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Characteristics of multivariate distributions

and the invariant coordinate system

Pauliina Ilmonena,∗, Jaakko Nevalainenb, Hannu Ojaa

aTampere School of Public Health, FI-33014 University of Tampere, Finland.
bStatistics/Department of Social Research, FI-20014 University of Turku, Finland.

Abstract

We consider a semiparametric multivariate location-scatter model where the
standardized random vector of the model is fixed using simultaneously two
location vectors and two scatter matrices. The approach using location and
scatter functionals based on the first four moments serves as our main exam-
ple. The four functionals yield in a natural way the corresponding skewness,
kurtosis and unmixing matrix functionals. Affine transformation based on
the unmixing matrix transforms the variable to an invariant coordinate sys-
tem. The limiting properties of the skewness, kurtosis, and unmixing matrix
estimates are derived under general conditions. We discuss related statistical
inference problems, the role of the sample statistics in testing for normality
and ellipticity, and connections to invariant coordinate selection and inde-
pendent component analysis.

Keywords: asymptotic normality, independent component analysis,
invariant coordinate selection, multivariate kurtosis, multivariate skewness,
scatter matrix
2000 MSC: 62H10, 62H12, 62G05, 62G20, 62F12

1. Introduction

Consider the n × p data matrix X = (x1, ...., xn)T , where x1, ..., xn is
a random sample from a p-variate distribution. Different location-scatter
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models are obtained if one assumes that

xi = Ωzi + µ, i = 1, ..., n,

where Z = (z1, ..., zn)T is an unobservable random sample from a “standard-
ized” distribution, µ is a location vector and Ω is a full-rank p × p matrix,
termed the mixing matrix in the independent component analysis (ICA) lit-
erature. The inverse of Ω, Γ = Ω−1, is the unmixing matrix, and Σ = ΩΩT

is the scatter matrix. Posing various assumptions on the distribution of the
zi yields different parametric or semiparametric multivariate models with
parametrized by µ and Σ, or by µ and Ω (Nordhausen et al. (2010)).

The following location-scatter models arise from this general structure
and are often considered and discussed in the literature.

1. The classical multivariate methods rely on the assumption of multi-
variate normality, that is, zi ∼ Np(0, Ip), i = 1, ..., n. The location
parameter µ is the mean vector and the scatter parameter Σ the co-
variance matrix. As Ozi ∼ Np(0, Ip) for all orthogonal matrices O, the
mixing matrix Ω or the unmixing matrix Γ are defined only up to an
orthogonal transformation in the multivariate normal model.

2. In the multivariate elliptical model it is assumed that zi ∼ Ozi for all
orthogonal matrices O. (Notation x ∼ y means that random variables
x and y are similarly distributed.) To fix Σ it is often assumed that
E(‖zi‖2) = p or that Med(‖zi‖2) = χ2

p,1/2. (The first configuration
naturally requires that finite second moments exists, but the second al-
lows to avoid any moment assumptions.) As in the multivariate normal
model, Ω and Γ are again defined only up to an orthogonal transfor-
mation. Elliptical distributions are thus symmetric in the sense that
zi ∼ Ozi for all O, but they may vary in their kurtosis properties. The
model permits for heavier (or lighter) tails than the multivariate nor-
mal model, and therefore elliptical models are commonly seen as a more
realistic alternative to the multivariate normal model. Robust testing
and estimation procedures, for example, often assume ellipticity.

3. Another type of model family is obtained if one presumes that the ob-
servations arise from a parametric independent component (IC) model.
Here the zi are assumed to have independent and standardized compo-
nents and the density function f(zi) =

∏p
j=1 fj(zij) with some known

standardized marginal densities f1, ..., fp. Matrix Γ is unique for dis-
tinct standardized densities f1, ..., fp.

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4. In a generalization of the parametric IC model, the semiparametric in-
dependent component model, zi is assumed to consist of independent
and standardized components such that E(zi) = 0 and E(ziz

T
i ) = Ip,

or Med(zij) = 0 and Med(z2
ij) = χ2

1,1/2. But then Ω and Γ are defined
only up to permutations and sign changes of the columns and rows,
respectively. In ICA the goal is to estimate Γ (up to a permutation,
rescaling and sign changes of the rows). In parametric and semipara-
metric IC models, skewness and kurtosis properties are characteristics
of the marginal distributions.

