. Since the s.m.’s E1 and (wE1) ∗ E2 commute, the lemma 2.3 let us write, for all B of B: E2(B) �
E1(B ⊕ [−α, α]) and E1(B)� E2(B ⊕ [−α, α]), and the proof is complete. �

Remark. When two s.m.’s E1 and E2 commute and are α-equivalent, if α < π
2 , for all Borel set B, we have

E1(B)� E2(B ⊕ [−α, α])� E1(B ⊕ [−2α, 2α]) .

As soon as α is small, the Borel sets B, B ⊕ [−α, α] and B ⊕ [−2α, 2α] can be qualified of close together. We can say
the same for the projectors E1(B) and E1(B⊕ [−2α, 2α]), and for the projectors E2(B) and E2(B⊕ [−α, α]). From the
above relations E2(B ⊕ [−α, α]) is between E1(B) and E1(B ⊕ [−2α, 2α]), so it is close to E1(B). We then can deduce
the proximity between E1(B) and E2(B).

3 Unit operators and α-equivalence

The s.m. associated with the unit operator IH is EΠ, that is the s.m. concentrated on 0. It is natural to think that
the s.m. associated with a unit operator close to IH has an analogous property. We will first examine such a result.

For this, it is necessary to use a preliminary result about the application C : λ ∈ Π 7−→ cos(λ) ∈ R, which is proved
using elementary tools of measure theory:

Lemma 3.1 If µ is a probability measure defined on B such that 1 − ε2 ≤
∫
C dµ, where ε is an element of ]0, 1[,

then: 1− ε ≤ µ([−2
√
ε, 2
√
ε]).

Consequently,

Proposition 3.1 If U is a unit operator of H, of associated s.m. E, such that ‖U − IH‖L ≤ ε, where ε is an element
of ]0, 1[, then: E([−2

3
4
√
ε, 2

3
4
√
ε]) = IH .

Proof. If X is a normed element of H, we can write: ‖U(X)−X‖2 ≤ ‖U − IH‖2L ≤ ε2.

Developping this last point, we obtain
1− ( ε√

2
)2 ≤

∫
C dµZXE .

As µZXE is a “probability measure” the use of lemma 3.1 allows us to write:
∥∥∥(E{[−2

3
4
√
ε, 2

3
4
√
ε])X

∥∥∥
2

=
∥∥∥ZXE ({[−2

3
4
√
ε, 2

3
4
√
ε])
∥∥∥

2

= µZXE ({[−2
3
4
√
ε, 2

3
4
√
ε]) ≤ ε√

2
.

Since the norm of an orthogonal projector is either 1 or 0, we have E([−2
3
4
√
ε, 2

3
4
√
ε]) = IH . �

We have just established that the s.m. associated with a unit operator close to the identity is concentrated around 0.
The result that we now will examine constitutes, in some way, the reverse: when a s.m. is concentrated around 0, the
deduced unit operator is close to identity.

Proposition 3.2 If the s.m. E, associated with a unit operator U , is such that E [−ε, ε] = IH , where ε is an element
of [0, π[, then ‖U − IH‖L ≤

√
2
√

1− cos(ε) ≤ ε.
Proof. Let X be a normed element of H, if we remark that µZXE ({[−ε, ε]) = 0, we can write:

‖U(X)−X‖2 = 2− 2
∫
C dµZXE = 2− 2

∫
1[−ε,ε]C dµZXE ≤ 2(1− cos(ε)) ≤ ε2,

so the property stands. �
The proximity between unit operators implies that of associated s.m.’s, it is the object of the

Theorem 3.1 If two unit operators U1 and U2 commute and are such that ‖U2 − U1‖L ≤ ε, ε being an element of
]0, 1[, then the respectively associated s.m.’s E1 and E2 are 2

3
4
√
ε-equivalent.

Proof. To prove it, we can use the relations
∥∥U−1

1 ◦ U2 − IH
∥∥
L = ‖U2 − U1‖L ≤ ε and then propositions 3.1, 2.1 and

2.4. �

Remark. The hypothesis of commutativity is necessary, more precisely, the s.m.’s E1 and E2, associated with two unit
operators U1 and U2 such that ‖U2 − U1‖L ≤ ε, are not necessarily 2

3
4
√
ε-equivalent when there is not commutativity.

