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)) for stationary sequences satisfying general mixing conditions and derive a simplified condition, specially adapted for applications.

Introduction

Let {X i } be a sequence of random variables (r.v.'s) with common distribution function (d.f.) G satisfying

G(x) := 1 -G(x) = P (X 1 > x) = x -R L(x), x > 0, ( 1 
)
where L is a slowly varying function at infinity and R is a positive constant. The problem of estimating R or related tail indices has received considerable attention and common applications may be found in a big variety of domains, as for example in economics, applied finance, insurance, business, industry, telecommunications, traffic, geology and sociology. Several estimators for R or 1/R have been proposed in the literature

ACCEPTED MANUSCRIPT

(see e.g. [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF], [START_REF] Bacro | Weak limiting behaviour of a simple tail Pareto-index estimator[END_REF], [START_REF] Csörgő | Estimating the tail index[END_REF] and references therein).

One of the most commonly used estimators for 1/R is the Hill estimator (1975), given by

H(k n ) = 1 k n kn i=1 log X n-i+1,n -log X n-kn,n ,
where X 1,n ≤ X 2,n ≤ . . . ≤ X n,n denote the order statistics (o.s.) of the sample X 1 , X 2 . . . , X n and k n is a sequence of positive integers satisfying

1 ≤ k n < n, lim n→∞ k n = ∞ and lim n→∞ k n /n = 0. ( 2 
)
The asymptotic properties of H(k n ) have been much studied. In the independent context, it is well known that, under some regularity conditions, H(k n ) is strongly consistent (cf. [START_REF] Deheuvels | Almost sure convergence of the Hill estimator[END_REF]) with asymptotic normal distribution when properly normalized (cf. [START_REF] Haeusler | On asymptotic normality of Hill's estimator for the exponent of regular variation[END_REF]).

Several extensions of H(k n ) have been proposed, for example, the family of j-moment ratio estimator (cf. [START_REF] Danielsson | The method of moments ratio estimator for the tail shape parameter[END_REF])

W j = u j (X n-kn,n ) ju j-1 (X n-kn,n ) ,
where

u j (s n ) = 1 k n kn i=1 log X n-i+1,n s n j ,
for j = 1, 2, . . ., and u 0 (s n ) = 0. For the particular case j = 1, W 1 is the Hill estimator.

Other type of scale invariant estimators of the tail index have been introduced, like for example in [START_REF] Politis | A new approach on estimation of the tail index[END_REF] and [START_REF] Mcelroy | Moment-based tail index estimation[END_REF].

Based on least squares considerations, [START_REF] Schultze | On least squares estimates of an exponential tail coefficient[END_REF] proposed three estimators, denoted by R 1 (k n ), R 2 (k n ) and R 3 (k n ), for the tail coefficient R, in the i.i.d. case. [START_REF] Brito | Limiting behaviour of a geometric-type estimator for tail indices[END_REF] have introduced a geometric-type estimator of R, R(k n ), which is related to the least square estimators R 1 (k n ) and R 3 (k n ) and defined by

R(k n ) = kn i=1 log 2 (n/i) -1 kn kn i=1 log(n/i) 2 kn i=1 log X 2 n-i+1,n -1 kn kn i=1 log X n-i+1,n 2 .
We recall that these least squares estimators have the interesting property of being universal asymptotically normal under the model (1), property not shared by Hill's estimator. This specific property makes the use of the estimator R(k n ) specially attractive for the case where R is expected to be small. As illustrated by [START_REF] Csörgő | Estimating the tail index[END_REF], the least squares type estimators are, in some situations, more "robust" against deviations of the slowly varying function L from a constant. Also, an important application in risk theory was first given by [START_REF] Schultze | On least squares estimates of an exponential tail coefficient[END_REF]. In particular, these authors establish the consistency of R 1 (k n ) and R 3 (k n ) for
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estimating the adjustment coefficient for a particular subclass of the Sparre Andersen risk process. More recently, [START_REF] Brito | Weak convergence of a bootstrap geometric-type estimator with applications to risk theory[END_REF] have shown that the consistency properties of all these estimators still hold in the Sparre Andersen model under standard conditions.