Instead of location-scatter models we will work under a general semi-
parametric location-scatter-skewness-kurtosis model (shortly: semiparamet-
ric model), which includes all (continuous as well as discrete) multivariate
distributions with finite fourth moments. Thus, many of the more conven-
tional models listed above overlap with the semiparametric model, which was
first introduced by Nordhausen et al. (2010).

The paper is organized as follows. The semiparametric model is defined
in Section 2 along with a discussion of related unmixing matrix, skewness and
kurtosis functionals, G, d and L. Section 3 gives useful asymptotic results
for the corresponding estimates Γ̂, δ̂ and Λ̂ even outside the semiparametric
model. More detailed results for the moment-based estimates are given in
Section 4. Statistical properties of the fourth-order blind identification FOBI
estimate are obtained as a side-product. Section 5 discusses the uses of
sample statistics in testing and estimation problems.

2. Definitions and preliminary results

2.1. Semiparametric model

A multivariate semiparametric model can be defined with natural param-
eters for multivariate location, scatter, skewness and kurtosis, respectively.
The zi needs to be standardized in a special way using two moment-based
location functionals, T1 and T2, and two moment-based scatter matrix func-
tionals S1 and S2. Next we establish the model, the moment-based location
and scatter functionals, and their connection to the model parameters.

Semiparametric model. Assume that X = (x1, ..., xn)T is random sample
from a p-variate distribution such that

xi = Ωzi + µ, i = 1, ..., n,

3
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where the zi are standardized so that

E(zi) = 0,

E(ziz
T
i ) = Ip,

E(ziz
T
i zi) = p · δ and

E(ziz
T
i ziz

T
i ) = (p + 2) · Λ

where δ is a p-vector with all components δi ≥ 0, i = 1, ..., p, and Λ is a
diagonal matrix with diagonal elements λ1 ≥ ... ≥ λp > 0.

The semiparametric model was first introduced in Nordhausen et al. (2010).
The parameters in the model are the mean vector µ, the covariance matrix
Σ = ΩΩT , the skewness vector δ based on third moments, and the kurtosis
matrix Λ. We will return to these concepts shortly. The model is general
in the sense that it includes all p-variate distributions with finite fourth
moments, but of course rules out heavy-tailed distributions. The mixing and
unmixing matrices, Ω and Γ = Ω−1, are uniquely defined if δi > 0, i = 1, ..., p,
and λ1 > ... > λp > 0. When the model parameters are fixed in this way, the
unmixing matrix can be used to transform the random vector to an invariant
coordinate system (Tyler et al. (2009, ICS)). If the components of zi are
independent, the unmixing matrix Γ is the fourth-order blind identification
(FOBI) functional by Cardoso (1989), a solution in ICA. Alternative models
and multivariate skewness and kurtosis measures are obtained if the moment-
based location and scatter measures are replaced by some other, e.g. robust,
multivariate location measures and scatter measures.

The model obviously includes the multivariate normal model with δ = 0
and Λ = Ip. For elliptical distribution δ = 0 and Λ = λIp, where λ is a
kurtosis parameter, which may not be finite. In the elliptical model Ω is
thus defined only up to an orthogonal transformation. However, Σ = ΩΩT is
uniquely defined. IC models are included when the marginal densities possess
finite fourth-order moments. Recall that the target parameter of ICA is Γ.

2.2. Location and scatter functionals

In robust and nonparametric communities the characteristics of a distri-
bution are often described by functionals. Let Fx be the cumulative distri-
bution function (cdf) of a p-variate random variable x. A location functional
T (Fx) is a vector-valued (p× 1) functional, which is affine equivariant in the
sense that

T (FAx+b) = AT (Fx) + b

4
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for all nonsingular p×p matrices A and for all p-vectors b. A scatter functional
S(Fx) is a p×p -matrix-valued functional which is positive definite and affine
equivariant in the sense that

S(FAx+b) = AS(Fx)A
T

for all nonsingular p×p matrices A and for all p-vectors b. A scatter functional
S is said to possess the independence property if S(Fx) is a diagonal matrix
for all x with independent components—a property which not all scatter
matrices enjoy, but which is essential in independent component analysis.
The first examples of location and scatter functionals are the mean vector
and covariance matrix:

T1(Fx) = E(x) and S1(Fx) = E
(
(x− E(x))(x−E(x))T

)
.

