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Motivated by the information bound for the asymptotic variance of M-estimates for scale, we define Fisher information of scale of any distribution function F on the real line as the supremum of all x φ ′ (x) F(dx) 2 φ 2 (x) F(dx), where φ ranges over the continuously differentiable functions with derivative of compact support and where, by convention, 0/0 := 0. In addition, we enforce equivariance by a scale factor. Fisher information of scale is weakly lower semicontinuous and convex. It is finite iff the usual assumptions on densities hold, under which Fisher information of scale is classically defined, and then both classical and our notions agree. Fisher information of scale finite is also equivalent to L 2 -differentiability and local asymptotic normality, respectively, of the scale model induced by F.

Motivation and Definition

If F is any distribution function on R, the real line, and φ : R → R a suitable scores function such that φ dF = 0, an M-estimate of scale S n may formally be defined by n ∑ i=1 φ

x i S n = 0 .

(1.1)

The estimand refers to the scale model (F σ ) 0<σ <∞ induced by F = F 1 , where F σ (x) = F(x/σ ).

Taylor expanding φ (x/s) = φ (x/σ ) -(sσ )φ ′ (x/σ ) x/σ 2 + • • •, we formally obtain

√ n (S n -σ ) = σ n -1/2 ∑ n 1 φ (x i /σ ) n -1 ∑ n 1 φ ′ (x i /σ ) x i /σ + • • • (1.2)
such that under observations x 1 , . . . , x n i.i.d.∼ F σ and assuming sufficient regularity, in particular consistency, √ n (S n -σ ) will as n → ∞ be asymptotically normal with mean zero and variance

V (φ , F σ ) = σ 2 V 1 (φ , F) , V 1 (φ , F) := φ 2 (x) F(dx) x φ ′ (x) F(dx) 2 . (1.3)
If φ is differentiable with continuous derivative of compact support, both φ (x) and x φ ′ (x) are bounded, so the integrals in (1.3) are well-defined for any distribution F on the Borel σ -algebra B of R. As in the theory of generalized functions (Rudin (1991, Ch. 6)), regularity conditions are shifted to the test functions whenever possible. The usual information bound for asymptotic variance would say that V (φ , F σ ) ≥ I -1 s (F σ ) and, hopefully, the lower bound will also be achieved.

This leads us to the following definition of I s1 (F). The extension to I s (F σ ) for the scale transforms F σ of F matches (1.3).

Definition 1.1. Fisher information of scale, for any distribution F on the real line, is defined by

I s1 (F) := sup φ ∈C c1 x φ ′ (x) F(dx) 2 φ 2 (x) F(dx) , (1.4)
where C c1 denotes the set of all differentiable functions φ : R → R whose derivative is continuous and of compact support, and 0/0 := 0 by convention. For the scale transforms F σ of F we define

I s (F σ ) := σ -2 I s1 (F) , 0 < σ < ∞ . (1.5) Remark 1.2. Since the map φ → φ σ , where φ σ (x) := φ (σ x) and φ ′ σ (x) = σ φ ′ (σ x)
, defines a one-to-one correspondence on C c1 , we obtain scale invariance of I s1 ,

I s1 (F σ ) = I s1 (F) , 0 < σ < ∞ . (1.6)
So extension (1.5) is needed to obtain scale equivariance. In the scale model, as opposed to location, it matters whether a given distribution F is considered element F = F 1 or, for example, element F = F .5 (in the scale model generated by F 2 ).

Motivated by the information bound, Definition 1.1 is instrinsically statistical. It does not a priori use the assumption of, and suitable conditions on, densities. These properties rather follow from the definition in case I s is finite. Another advantage is that Definition 1.1 implies certain topological properties (convexity and lower continuity) of I s .

The definition parallels Huber (1981, Def. 4.1) in the location case,

I l (F) := sup φ φ ′ (x) F(dx) 2 φ 2 (x) F(dx) , (1.7)
where φ , subject to φ 2 dF > 0, ranges over the (smaller) set C 1 c of all continuously differentiable functions which themselves are of compact support. I l is shift invariant. Huber (1981, p. 79), states vague lower semicontinuity and convexity of I l . By Huber (1981, Thm. 4.2), I l (F) is finite iff F is absolutely continuous with an absolutely continuous density

f such that f ′ /f ∈ L 2 (F), in which case I l (F) = ( f ′ /f ) 2 dF.
Remark 1.3. The latter result, by arguments of the proof to Theorem 2.2 below, still obtains if definition (1.7) is based on C c1 . Only vague lower semicontinuity of I l would be weakened to weak continuity (which, however, makes no difference in the setup of normed measures). The convention 0/0 := 0 could replace the side condition φ = 0 a.e. F in (1.7) as well.

The non-suitability of C 1 c , and suitability of C c1 instead, is the tribute to the scale model, for which the functions x → x φ ′ (x) need to be dense in L 1 (F 0 ) with respect to the punctuated (substochastic) measure F 0 introduced in (2.1) below.