In this paper we consider the important question of relaxing the independent condition in the problem of estimating the tail coefficient R of the family (1). This question has been studied by several authors, including [START_REF] Resnick | Consistency of Hill's estimator for dependent data[END_REF], [START_REF] Resnick | Tail estimation for dependent data[END_REF] and [START_REF] Hill | On tail index estimation for dependent, heterogeneous data[END_REF]. In particular, [START_REF] Hsing | On tail index estimation using dependent data[END_REF] investigated the asymptotic behaviour of H(k n ) for stationary sequences in the presence of dependence. The cited works are mainly concerned with the behaviour of the Hill estimator under different dependent structures. Motivated by the nice and specific properties of the least squares type estimators, we focus our study on the consistency of the geometric-type estimator R(k n ) for sequences of identically distributed and eventually dependent r.v.'s. We establish the consistency of R(k n ), under some general assumptions, for strictly stationary sequences satisfying certain mixing conditions [START_REF] Hsing | On tail index estimation using dependent data[END_REF]). We also give a simplified sufficient condition for consistency, appropriate for applications. This condition is only based on the mixing sequences including, as a particular case, m-dependence.

One well known complex practical problem is the choice of the number of observations included in the estimation of R. In view of the construction of the geometric-type estimator, we may use the heuristic method proposed in [START_REF] Brito | Limiting behaviour of a geometric-type estimator for tail indices[END_REF], based on the minimization of the obtained residuals.

Our study may also be applied to related estimators. In particular, we obtain immediately the consistency of the ratio estimator W 2 .

We present our results in the following section and the corresponding proofs are given in Section 3.

Main results

In the sequel, P -→ stands for convergence in probability and we denote by G -1 the left continuous inverse of G, i.e., G -1 (s) := inf{x : G(x) ≥ s}.

We investigate the consistency of R(k n ), for stationary sequences under mixing conditions. We recall the strong-mixing condition for a stationary sequence {ξ i }:

α(l, {ξ i }) := sup { | P [A ∩ B] -P [A]P [B]| : A ∈ F j 1 {ξ i }, B ∈ F ∞ j+l+1 {ξ i }, j > 1 → 0 as l → ∞, where F s r {ξ i } denotes the σ-field σ{ξ i : r ≤ i ≤ s} and F ∞ r {ξ i } the σ-field σ{ξ i : i ≥ r}.
Here, we will consider mixing conditions adapted to this context. Namely, the role of l will be played by adequate sequences r n , as it is usual in Extreme Value Theory, while ξ i will be appropriate functionals of the r.v.'s X i .

Before we summarize our results, it is convenient to introduce some notation. For x ∈ R, x + denotes max(x, 0) and x -denotes max(-x, 0). For simplifying the presentation, we write

x 2 + ≡ (x + ) 2 and x 2 -≡ (x -) 2 . A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Consider the function b defined by b(t) := G -1 1 - 1 t , t > 1, (3) 
and define also

Y ni := (log X i -log b(n/k n )) + and I ni (ǫ, a) := I(log X i -log b(n/ak n ) > ǫ).
Theorem 1 Assume that G satisfies (1) and k n is a sequence of positive integers satisfying (2). Suppose that

k -1 n n i=1 (T ni -E(T ni )) P → 0, ( 4 
)
for

T ni = Y j ni , j = 1, 2, and T ni = I ni (ǫ, a), for every ǫ ∈ R and a in some neighbourhood V 1 of 1. Then R(k n ) converges to R in probability.
Let r n be a sequence of positive integers such that r n /n → 0 as n → ∞. Denote by S nj a r.v. measurable with respect to F jrn (j-1)rn+1 {T ni }, 1 ≤ j ≤ l n , where l n = [n/r n ] and T ni is a functional of X i . Consider the following conditions:

k -1 n ln j=1 E (|S nj |I(|S nj | > k n )) → 0, as n → ∞, (5) 
k -2 n ln j=1 E S 2 nj I(|S nj | ≤ k n ) → 0, as n → ∞. (6) 
We are now in condition to characterize the consistency of R(k n ). Let S nj (T ni ) := jrn i=(j-1)rn+1 T ni . Theorem 2 Assume that G satisfies (1). Let {X i } be a strictly stationary sequence and k n a sequence of positive integers satisfying (2). R(k n ) converges to R in probability if the following conditions are verified: (i) There exists a sequence r n of positive integers such that r n /n → 0, l n α(r n , {Y ni }) → 0 as n → ∞ and the conditions ( 5) and ( 6) are satisfied for S nj (Y ni ).

(ii) For each ǫ ∈ R and a in some neighborhood V 1 of 1, there exists a sequence r n of positive integers such that r n /n → 0, l n α(r n , {I ni (ǫ, a)}) → 0 as n → ∞ and the conditions (5) and ( 6) are satisfied for S nj (I ni (ǫ, a)).

(iii) The conditions ( 5) and ( 6) are satisfied for S nj (Y 2 ni ). The consistency of the estimator H(k n ) of 1/R was established in Theorem 3.2 of [START_REF] Hsing | On tail index estimation using dependent data[END_REF] under the conditions (i) and (ii) of the theorem above.

The general conditions of Theorem 2 may be much simplified under appropriate assumptions on the dependence structure. In particular, the conditions (5) and ( 6) are satisfied if the sequence r n verifies r n /k n → 0. We then obtain a sufficient condition of consistency based only on the mixing sequences, as stated below.
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Corollary 1 Assume that G satisfies (1). Let {X i } be a strictly stationary sequence and k n a sequence of positive integers satisfying (2).

Suppose that for each of the following T ni : T ni = Y ni and T ni = I ni (ǫ, a), there exists a sequence r n of positive integers such that r n /k n → 0 and l n α(r n , {T ni }) → 0 as n → ∞. Then, both estimators, 1/ H(k n ) and R(k n ), converge to R in probability.

A simple illustration of the application of this result is given in the following example. Example Consider the finite moving averages processes

X j = m i=0 c i Z i+j , j = 1, 2, . . . ,
where c i ∈ R + , i = 0, . . . , m, and Z k are i.i.d. positive r.v.'s with P (Z k > z) = z -R l(z), l being a slowly varying function at ∞ and R ∈ R + . Then {X i } is a strictly stationary sequence of r.v.'s with common d.f. G satisfying (1). Moreover, for this process, we have that α(m, {X i }) = 0 and so α(m,

{T ni }) = 0, for T ni = (log X i -log b(n/k n )) + and T ni = I(log X i -log b(n/ak n ) > ǫ).
Thus, by Corollary 1, R(k n ) is a consistent estimator of R, for any sequence of positive integers satisfying (2).

Actually, Corollary 1 implies the consistency of R(k n ) (and 1/ H(k n )) for any mdependent sequence.

Corollary 2 Assume G satisfies (1). Let {X i } be a strictly stationary m-dependent sequence and k n a sequence of positive integers satisfying (2). Then, R(k n ) converges to R in probability.

We will consider now the ratio estimator

W 2 = kn i=1 (log(X n-i+1,n /X n-kn,n )) 2 2 kn i=1 log(X n-i+1,n /X n-kn,n )
.

We recall that, in the i.i.d. case, and with respect to AMSE criterion, W 1 and W 2 are the only two elements of interest in the class W j (cf. [START_REF] Danielsson | Beyond the sample: Extreme quantile and probability estimation[END_REF]). Noting that, under consistency, W 2 -1/ R(k n ) = o p (1), we obtain immediately the following result.

Proposition 1 The results of Theorem 2 and Corollaries 1 and 2 still hold when R(k n ) is replaced by 1/ W 2 .