The covariance matrix S1 has the independence property. In the semipara-
metric model T1(Fx) = µ and S1(Fx) = Σ.

Location and scatter functionals can be based on the third and fourth
moments as well. A location functional based on third moments is

T2(Fx) =
1

p
E

(
(x−E(x))T S1(Fx)

−1(x−E(x))x
)
.

Last, a scatter matrix based on fourth moments is

S2(Fx) =
1

p + 2
E

(
(x− E(x))(x−E(x))T S1(Fx)

−1(x−E(x))(x− E(x))T
)
,

which has the independence property (Oja et al. (2006)). Note now that
these functionals can be used to standardize the random vectors in the semi-
parametric model as clearly

T1(Fzi
) = 0, T2(Fzi

) = δ, S1(Fzi
) = Ip, and S2(Fzi

) = Λ.

2.3. Skewness, kurtosis, and unmixing matrix functionals

Without fixing any particular location and scatter functionals, like the
moment-based functionals in the above, the unmixing matrix functional G
(p×p), skewness functional d (p×1) and kurtosis functional L (p×p), based
on two pairs of some location and scatter functionals, (T1, S1) and (T2, S2),
can be defined as follows.

5



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Definition 2.1. Let a matrix-valued functional G, a vector-valued functional
d, and a diagonal matrix-valued functional L be defined so that, if z =
G(Fx)(x− T1(Fx)), then

T1(Fz) = 0, S1(Fz) = Ip, T2(Fz) = d, and S2(Fz) = L,

where d ≥ 0 and the diagonal elements of L are in a decreasing order.

Note that G and L are solutions of the eigenvector and eigenvalue problem

S−1
1 S2G

T = GT L.

A solution G is then unique up to a permutation, rescaling and sign changes of
the rows. Among these, Definition 2.1 then picks up the solution G for which
S1(Fz) = Ip, T2(Fz) ≥ 0 and S2(Fz) is a diagonal matrix with decreasing
diagonal elements. The first condition fixes the scales, the second one the
signs, and the third one the order of the rows of G. The solution G then also
satisfies

GS1G
T = Ip and GS2G

T = L,

where, as before, L is a diagonal matrix consisting of the eigenvalues of
S−1

1 S2. The solution is unique if d > 0 and L has distinct diagonal elements.
For functionals G, d, and L we then have the following lemma:

Lemma 2.1. Assume the semiparametric model x = Ωz+µ, where for some
location functionals T1 and T2 and for some scatter functionals S1 and S2,
T1(Fz) = 0, S1(Fz) = Ip, T2(Fz) = δ > 0 and S2(Fz) = Λ is a diagonal
matrix with diagonal elements λ1 > ... > λp > 0. If G is based on (T1, S1)
and (T2, S2), then

G(Fx) = Γ, d(Fx) = δ, and L(Fx) = Λ.

The functionals are affine equivariant and invariant in the sense that

G(FAx+b) = G(Fx)A
−1, d(FAx+b) = d(Fx), and L(FAx+b) = L(Fx).

for all nonsingular p× p matrices A and all p-vectors b.

The values of the functionals at the empirical distribution Fn yield natural
Fisher consistent estimates of the corresponding population quantities. For

6
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an estimate of T (Fx) we then write T (Fn) or T (X) where X is an n×p data
matrix. To simplify notation, we write

T1 = T1(Fx), S1 = S1(Fx), T2 = T2(Fx), and S2 = S2(Fx),

and

T̂1 = T1(Fn), Ŝ1 = S1(Fn), T̂2 = T2(Fn), and Ŝ2 = S2(Fn).

