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Abstract

In this paper we revisit, correct and extend Chung’s 1946 method for deriv-

ing higher order Edgeworth expansions with respect to t-statistics and gen-

eralized self-normalized sums. Thereby we provide a set of formulas which

allows the computation of the approximation of any order and specify the

first four polynomials in the Edgeworth expansion the first two of which

are well known. It turns out that knowledge of the first four polynomials

is necessary and sufficient for characterizing the rate of convergence of the

Edgeworth expansion in terms of moments and the norming sequence ap-

pearing in generalized self-normalized sums. It will be shown that depending

on moments and norming sequence the rate of convergence can be O(n−i/2),

i = 1, . . . , 4. Finally, we study expansions and rates of convergence if the

normal distribution is replaced by the t-distribution.
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1. Introduction

In 1946, Kai-Lai Chung derived an expansion for the distribution of

Student’s t-statistic for an iid sequence of real valued random variables

(ζn : n ∈ N) with Eζ1 = 0 and Varζ1 = 1 in terms of the cumulative distribu-

tion function (cdf) Φ and derivatives of the probability density function (pdf)

ϕ of the standard normal distribution N (0, 1), cf. Chung (1946). Thereby

the t-statistic is defined by Sn =
√
nζ/s with s =

(
n−1

∑n
i=1(ζi − ζ)2

)1/2
and

ζ =
∑n

i=1 ζi/n. In modern notation, the expansion for the cdf Fn (say) of Sn

derived by Chung (1946) can be written as

Fn(x) = Φ(x) + ϕ(x)
r∑
i=1

n−i/2qi(x) + o(n−r/2) uniformly in x ∈ R (1)

and is called an Edgeworth expansion. It is known to be valid if E|ζ1|r+2 <∞
for some integer r ≥ 1 and the distribution of ζ1 has a nontrivial abso-

lutely continuous component with respect to the Lebesgue measure (cf. Hall

(1987)). Each qi appearing in this formula is a polynomial of order 3i − 1

the coefficients of which depend on the moments αj = Eζj1 , j = 3, . . . , i+ 2.

Unfortunately, the explicit expansion given in equation (35) in Chung

(1946) is incorrect as noted earlier in Wallace (1958) and to our knowledge

there seems to be no published correction. Once the well-hidden error in

Chung (1946) is corrected, the computation of the first polynomials qi ap-

pearing in (1) is elementary and straightforward with Chung’s method. In

Section 2 we extend the formulas given in Chung (1946) such that in princi-

ple the qi’s are computable up to arbitrary order with an algebraic computer

package.
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Alternatively, the qi’s can be computed as outlined in Hall (1992) under

a broad scope of so-called ‘smooth function models’. While this method

applies to many other statistics, the computational effort of this method

seems to be more tedious for self-normalized sums than Chung’s method.

Anyhow, the first two polynomials q1, q2 appearing in the expansion (1)

are computed for example in Hall (1987), Hall (1992) and can be found in

various textbooks. They are given by q1(y) = (y2/3 + 1/6)α3 and q2(y) =

(y3/12− y/4)α4−(y5/18 + y3/9− y/6)α3
2−y3/2. This representation shows

that the rate of convergence is O(n−1/2) in case of α3 6= 0 and O(n−1) in case

of α3 = 0. Obviously, the best possible rate of convergence is O(n−1) and this

may be the reason that usually only the first two polynomials are reported.

In Lehmann and Romano (2005), Section 11.4.2, an Edgeworth expansion

for the classical t-statistic with normalization (n − 1)−1 in the definition of

s is given. The approximation polynomials in this case differ from the qi’s

in (1). Hence, the norming sequence in the denominator of a self-normalized

sum is of importance for the asymptotic behavior of these t-type statistics.

This observation provokes the question whether there exist other norming

sequences for specific values of the moments αi, i ≥ 3, such that the rate of

convergence can be improved. It will be shown in Section 3 that the answer

is positive and that the first four polynomials q1, . . . , q4 suffice to characterize

the rate of convergence.

Section 4 is concerned with deriving Edgeworth-type expansions for and

analyzing rates of convergence of self-normalized sums if the t-distribution is

used as approximating distribution instead of the standard normal.
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2. Chung’s method revisited

Many of the derivations in Chung (1946) refer to formulas and definitions

taken from Hsu (1945). Here we restrict attention to the ingredients which

suffice to compute the polynomials qi in (1). We correct the main inaccuracy

in Chung (1946) and extend the formulas where necessary. However, since

we have to omit some technical details of Chung’s method here, it can only

fully be understood by reading Chung (1946), parts of Hsu (1945) and this

paper simultaneously.