Proofs

We begin by observing that, since G is regularly varying function at ∞ with index -R, the function b defined in (3) is regular varying at ∞ with index 1/R. Moreover,

G(b(t)) ∼ t -1 as t → ∞.
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Note that, as referred by [START_REF] Hsing | On tail index estimation using dependent data[END_REF], the kth moment of (log

X 1 -log b(n/k n )) + is such that E(log X 1 -log b(n/k n )) k + ∼ k n n k! R k as n → ∞. (7) 
Now, define the random quantities

H(k n ) := 1 k n kn i=1 (log X n-i+1,n -log b(n/k n ))
and

H + (k n ) := 1 k n n i=1 (log X i -log b(n/k n )) + .
We shall also use the following results.

Theorem A [START_REF] Hsing | On tail index estimation using dependent data[END_REF], Theorem 2.2) Suppose G satisfies (1) and let k n be a sequence of positive integers such that (2) holds. Suppose that

k -1 n n i=1 (T ni -E(T ni )) P → 0 for T ni = Y ni and T ni = I ni (ǫ, a) for every ǫ ∈ R and a in some neighbourhood V 1 of 1. Then H(k n ), H(k n ) and H + (k n ) converge to 1/R in probability.
Theorem B [START_REF] Hsing | On tail index estimation using dependent data[END_REF], Theorem 3.1) Let {X i } be a strictly stationary sequence and k n a sequence of positive integers satisfying (2). Suppose r n is a sequence of positive integers such that r n /n → 0 as n → ∞. Assume that, as n → ∞, l n α(r n , {T ni )}) → 0 and conditions ( 5) and ( 6) hold. Then,

k -1 n ln j=1 (S nj -E(S nj )) P → 0.
Lemma A [START_REF] Brito | Limiting behaviour of a geometric-type estimator for tail indices[END_REF], Lemma 1) Let k n be a sequence of positive integers such that 1 ≤ k n ≤ n, and consider the sequence

i n (k n ) := 1 kn kn i=1 log 2 (n/i) -1 kn kn i=1 log(n/i) 2 . Then i n (k n ) = 1 + O log 2 k n k n .
We turn now to the consistency of the estimator R(k n ). First note that R(k n ) can be written in the form

ACCEPTED MANUSCRIPT R(k n ) = i n (k n ) 1 kn kn i=1 log 2 X n-i+1,n -1 k 2 n kn i=1 log X n-i+1,n 2 .
By Lemma A, we have that i n (k n )→1 as n→∞, and so R(k n ) converges to R in probability if and only if N(k n ) converges to 1/R 2 in probability, where

N (k n ) := 1 kn kn i=1 log 2 X n-i+1,n -1 k 2 n kn i=1 log X n-i+1,n 2 = 1 kn kn i=1 (log X n-i+1,n -log b(n/k n )) 2 -1 k 2 n kn i=1 (log X n-i+1,n -log b(n/k n )) 2 .
Proof of Theorem 1. Define

N + (k n ) := 1 k n n i=1 (log X i -log b(n/k n )) 2 + - 1 k 2 n n i=1 (log X i -log b(n/k n )) + 2 .
We start by showing that

N + (k n ) P → 1/R 2 . By Theorem A, H(k n ) and H + (k n ) con- verge in probability to 1/R and, consequently, H 2 (k n ) and H +2 (k n ) converge in probability to 1/R 2 .
Moreover, (7) implies that

n k n E(log X 1 -log b(n/k n )) 2 + →2/R 2 as n → ∞. Using condition (4) for Y 2 ni , we conclude that 1 k n n i=1 (log X i -log b(n/k n )) 2 + P → 2/R 2 .
Thus,

N + (k n ) = 1 k n n i=1 (log X i -log b(n/k n )) 2 + -H +2 (k n ) P → 1/R 2 .
Next, we are going to prove that