Fisher information of scale has been treated by [START_REF] Huber | Robust Estimation of a Location Parameter[END_REF]Huber ( , 1981) ) not in the previous generality but only under suitable assumptions on densities and, in an auxiliary way, has been reduced to the location case by symmetrization and the log-transform, Huber (1981, Sec. 5.6).

Main Results

Proposition 2.1. I s1 is weakly lower semicontinuous and convex.

Zero observations do not contain any information about scale. Removing the mass of any distribution F at zero, we define the punctuated, possibly substochastic measure F 0 by

F 0 := F -F({0})1 0 , (2.1)
where 1 0 denotes Dirac measure at 0. In terms of distribution functions, denoting by 1 [0,∞) the indicator function, we have

F 0 (x) = F(x) -(F(0) -F(0-))1 [0,∞) (x).
Theorem 2.2. For any distribution F on the real line,

I s1 (F) is finite iff i) F 0 is absolutely continuous with a density f such that ii) x → x f (x) is absolutely continuous, and iii) x → Λ(x) := -[ x f (x)] ′ /f (x) ∈ L 2 (F 0 ), in which case I s1 (F) = Λ 2 dF 0 = x =0 [ 1 + x f ′ (x)/f (x) ] 2 F(dx) .

Consequences for the Scale Model

For the scale transforms F σ of F, I s1 (F σ ) = I s1 (F) and I s (F σ ) = σ -2 I s1 (F) by (1.6) and (1.5), respectively. In particular, I s1 (F σ ) and I s (F σ ) are finite iff I s1 (F) is finite. Also conditions i) and ii) of Theorem 2.2 are simultaneously fulfilled for a density f of F 0 and the density f σ (x) = σ -1 f (x/σ ) of the punctuation F σ ,0 of F σ . In the finite case, since

[x f σ (x)] ′ /f σ (x) in condition iii) of Theorem 2.2 is just Λ(x/σ ), this theorem yields I s1 (F σ ) = Λ 2 (x/σ ) F σ ,0 (dx), which is Λ 2 (x) F 0 (dx) = I s1 (F σ )
; that is, (1.6) again. Therefore, in the finite case,

I s (F σ ) = Λ 2 σ dF σ ,0 , 0 < σ < ∞ . (3.1)
the representation of I s (F σ ) in terms of the usual score function Λ σ ,

Λ σ (x) := 1 σ Λ x σ = ∂ ∂ σ log f σ (x) = - 1 σ 1 + x σ f ′ ( x σ ) f ( x σ ) . (3.2)
As an analogue to a lemma due to [START_REF] Hájek | Local asymptotic minimax and admissibility in estimation[END_REF] in the location case, Swensen (1980, Ch.2, Sec.3) for an absolutely continuous F has shown that conditions i)-iii) of Theorem 2.2 even imply L 2 -differentiability (Rieder, 1994, Def. 2.3.6) of the scale model,

dF σ +t -dF σ (1 + 1 2 tΛ σ ) = o(t) as t → 0 (3.3)
at σ = 1 and, by invariance, at any 0 < σ < ∞. By definition, L 2 -differentiability already entails that Λ 2 σ dF σ < ∞. Setting Λ(0) := 0, we may extend his result to F({0}) > 0.

Proposition 3.1. Assume that I s1 (F) < ∞ . Then the scale model (F σ ) 0<σ <∞ is L 2 -differentiable with derivative Λ σ at every 0 < σ < ∞ .

L 2 -differentiability of a parametric model implies an expansion of the log-likelihhods, see e.g. Rieder (1994, Thm. 2.3.5); in our case, for each h ∈ R,

log dF n σ +h/ √ n /dF n σ = 1 √ n ∑ n i=1 h τ Λ σ (x i ) -1 2 h τ I s (F σ )h + o F n σ (n 0 ) ; (3.4)
that is, the scale model is locally asymptotically normal (LAN). LAN is the basis of asymptotic optimality results as Hájek's Asymptotic Convolution Theorem and the Local Asymptotic Minimax Theorem, see e.g. Rieder (1994, Thm.'s 3.2.3, 3.3.8) and van der Vaart (1998, Thm.'s 8.8, 8.11). Le Cam (1986, 17.3 Prop. 2) even shows that, in the i.i.d. setup, LAN is equivalent to L 2 -differentiability. Thus we obtain the following result.

Proposition 3.2. The following statements are equivalent:

i) I s (F σ ) < ∞ at some 0 < σ < ∞.
ii) The scale model is L 2 -differentiable at some 0 < σ < ∞.

iii) The scale model has the LAN property (3.4) at some 0 < σ < ∞.

By invariance, the validity of each statement at one σ implies its validity at any other 0 < σ < ∞.
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Appendix A. Proofs and Absolute Continuity

Proof of Proposition 2.1 The sup over a family of l.s.c., resp. convex, functions being l.s.c., resp. convex, it suffices to show that, for each φ ∈ C c1 , the reciprocal function V -1 1 (φ , • ) from (1.3), is weakly l.s.c. and convex. In this proof only, we pay a price for the simplifying convention 0/0 := 0.