Most of the time, the interest lies in the population parameters

Γ = G(Fx), δ = d(Fx), and Λ = L(Fx)

and their Fisher consistent estimates

Γ̂ = G(Fn), δ̂ = d(Fn), and Λ̂ = L(Fn),

respectively. Of course, the estimates δ̂, Γ̂ and Λ̂ adopt the same equivariance
and invariance properties as the corresponding functionals meaning that

G(XAT + 1nb
T ) = G(X)A−1,

d(XAT + 1nb
T ) = d(X) and

L(XAT + 1nb
T ) = L(X).

2.4. Connections to ICA, ICS and classical skewness and kurtosis measures

If T1, T2, S1 and S2 are the moment-based functionals we can say more,
and find similarities in the literature. First, if the observations come from a
continuous distribution, the estimates exist and are unique with probability
one. Second, the estimate Γ̂ is the well-known FOBI estimate in the IC
model. Third, in the univariate case (p = 1), ||δ̂||2 and Λ̂ reduce to the
classical univariate skewness and kurtosis measures

[E(x− E(x))3]
2

[E(x− E(x))2]3
and

E(x− E(x))4

3 [E(x− E(x))2]2
.

In the multivariate case Mardia (1970) defined different moment-based mea-
sures of skewness and kurtosis for a sample X = (x1, ..., xn)′ as

b1 =
1

n2

n∑
i=1

n∑
j=1

((xi − T̂1)
T Ŝ−1

1 (xj − T̂1))
3

7
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and

b2 =
1

n

n∑
i=1

((xi − T1)
T Ŝ−1

1 (xi − T1))
2

which use the moments of elements of a maximal invariant statistic, the n×n
matrix

(X − 1nT̂ T
1 )Ŝ−1

1 (X − 1nT̂
T
1 )T .

Our skewness and kurtosis statistics are based on third and fourth moments
of another maximal invariant statistic, namely, the n× p matrix

Ẑ = (X − 1nT̂ T
1 )Γ̂T .

Matrix Ẑ gives the observations in an invariant coordinate system (Tyler
et al. (2009)). Still another invariant coordinate system (maximal invari-
ant statistic) based on p + 1 observations was proposed by Chakraborty
and Chaudhuri (1999). Their approach is known as the transformation-
retransformation approach. See also Serfling (2010) for a general discussion
on standardization, weak covariance, transformation-retransformation, and
strong invariant coordinate system functionals. Bera and John (1983) use the

third and fourth moments of the “scaled residuals” in (X−1nT̂ T
1 )Ŝ

−1/2
1 (with

a symmetric square root matrix). Unlike Mardia’s statistics and our skewness
and kurtosis statistics, their statistics are not affine invariant, however.

3. Asymptotical properties

We are interested in the limiting behavior of the estimates δ̂, Γ̂ and Λ̂.
As the estimates are affine equivariant and invariant, it is not a restriction
to assume that

T1 = 0, S1 = Ip, T2 = δ and S2 = Λ , and therefore Γ = Ip.

For uniqueness, we assume that δi > 0, i = 1, ..., p, and the diagonal elements
of Λ are strictly ordered so that λ1 > ... > λp > 0.

We assume that the location and scatter estimates, not necessarily moment-
based yet, are root-n consistent, that is,

√
nT̂1 = Op(1) and

√
n(Ŝ1 − Ip) = Op(1)

as well as
√

n(T̂2 − δ) = Op(1) and
√

n(Ŝ2 − Λ) = Op(1).

Then we have the following result.

8
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Theorem 3.1. If T̂1, Ŝ1, T̂2 and Ŝ2 are root-n consistent, then so are δ̂, Γ̂
and Λ̂ and

√
n(δ̂ − δ) =

√
n(T̂2 − δ)−√nT̂1 +

√
n(Γ̂− Ip)δ + op(1)

and

√
n(Γ̂ii − 1) = −1

2

√
n((Ŝ1)ii − 1) + op(1),

(λi − λj)
√

nΓ̂ij =
√

n(Ŝ2)ij − λi

√
n(Ŝ1)ij + op(1), i 6= j, and√

n(Λ̂ii − λi) =
√

n((Ŝ2)ii − λi)− λi

√
n((Ŝ1)ii − 1) + op(1).