N + (k n ) -N(k n ) P → 0. Note we can write N + (k n ) -N(k n ) = A n + B n + H 2 (k n ) -H 2+ (k n ),
where

A n = - 1 k n kn j=1 (log X n-j+1,n -log b(n/k n )) 2 - and B n = 1 k n n j=kn+1 (log X n-j+1,n -log b(n/k n )) 2 + . As H 2 (k n ) -H +2 (k n ) P → 0, it is enough to show that A n P → 0 and B n P → 0.
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For this we begin by recalling that

log X n-[akn]+1,n -log b(n/ak n ) P → 0, (8) 
for all a ∈ V 1 , as was proved by [START_REF] Hsing | On tail index estimation using dependent data[END_REF]. For completeness and for future reference we include here a proof of this fact. Let ǫ > 0 and a ∈ V 1 . We can write

P [log X n-[akn]+1,n -log b(n/ak n ) > ǫ] = P n i=1 I ni (ǫ, a) ≥ [ak n ] = P k -1 n n i=1 (I ni (ǫ, a) -E(I ni (ǫ, a))) ≥ k -1 n ([ak n ] -nE(I ni (ǫ, a)))
and

E(I ni (ǫ, a)) = P [log X i -log b(n/ak n ) > ǫ] = G(e ǫ b(n/ak n )) ∼ a k n n e -Rǫ as n → ∞. Thus, k -1 n ([ak n ] -nE(I ni (ǫ, a))) → a(1 -e -Rǫ ) > 0. And, as by hypothesis, k -1 n n i=1 (I ni (ǫ, a) -E(I ni (ǫ, a))) P → 0, we deduce that P [log X n-[akn]+1,n -log b(n/ak n ) > ǫ] → 0 as n → ∞.
In the same way, we can see that

P [log X n-[akn]+1,n -log b(n/ak n ) < -ǫ] → 0 as n → ∞,
for every ǫ > 0 and a ∈ V 1 .

By definition of A n we easily verify that

|A n | ≤ (log X n-kn+1,n -log b(n/k n )) 2 -.
So, given ǫ > 0,

P [|A n | > ǫ] ≤ P [(log X n-kn+1,n -log b(n/k n )) 2 -> ǫ].
Using (8) with a = 1, we deduce that A n P → 0.

Consider now the term B n . Taking δ ∈ R + such that (1δ, 1 + δ) ⊂ V 1 , we may write

B n = C n + D n ,
where

C n = 1 k n [(1+δ)kn] j=kn+1 (log X n-j+1,n -log b(n/k n )) 2 + , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT and D n = 1 k n n j=[(1+δ)kn]+1 (log X n-j+1,n -log b(n/k n )) 2 + .
We are going to show that both terms C n and D n converge in probability to 0. Notice that

D n > 0 ⇒ log X n-[(1+δ)kn],n -log b(n/k n ) > 0
and, so,

P [D n > 0] ≤ P log X n-[(1+δ)kn]+1,n -log b(n/k n ) > 0 . Now, P log X n-[(1+δ)kn]+1,n -log b(n/k n ) > 0 = P log X n-[(1+δ)kn]+1,n -log b(n/(1 + δ)k n ) > log b(n/k n ) -log b(n/(1 + δ)k n ) . By (8), log X n-[(1+δ)kn]+1,n -log b(n/(1 + δ)k n ) P → 0.
And because b is regular varying at ∞ with index 1/R, we have that

lim inf n→∞ (log b(n/k n ) -log b(n/(1 + δ)k n )) = lim n→∞ log b(n/k n ) b(n/(1 + δ)k n ) = 1 R log(1 + δ) > 0. Thus, P [D n > 0] → 0 as n → ∞.
Regarding the term C n , we may observe that

C n ≤ 1 k n ([(1 + δ)k n ] -k n )(log X n-kn,n -log b(n/k n )) 2 + ≤ δ(log X n-kn,n -log b(n/k n )) 2 + .
So, for ǫ > 0,

P [|C n | > ǫ] ≤ P (log X n-kn,n -log b(n/k n )) 2 + > ǫδ -1 ≤ P (log X n-kn+1,n -log b(n/k n )) + > √ ǫδ -1 .
Using again (8) with a = 1, we conclude that C n P → 0.