Examples can be given.

We have just seen that, when there is commutativity, the proximity between unit operators induces that of the
associated s.m.’s. Conversely, if two s.m.’s are close together, the same happens for the induced unit operators,
indeed:

Theorem 3.2 If two s.m.’s E1 and E2 that commute are α-equivalent, then we have the inequality: ‖U1 − U2‖L ≤ α,
U1 and U2 denoting the unit operators respectively deduced from E1 and from E2.
Proof. The result is a consequence of propositions 2.4, 2.1, 3.2 and of the fact that

∥∥U−1
1 ◦ U2 − IH

∥∥
L = ‖U2 − U1‖L.

�
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4 Applications to stationary processes

The following application allows to establish a duality between the quasi-periodicity of a process and the concentration
of the spectral measures.

Let us begin by specifying some spectral elements that we associate with a stationary c.r.f. (Xg)g∈G. We can show
(cf. Boudou and Romain, 2002) that, if Z denotes its associated r.m., it exists one and only one s.m. E , on BĜ for
HZ , called s.m. associated with Z, such that E(A)(

∫
ϕdZ) =

∫
1AϕdZ for all (A,ϕ) of BĜ × L2(Ĝ,BĜ, µZ).

In Boudou (2007), a family of unit operators is associated with a s.m.. In the case of the s.m. previously defined, this
can be summarised in the following way:

- for all (γ, g) of Ĝ × G, we denote g(γ) the unique element of Π such that eig(γ) = (γ, g)ĜG; the application
g : γ ∈ Ĝ 7−→ g(γ) ∈ Π is measurable;

- for all g of G we note Ug the unit operator of HZ deduced from the s.m. g(E).

We will call {Ug ; g ∈ G} the family of the unit operators of HZ deduced from the stationary c.r.f. (Xg)g∈G.

We can then assert (Boudou, 2007) that

i) for all (g, g′) of G×G, we have Ug ◦ Ug′ = Ug+g′ ;

ii) for all X of HZ , (Ug(X))g∈G is a stationary c.r.f. of associated r.m. ZXE .

So, when ϕ is an element of L2(Ĝ,BĜ, µZ), (Ug(
∫
ϕdZ))g∈G is a stationary c.r.f. image of (Xg)g∈G by the filter ϕ.

From these recalls, we can now introduce our following new concept:

Definition 4.1 A stationary c.r.f. (Xg)g∈G, for which {Ug ; g ∈ G} is the family of the deduced unit operators, has
the property of (α, g1)−proximity, (α, g1) being an element of ]0, 1[×G, when ‖Ug1 − IHZ‖L ≤ α.

Remark. This means that for all stationary c.r.f. of type (
∫

(., g)ĜGϕ(.) dZ)g∈G, where ϕ is an element of L2(µZ),
we have, for all g of G: ∥∥∫ (., g + g1)ĜGϕ(.) dZ −

∫
(., g)ĜGϕ(.) dZ

∥∥ ≤ α
∥∥∫ ϕdZ

∥∥.
Conversely, if for all element ϕ of L2(µZ) and for all g of G, this inequality stands, then the stationary c.r.f. (Xg)g∈G
has the property of (α, g1)−proximity.

In the frequency domain, the (α, g1)−proximity of a stationary c.r.f. takes the form of a concentration of the associated
r.m.:

Proposition 4.1 If a stationary c.r.f. (Xg)g∈G, of associated r.m. Z has the property of (α, g1)−proximity, (α, g1)
being an element of ]0, 1[×G, then: Z({(g1

−1([−α′, α′]))) = 0, where α′ = 2
3
4
√
α.

Proof. Let denote E the s.m. associated with Z and {Ug ; g ∈ G} the family of the unit operators deduced from
the stationary c.r.f. (Xg)g∈G. From the definition of the property of (α, g1)−proximity, we have ‖Ug1 − IHZ‖L ≤ α.
Hence, according to the proposition 3.1: E(g1

−1([−α′, α′])) = IHZ , where α′ = 2
3
4
√
α. In other words, we have:

E({(g1
−1([−α′, α′]))) = 0. Then the definition of the s.m. associated with a r.m. allows us to write:

Z({(g1
−1([−α′, α′]))) =

∫
1{(g1−1([−α′,α′]))1ĜdZ = E({(g1

−1([−α′, α′])))(
∫

1ĜdZ) = 0, hence the property. �
Conversely, the concentration of the r.m. implies a property of (α, g1)−proximity:

Proposition 4.2 If the r.m. Z, associated with a stationary c.r.f. (Xg)g∈G, is such that Z({(g1
−1([−α, α]))) = 0,

(α, g1) being an element of ]0, 1[×G, then (Xg)g∈G has the property of (α, g1)−proximity.