Proof. First note that since the transformation (T1, S1, T2, S2) → (d, G, L)
is continuous in a neighborhood of (0, Ip, δ, Λ), and (T̂1, Ŝ1, T̂2, Ŝ2) →P (0, Ip, δ, Λ),

also (δ̂, Γ̂, Λ̂) →P (δ, Ip, Λ). As

δ̂ = T2

(
(X − 1nT̂ T

1 )Γ̂T
)

,

it follows by affine equivariance that

√
n

(
T2

(
(X − 1nT̂ T

1 )Γ̂T
)
− δ

)
=
√

nΓ̂(T̂2 − T̂1 − δ) +
√

n(Γ̂− Ip)δ.

Then by Slutsky’s theorem
√

nΓ̂(T̂2− T̂1− δ)−√n(T̂2− δ)+
√

nT̂1 converges
to 0 in distribution and therefore in probability as well. Thus

√
nΓ̂(T̂2 − T̂1 − δ) =

√
n(T̂2 − δ)−√nT̂1 + op(1),

and the first part of the theorem follows. For Γ̂ and Λ̂ we utilize the estimat-
ing equations

Γ̂Ŝ1Γ̂
T = Ip and Γ̂Ŝ2Γ̂

T = Λ̂.

Then

(Γ̂− Ip)Ŝ1Γ̂
T + (Ŝ1 − Ip)Γ̂

T + (Γ̂− Ip)
T = 0 and

(Γ̂− Ip)Ŝ2Γ̂
T + (Ŝ2 − Λ)Γ̂T + Λ(Γ̂− Ip)

T = Λ̂− Λ

and Slutsky’s theorem gives

√
n(Ŝ1 − Ip) = −√n(Γ̂− Ip)−

√
n(Γ̂− Ip)

T + op(1) and√
n(Ŝ2 − Λ) = −√n(Γ̂− Ip)Λ−

√
nΛ(Γ̂− Ip)

T +
√

n(Λ̂− Λ) + op(1).

9
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These equations yield the desired results for Γ̂ and Λ̂. �

In the matrix form, we can write

√
n diag(Γ̂− Ip) = −1

2

√
n diag(S1 − Ip) + op(1),

√
n (Γ̂− diag(Γ̂)) =

√
n H ⊙

(
(Ŝ2 − Λ)− (Ŝ1 − Ip)Λ

)
+ op(1), and

√
n (Λ̂− Λ) =

√
n diag

(
(Ŝ2 − Λ)− (Ŝ1 − Ip)Λ

)
+ op(1),

where H is a p× p matrix with elements

Hij = 0, if i = j, and Hij = (λi − λj)
−1, if i 6= j,

diag(Γ) for example is a diagonal matrix with the same diagonal elements as
Γ, and ⊙ means the Hadamard (entrywise) product.

Note that the principal component analysis is a special case here: if one
takes S1 = Ip (constant) and S2 = S, the theorem gives the limiting behavior
of the eigenvectors and eigenvalues of S.

4. Limiting distributions of the moment-based estimates

We next establish the limiting distributions of the estimates δ̂, Γ̂ and Λ̂
obtained by using the moment-based location and scatter statistics

T̂1 =
1

n

n∑
i=1

xi, and Ŝ1 =
1

n

n∑
i=1

(xi − T̂1)(xi − T̂1)
T

and

T̂2 =
1

np

n∑
i=1

(xi − T̂1)
T Ŝ−1

1 (xi − T̂1)xi

and

Ŝ2 =
1

n(p + 2)

n∑
i=1

(xi − T̂1)(xi − T̂1)
T Ŝ−1

1 (xi − T̂1)(xi − T̂1)
T .

Again, as the estimates are affine equivariant and invariant, we may assume
that the population values are

T1 = 0, S1 = Ip, T2 = δ and S2 = Λ , and therefore Γ = Ip.

10
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Thus xi = zi, i = 1, ..., n, and we write

T̃1 =
1

n

n∑
i=1

zi, and S̃1 =
1

n

n∑
i=1

ziz
T
i

and

T̃2 =
1

np

n∑
i=1

ziz
T
i zi and S̃2 =

1

n(p + 2)

n∑
i=1

ziz
T
i ziz

T
i .