Proof of Theorem 2. We begin by observing that, under (i), l n α(r n , {Y 2 ni )}) → 0 as n → ∞. Moreover, using conditions (i), (ii) and (iii), it also follows, from Theorem B, that 

k -1 n lnrn i=1 (T ni -E(T ni )) = k -1 n ln j=1   jrn i=(j-1)rn+1 (T ni -E(T ni ))   P → 0, for T ni = Y j ni , j = 1,
k -1 n n i=1 (T ni -E(T ni )) = k -1 n lnrn i=1 (T ni -E(T ni )) + k -1 n n i=lnrn+1 (T ni -E(T ni )) P → 0.
Thus, the result will follow from Theorem 1.

We start by showing that

E k -1 n n i=lnrn+1 Y ni → 0 as n → ∞. E k -1 n n i=lnrn+1 Y ni = k -1 n (n -l n r n )E(Y ni ).
By ( 7), E(Y ni ) ∼ kn n R -1 as n → ∞, and, consequently,

E k -1 n n i=lnrn+1 Y ni ∼ R -1 (1 -(l n r n )/n) → 0 as n → ∞.
Using ( 7) with k = 2 we can prove in an analogous way that Proof of Corollary 1. We will show that for a sequence r n of positive integers such that r n /k n → 0, the conditions (5) and ( 6) hold for S nj (T ni ), for T ni = Y ni , T ni = Y 2 ni and T ni = I ni (ǫ, a). Then the consistency of 1/ H(k n ) and R(k n ) will follow from Theorem 3.2 of [START_REF] Hsing | On tail index estimation using dependent data[END_REF] and Theorem 2, respectively.

E k -1 n n i=lnrn+1 Y 2 ni → 0 as n → ∞.
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Beginning by considering condition (5), note that

k -1 n ln j=1 E (|S nj |I(|S nj | > k n )) = l n k n E (S n1 I(S n1 > k n )) ≤ l n k 2 n E S 2 n1 .
Concerning condition (6),

k -2 n ln j=1 E S 2 nj I(|S nj | ≤ k n ) = l n k 2 n E S 2 n1 I(S n1 ≤ k n ) ≤ l n k 2 n E S 2 n1 .
Now, note that

l n k 2 n E S 2 n1 (T ni ) = l n k 2 n E   rn i=1 T ni 2   ≤ l n k 2 n r 2 n E(T 2 n1 ).
To conclude the proof of the theorem, it is then enough to show that l n k 2 n r 2 n E T 2 n1 → 0 as n → ∞.

Considering T n1 = I n1 , we have that

E(T 2 n1 ) = E(I n1 ) = O k n n .
On the other hand, for T n1 = Y n1 and T n1 = Y 2 n1 , we obtain, by ( 7),

E(T 2 n1 ) = O k n n .
Thus,

l n k 2 n E S 2 n1 (T ni ) ≤ [n/r n ] k 2 n r 2 n O k n n = O r n k n ,
which converges to 0 as n → ∞, once that r n /k n → 0 as n → ∞.

  2, and T ni = I ni (ǫ, a), respectively. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT If we show that E k -1 n n i=lnrn+1 T ni → 0 as n → ∞, then, by Markov inequality,

FinallyI

  ni (ǫ, a) . In the proof of Theorem 1, we have already seen thatE(I ni (ǫ, a)) ∼ a k n n e -Rǫ as n → ∞. Thus, as n → ∞, we have that ni (ǫ, a) = k -1 n (nl n r n )E(I ni (ǫ, a)) ∼ ae -Rǫ (1 -(l n r n )/n),concluding that E k -1 n n i=lnrn+1 I ni (ǫ, a) → 0, which completes the proof.
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