Proof. Let denote by E the s.m., on BĜ for HZ , associated with Z, the hypotheses allow us to write, for all ϕ of
L2(µZ): ∥∥E({(g1

−1([−α, α])))(
∫
ϕdZ)

∥∥2 =
∥∥∫ 1{(g1−1([−α,α]))ϕdZ)

∥∥2 =
∫

1{(g1−1([−α,α])) |ϕ|2L2(µZ) dµZ = 0.

The last equality comes from the fact that µZ({(g1
−1([−α, α]))) = 0. We can deduce from this that E({(g1

−1([−α, α]))) =
0, then that g1E([−α, α])) = IHZ . As Ug1 is the unit operator deduced from the s.m. g1E , {Ug ; g ∈ G} denoting the
family of unit operators of HZ deduced from the stationary c.r.f. (Xg)g∈G, the proposition 3.2 allows us to write that
‖Ug1 − IHZ‖L ≤ α, and then to conclude. �
In the case where G is equal to R and g1 to ∆, element of R∗+, the proposition 4.1 becomes

Corollary 4.1 If a stationary c.r.f. (Xt)t∈R, of associated r.m. Z, has the property of (α,∆)−proximity, (α,∆) being
an element of ]0, 1[×R∗+, then Z({(∪n∈Z

[
n 2π

∆ − α′

∆ , n
2π
∆ + α′

∆

]
) = 0, where α′ = 2

3
4
√
α.

The proposition 4.2 then becomes

7
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Corollary 4.2 If the r.m. Z, associated with a stationary c.r.f. (Xt)t∈R, is such that
Z({(∪n∈Z

[
n 2π

∆ − α
∆ , n

2π
∆ + α

∆

]
)) = 0, (α,∆) being an element of ]0, 1[×R∗+, then for all filtered (Yt)t∈R, of (Xt)t∈R,

we have ‖Yt+∆ − Yt‖ ≤ α ‖Y0‖, and this for all real t.

Finally, when G is equal to Z and when g1 is an element q of N∗, the proposition 4.1 expresses then as

Corollary 4.3 If a stationary series (Xn)n∈Z, of associated r.m. Z has the property of (α, q)−proximity, (α, q) being
an element of ]0, 1[×N∗, then: Z({(∪k=0,...,q−1(λk ⊕ [−α′q , α

′

q ])) = 0, where α′ = 2
3
4
√
α.

Regarding the proposition 4.2, it becomes

Corollary 4.4 If the r.m. Z, associated with a stationary series (Xn)n∈Z, is such that
Z({(∪k=0,...,q−1(λk ⊕ [−αq , αq ])) = 0, (α, q) being an element of ]0, 1[×N∗, then for all filtered (Yn)n∈Z of (Xn)n∈Z, we
have ‖Yn+q − Yn‖ ≤ α ‖Y0‖, for all n of Z.

5 Numerical illustration

Let consider a series (X ′n)n∈Z whose spectrum is
spect((X ′n)n∈Z) = {−2π/3, −2π/3±α, 0, ±α, 2π/3, 2π/3±α}.

−π π
[ [

0−2π
3

2π
3

When α is small enough, it is close to a 3−periodic series (Xn)n∈Z whose spectrum is
spect((Xn)n∈Z) = {−2π/3, 0, 2π/3}.

[ [
−π 0 π−2π

3
2π
3

The spectral measure associated with (X ′n)n∈Z can then be writen E ′ = δ− 2π
3 −α(.)P ′1 + δ− 2π

3
(.)P ′2 + δ− 2π

3 +α(.)P ′3 +
δ−α(.)P ′4 + δ0(.)P ′5 + δα(.)P ′6 + δ 2π

3 −α(.)P ′7 + δ 2π
3

(.)P ′8 + δ 2π
3 +α(.)P ′9.