If the first eight moments of zi exist, the joint distribution of

√
n


T̃1

vec(S̃1 − Ip)

T̃2 − δ

vec(S̃2 − Λ)


is, by the central limit theorem, a 2(p + p2) variate (singular) normal distri-
bution with mean zero and covariance matrix given by

D = E




zi

vec(ziz
T
i − Ip)

1
p
ziz

T
i zi − δ

vec
(

1
p+2

ziz
T
i ziz

T
i − Λ

)



zi

vec(ziz
T
i − Ip)

1
p
ziz

T
i zi − δ

vec
(

1
p+2

ziz
T
i ziz

T
i − Λ

)


T
 .

One can show that

√
n


T̂1

vec(Ŝ1 − Ip)

T̂2 − δ

vec(Ŝ2 − Λ)

 = C
√

n


T̃1

vec(S̃1 − Ip)

T̃2 − δ

vec(S̃2 − Λ)

 + op(1),

where

C =


Ip 0 0 0
0 Ip2 0 0

C31 C32 Ip 0
C41 C42 0 Ip2


with

C31 = −2

p
Ip and C32 = −1

p
E

(
zT

i ⊗ (ziz
T
i )

)
11
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and

C41 = − 1

p + 2

[
E

(
(zT

i zi)(Ip ⊗ zi)
)

+ E
(
(zT

i zi)(zi ⊗ Ip)
)

+ 2 · E (
zi ⊗ (ziz

T
i )

)]
and

C42 = − 1

p + 2
E

(
(ziz

T
i )⊗ (ziz

T
i )

)
.

The asymptotic normality of

√
n


T̂1

vec(Ŝ1 − Ip)

T̂2 − δ

vec(Ŝ2 − Λ)


then follows.

Finally, if δi > 0, i = 1, ..., p, and the diagonal elements of Λ are strictly
ordered, we get

√
n


δ̂ − δ

vec
(
Λ̂− Λ

)
vec

(
Γ̂− Γ

)
 = B

√
n


T̂1

vec
(
Ŝ1 − Ip

)
T̂2 − δ

vec
(
Ŝ2 − Λ

)
 ,

where

B =

 B11 B12 B13 B14

0 B22 0 B24

0 B32 0 B34


with

B11 = −Ip, and B12 = [δT ⊗ Ip]

[
−1

2
diag(vec(Ip))− diag(vec(H))(Λ⊗ Ip)

]
and

B13 = Ip and B14 = [δT ⊗ Ip]diag(vec(H))

and
B22 = −diag(vec(Ip))(Λ⊗ Ip) and B24 = diag(vec(Ip))

12
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and

B32 = −1

2
diag(vec(Ip))− diag(vec(H))(Λ⊗ Ip) and B34 = diag(vec(H)).

(The matrix H is given in Section 3.)

We have thus proved the following theorem.

Theorem 4.1. Assume that X is a random sample from the semiparametric
model with Ω = Ip, µ = 0, δi > 0, i = 1, ..., p, and λ1 > ... > λp > 0. Assume
also that the first eight moments of zi are finite. Then

√
n


δ̂ − δ

vec
(
Λ̂− Λ

)
vec

(
Γ̂− Ip

)


has the limiting (singular) p + 2p2-variate normal distribution with mean
value zero and covariance matrix BCDCT BT .

By affine equivariance and invariance properties of the estimates this gener-
alizes to

Corollary 4.1. Assume that X is a random sample from the semiparametric
model with δi > 0, i = 1, ..., p, and λ1 > ... > λp > 0. Assume also that the
first eight moments of zi are finite. Then

√
n


δ̂ − δ

vec
(
Λ̂− Λ

)
vec

(
Γ̂− Γ

)


has the limiting (singular) p + 2p2-variate normal distribution with mean
value zero and covariance matrix ABCDCT BT AT where

A =

 Ip 0 0
0 Ip2 0
0 0 ΓT ⊗ Ip

 .