Let F n → F weakly. Then φ 2 dF n → φ 2 dF. First assume φ 2 dF > 0. Then φ 2 dF n > 0 eventually, and V -1 1 (φ , F n ) → V -1 1 (φ , F). Secondly suppose that φ 2 dF = 0. If also x φ ′ dF = 0, then Huber (1981, Lemma 4.4). Secondly, let

Thirdly, let both φ 2 dF j be zero. Then, if also both x φ ′ dF j = 0, we get

Lemma A.1. For any finite measure F on B, the class

Proof On the basis of Lusin's theorem, Rudin (1974, Thm. 3.14), it suffices to approximate the indicator of bounded intervals (a, b].

For ε ↓ 0 one may choose functions

Concerning denseness of D c1 in L 1 (F 0 ), we may assume that a > 0. Drawing on the functions g ε define

and, in the second case, φ n (x) = φ (nx), where 2 φ (x) = 1 + cos(|x| ∧ π).
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Absolute Continuity From real analysis, e.g., Rudin (1974, Ch.8), we recall: An R-valued measure on the Borel σ -field B of the real line is dominated by λ , the Lebesgue measure, iff its distribution function is absolutely continuous. A function f : R → R is absolutely continuous, if for any ε > 0 there is a δ > 0 such that for any finite collection of disjoint segments

the derivative f ′ exists a.e. λ , and

, implying bounded variation on R, and the limit f (a) → 0 as a → -∞ require further conditions, respectively. These are obviously satisfied in the location case for absolutely continuous densities f such that

If f and g are absolutely continuous, so is their product f g on any compact [a, b]. Thus, integration by parts holds: Rieder (1994, Lemma C.2.1).

Proof of Theorem 2.2 First assume I s1 (F) < ∞. On C c1 define T (φ ) := -x φ ′ dF, which operator is well defined, because φ 2 dF = 0, in view of Definition 1.1, entails that x φ ′ dF = 0.

Evaluated on C c1 , T has operator norm I s1 (F) . C c1 being dense in L 2 (F), T may be extended to L 2 (F) keeping its norm. By Riesz-Fréchet there exists some g ∈ L 2 (F), whose norm equals the operator norm of T , such that T (φ ) = φ g dF for all φ ∈ L 2 (F), hence

Inserting φ n from Lemma A.1, both choices, we obtain that, in addition to g 2 dF = I s1 (F),

In particular, the integrals in (A.1) and (A.2) may be restricted to R \ {0} . Define the function

Then, if φ -∞ denotes the constant value of φ ∈ C c1 left to the support of φ ′ , φ g dF = (φφ -∞ ) g dF 0 and φ (x) -φ -∞ = 0 =y≤x φ ′ (y) λ (dy). Due to compact support of φ ′ , and g ∈ L 2 (F 0 ), the product g(x) φ ′ (y) is in L 1 (F 0 (dx) ⊗ λ (dy)), and so x φ ′ dF 0 = -x>y =0 g(x) φ ′ (y) F 0 (dx) λ (dy) = y f (y) φ ′ (y) λ (dy) by Fubini; thus,

By denseness of D c1 in L 1 (F 0 ), Lemma A.1, the LHS determines F 0 . As pointwise and dominated convergence x h ′ ε = g ε → 1 (a,b] has been established in that proof, also f dλ on the RHS is completely determined by (A.4) 

This completes the identification of g under F, and i)-iii) are proved.

Conversely, assume i)-iii). By ii), m(x) = x f (x) is absolutely continuous. Differentiability of m at x = 0 implies that of f , and

Thus, m and its measure m ′ dλ = -Λ dF 0 are of bounded variation on R.

By Hölder inequality, |m(y)-m(x)| 2 ≤ |F(y)-F(x)| Λ 2 dF 0 , so m(x) for x → ∞ is a Cauchy sequence. But lim x→∞ m(x) must be zero since otherwise f (x) ∼ 1/x for x → ∞ would not integrate. The same holding for x → -∞, we obtain m ′ dλ = 0. (A.8)

For φ ∈ C c1 , the function φφ -∞ and corresponding measure φ ′ dλ have bounded variation on R. Thus integration by parts in the general form of Rieder (1994, Lem. C.2.1) yields φ ′ m dλ = -φ m ′ dλ , such that x φ ′ dF = φ ′ m dλ = -φ m ′ dλ = φ Λ dF 0 . (A.9)

Applying Cauchy-Schwarz, we get

where Λ 2 dF 0 is finite by iii). It follows that I s1 (F) < ∞.

Proof of Proposition 3.1 We decompose √ dF σ +t -√ dF σ (1 + 1 2 tΛ σ ) into the following sum,

The first summand is o(t) by [START_REF] Swensen | Asymptotic inference for a class of stochastic processes[END_REF]. The second is 0, since F σ ({0}) = F({0}) and Λ σ (0) = 0.