The associated operator U ′ = ei(−
2π
3 −α)P ′1 + e−

2π
3 iP ′2 + ei(−

2π
3 +α)P ′3 + e−iαP ′4 + P ′5 + eiαP ′6 + ei(

2π
3 −α)P ′7 + ei

2π
3 P ′8 +

ei(
2π
3 +α)P ′9 is such that U ′3 is close to the identity operator I. In a same way, as Xn+3 = Xn, X ′n+3 is close to X ′n.

It is this quasi-periodicity that we will illustrate numerically. The P ′j ’s can be chosen as the orthogonal projectors
of a self-adjoint operator generated from random variables. We will choose Zj = Pj1 and Z ′j = P ′j1, where 1 is
the vector of ones. then we can write X ′n = ein(− 2π

3 −α)Z ′1 + e−in
2π
3 Z ′2 + ein(− 2π

3 +α)Z ′3 + e−inαZ ′4 + Z ′5 + einαZ ′6 +
ein( 2π

3 −α)Z ′7+ein
2π
3 Z ′8+ein( 2π

3 +α)Z ′9, and X ′n+3 = ei(n+3)(− 2π
3 −α)Z ′1+e−i(n+3) 2π

3 Z ′2+ei(n+3)(− 2π
3 +α)Z ′3+e−i(n+3)αZ ′4+

Z ′5 + ei(n+3)αZ ′6 + ei(n+3)(2π/3−α)Z ′7 + e2i(n+3)π/3Z ′8 + ei(n+3)(2π/3+α)Z ′9.

For α = 0.1, the values of X ′1 and X ′4 are rather different, when α = 0.01, they become closer, and when α = 0.001
and 0.0001, they are the same at the precision 0.1 and 0.01:

α = 0.1 α = 0.01
Xα

1 Xα
4 Xα

1 Xα
4

-0.3109-0.6469i -0.1737-0.6105i -0.3505-0.6612i -0.3374-0.6562i
1.1055+1.1782i 1.1135+1.3751i 1.0799+1.1021i 1.0896+1.1283i
0.5715-0.3795i 0.6686-0.0867i 0.5338-0.4673i 0.5468-0.4382i

-0.3463+0.9663i -0.1694+1.0052i -0.3969+0.9582i -0.3802+0.9607i
0.4859+0.2819i 0.2775+0.5302i 0.5458+0.2025i 0.5261+0.2291i
0.6330-0.9571i 0.5969-0.8712i 0.6345-0.9699i 0.6345-0.9663i
-0.9443-0.3735i -0.9402-0.4181i -0.9396-0.3575i -0.9414-0.3630i
-1.1099+0.6015i -1.0772+0.4499i -1.1081+0.6460i -1.1093+0.6313i
0.3053-0.0158i 0.0636+0.2721i 0.3643-0.0974i 0.3454-0.0706i

α = 0.001 α = 0.0001
Xα

1 Xα
4 Xα

1 Xα
4

-0.3544-0.6627i -0.3531-0.6622i -0.3548-0.6628i -0.3546-0.6628i
1.0767+1.0942i 1.0778+1.0968i 1.0764+1.0934i 1.0765+1.0936i
0.5298-0.4761i 0.5312-0.4731i 0.5294-0.4769i 0.5296-0.4766i

-0.4018+0.9575i -0.4002+0.9577i -0.4023+0.9574i -0.4022+0.9575i
0.5517+0.1945i 0.5497+0.1972i 0.5523+0.1937i 0.5521+0.1940i
0.6344-0.9708i 0.6344-0.9705i 0.6344-0.9709i 0.6344-0.9709i
-0.9389-0.3559i -0.9391-0.3564i -0.9389-0.3557i -0.9389-0.3558i
-1.1077+0.6504i -1.1078+0.6489i -1.1076+0.6508i -1.1076+0.6507i
0.3698-0.1054i 0.3679-0.1028i 0.3703-0.1062i 0.3701-0.1060i

X1 = X4

-0.3548-0.7822i
1.0764+0.0441i
0.5294-0.2717i
-0.4024-0.8097i
0.5523-0.2585i
0.6344-0.2111i
-0.9389-1.1194i
-1.1076-1.2168i
0.3704-0.3635i

For each n, The sequence (Xα
n )α clearly converges towards Xn, when α→ 0.
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