13
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Remark 4.1. Under the assumption of central symmetry (i.e. zi ∼ −zi)
the value of δ = 0, but even then the unmixing matrix functional satisfying
Γ̂Ŝ1Γ̂

T = Ip is affine equivariant up to the signs of its row vectors. In order
to fix the signs of the unmixing matrix functional and the estimate of it, we
can require for example that Γ1p > 0 (and set Γ̂1p > 0). Now, even under the

assumption of central symmetry, the limiting joint distribution of Γ̂ and Λ̂ is
the one given in Theorem 4.1 and Corollary 4.1. In the elliptic case δ = 0
and Λ = λIp and the limiting behavior of δ̂, Λ̂, and Γ̂ is unknown. However,

the limiting properties of ‖δ̂‖2 and the mean and variance of the elements of
Λ̂ are known, see Section 5.2.

Remark 4.2. In this section we derived the asymptotic joint distribution
of the skewness, kurtosis and unmixing matrix estimators for moment-based
functionals. Since Theorem 3.1 is not restricted to moment-based functionals,
the same methodology can be used when other location and scatter functionals
are considered, as long as the joint limiting distribution of the corresponding
location and scatter estimates is known.

5. Applications and concluding remarks

5.1. Statistical inference

The results in Section 4 can be used to find estimates of the limiting co-
variance matrices of the estimates Γ̂, δ̂ and Λ̂. These could then in turn be
used in the construction of confidence ellipsoids for the parameters. The re-
sults can also be employed in the development and the conduct of interesting
testing procedures, which we are currently working on.

To estimate the limiting distribution in practice, one can proceed as fol-
lows.

1. Calculate T̂1, T̂2, Ŝ1 and Ŝ2.

2. Find estimates Γ̂, δ̂ and Λ̂.

3. Transform observations to the invariant coordinate system:

Ẑ = (X − 1nT̂
T
1 )Γ̂T .

4. Find estimates D̂, Ĉ, B̂ and Â: in the formulas for D and C replace
the expectations by averages and the (unknown) zi by ẑi, i = 1, ..., n.

14
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5. Then, approximately,
δ̂ − δ

vec
(
Λ̂− Λ

)
vec

(
Γ̂− Γ

)
 ∼ Np+2p2

(
0,

1

n
ÂB̂ĈD̂ĈT B̂T ÂT

)
.

A bootstrap technique can also be used to estimate the distributions of
the sample statistics: Let U be a random n×n matrix such that the rows are
independent and the row vectors have Multin(1; (1/n, ..., 1/n)) distribution.
Then U is called a bootstrap matrix and UX is a bootstrap sample. The
bootstrap estimates of the covariance matrices of Γ̂, δ̂ and Λ̂, for example,
can be found as follows.

1. Calculate T̂1, T̂2, Ŝ1 and Ŝ2.

2. Find estimates Γ̂, δ̂ and Λ̂.

3. Choose M independent bootstrap matrices U1, ..., UM .

4. Calculate M bootstrap samples X∗
i = UiX , i = 1, ..., M .

5. Calculate M bootstrap estimates

δ̂∗i = d(X∗
i ), Γ̂∗

i = G(X∗
i ) and Λ̂∗

i = L(X∗
i ), i = 1, ..., M.

6. Calculate the sample covariance matrix of
δ̂∗i − δ̂

vec
(
Λ̂∗

i − Λ̂
)

vec
(
Γ̂∗

i − Γ̂
)

 , i = 1, ..., M.

5.2. Tests for normality and ellipticity

Skewness and kurtosis statistics can be used to test for normality and/or
ellipticity. In the elliptic case δ = 0 and Λ = λIp. In the multivariate normal
case λ = 1. Our assumptions for δ and Λ stated in Theorem 3.1 are thus
not true, and the limiting behavior of δ̂, Λ̂, and Γ̂ is unknown. However, the
limiting properties of ‖δ̂‖2 and the mean and variance of the elements of Λ̂
are known, and may be used in the following way.

As skewness and kurtosis are affine invariant, it is not a restriction to
assume that the distribution is spherical. Then

T1 = T2 = 0, S1 = Ip and S2 = λIp,

15
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for some λ > 0. It is well known that in the spherical case the location
statistics often satisfy

√
nT̂i =

1√
n

n∑
j=1

γi(rj)uj + op(1), i = 1, 2,

and the scatter statistics satisfy

√
n(Ŝi − Si) =

1√
n

n∑
j=1

(
αi(rj)uju

T
j − βi(rj)Si

)
+ op(1), i = 1, 2,

where ri = ‖xi‖ and ui = ‖xi‖−1xi, i = 1, ..., n. Functions γi, αi and βi then
give the influence functions for Ti and Si, respectively.

Kankainen et al. (2007) proposed the use of the skewness and kurtosis
statistics

U = (T̂2 − T̂1)
T Ŝ−1

1 (T̂2 − T̂1) and W = ||Ŝ−1
1 Ŝ2 − Ip||2

for testing multivariate normality. It is then straightforward to see that

U = ‖δ̂‖2 and W = ‖Λ̂− Ip‖2 = tr
(
(Λ̂− Ip)

2
)

.

Kankainen et al. (2007) proved that

Theorem 5.1. In the multivariate normal model,

(i) the limiting distribution of nU is that of η1U1, where U1 ∼ χ2
p and

η1 = (1/p)E[(γ1(r)− γ2(r))
2] with r2 ∼ χ2

k;

(ii) the limiting distribution of nW is that of

η2 W1 + η3 W2,

where W1 ∼ χ2
p(p+1)/2−1 and W2 ∼ χ2

1 are independent,

η2 =
2

p(p + 2)
E[(α2(r)− α1(r))

2]

and

η3 =
1

p
E[(α2(r)− α1(r))

2]− 2E[(α2(r)− α1(r))(β2(r)− β1(r))]

+ pE[(β2(r)− β1(r))
2].

The expected values are calculated for r2 ∼ χ2
p.

16
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The statistics U and W1 can be used to test for ellipticity as well (but
with different limiting distributions). Mardia (1970) advocated using his
skewness and kurtosis statistics to test for multivariate normality. Under the
null hypothesis of multivariate normality

nb1

6
and

n(b2 − p(p + 1))2

8p(p + 2)

have limiting chi-square distributions with p(p+1)(p+2)/6 and 1 degrees of
freedom, correspondingly. Kankainen et al. (2007) obtained the limiting Pit-
man efficiencies of U and W with respect to Mardia’s statistics for contiguous
sequences of contaminated normal distributions.

Nordhausen et al. (2010) discuss the general idea of using of δ̂ and Λ̂ in
the selection of an appropriate model for the data. Our results now provide
the basic elements to convert their ideas into formal inference tools.

5.3. Invariant coordinate selection

Tyler et al. (2009) introduced a general method for exploring multivari-
ate data called the invariant coordinate selection. In their approach, they
used two shape (not scatter) matrices to find invariant coordinate system;
the resulting coordinate system is invariant up to coordinatewise location,
sign, and scale. Here, by associating two scatter statistics together with two
location statistics, we also fix the location, sign, and the scale, and obtain a
fully invariant coordinate system. The invariant coordinate system is useful
in many ways. Plotting the observations in the new coordinate system

Ẑ = (X − 1nT̂ T
1 )Γ̂T ,

helps in finding outlying observations and clusters in the data. In the case
of mixtures of elliptical distributions, a subset of invariant coordinates corre-
sponds to Fisher’s linear discriminant subspace (Tyler et al. (2009)). Invari-
ant coordinate selection may thus be seen as a tool for dimension reduction
as well. Note that Ẑ is a maximal invariant statistic under the group of affine
transformations.

5.4. Independent component model

In the semiparametric independent component model, matrix Γ̂ is a so-
lution to the ICA problem. If T1, S1, T2 and S2 are the moment-based
estimates, then Γ̂ is the well-known FOBI estimate. Our approach thus gives

17
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a whole family of unmixing matrix estimates for the ICA problem. Further-
more, the limiting properties of the estimates can be considered and com-
pared in our approach. Nordhausen et al. (2009) and Oja et al. (2010) found
optimal signed-rank tests for location and independence in the independent
component model.
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