In the derivations in Chung (1946) the function g defined by g(λ) =

z(1 + λ2z2)−1/2
[
1 +

∑∞
j=1 Γ(3/2)/Γ(3/2− j)/Γ(j + 1)(α4 − 1)j/2(λx)j

]
and

its derivatives g(i) play a crucial role. The formulas given in Chung (1946),

p. 458, fail by introducing the abbreviation z′ = z(1+λ2z2)−1/2 and ignoring

that z′ depends on λ. The correct derivatives g(i)(0), i = 1, . . . , 4, in λ = 0

are given in Appendix A.

A further important quantity in Chung (1946) is h(ζ) = t1(ζ
2− 1)/(α4−

1)1/2+t2ζ, whereby ζ has the same distribution as ζ1. Let Uj(t1, t2) denote the

jth cumulant of h(ζ) and define mk(t1, t2) = −∑k−3
`=0 i

`+1U`+3(t1, t2)λ
`+1/(`+

3)! and Ψk(it1, it2) =
∑k−3

j=1 mj(t1, t2)
j/j!. Expanding the Ui’s in terms

of t1, t2 and replacing (it1)
p(it2)

q by (−1)p+qwpq(x, y) in Ψk(it1, it2) yields

the representation Ψk(it1, it2) ≡
∑k−3

j=1 γj(x, y), where γj(x, y) = O(λj),

wpq(x, y) = ∂p+q/(∂xp∂yq)w(x, y) appears repeatedly in γj(x, y) for various

p, q with p + q ≤ 3r and w(x, y) = (2π(1 − ρ2)1/2)−1 exp(−(x2 − 2ρxy +

y2)/(2(1− ρ2))). Finally, letting fpq(λ) =
∫∞
−∞
∫ g(λ)

−∞ wpq(x, y) dy dx, the for-

mal approximation in Chung (1946) is given by Fn(z) =
∑r

j=0 f
(j)
00 (0)/j! +∑r

j=1

∫∞
−∞
∫ g(λ)

−∞ γj(x, y) dy dx + o(λr), where fpq(λ) is approximated by its

4
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Taylor series in λ = 0 wherever it appears in
∫∞
−∞
∫ g(λ)

−∞ γj(x, y) dy dx. In

fact, the latter integral can be rewritten in terms of fpq(λ), which in turn

can be expressed in terms of Irpq(z) =
∫∞
−∞ x

rwpq(x, z) dx. In Chung (1946)

non-vanishing Irpq’s needed for the computation of the first three polynomials

q1, q2, q3 are computed for p = 0, . . . , 3, r = p, . . . , 3. We extend Chung’s

table for all values of p, q by providing the full recursive regime for the com-

putation of the Ipq’s.

Lemma 2.1. The non-vanishing Ipq’s are given by the following recursive

relationship.

I0
0q(z) = ϕ(q)(z), I1

0q(z) = −ρϕ(q+1)(z), q ≥ 0, (2)

Ir+1
0q (z) = −ρIr0,q+1(z) + rIr−1

0q (z), q ≥ 0, r ≥ 1, (3)

Irpq(z) = −rIr−1
p−1,q(z), 1 ≤ p ≤ r, q ≥ 0. (4)

Proof. The equations in (2) are as in Chung (1946) while (3) and (4) can

be verified by making use of the definition of Irpq(z). �

Remark 2.1. Equation (3) is interesting in itself because it is related to

Hermite polynomials with positive coefficients. Let Hn denote the normalized

Hermite polynomials defined by H1(x) = x, H2(x) = x2 − 1, Hn+1(x) =

xHn(x) − nHn−1(x) and define modified Hermite polynomials by hn(x) =

−(I/
√

2)nHn(Ix/
√

2). Then the coefficients of hn equal the coefficients of Hn

except that they are all positive. Interestingly, Ir0q = hr(ρD)(ϕ(q)), where D

denotes the differential operator. Note that (3), that is, Ir+1
0q (z) = −ρIr0,q+1(z)

+rIr−1
0q (z) corresponds to hr+1(x) = −xhr(x)+ rhr−1(x). Moreover, Ir0q(z) =

(∂q/∂zq)E[Xr|Z = z], where (X,Z) are bivariate normally distributed with

means 0, variances 1 and covariance ρ.

5
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The next lemma provides the f
(j)
pq (0)’s for j = 0, . . . , 4, which are essential

for the computation of q1, . . . , q4.

Lemma 2.2. Setting Irpq ≡ Irpq(z) for r = 0, . . . , 4, we have for p, q ≥ 0

that f00(0) = Φ(z), fpq(0) = −I0
p,q−11N>0(q), f

(1)
pq (0) = z(α4 − 1)1/2I1

pq/2,

f
(2)
pq (0) = (α4−1)

(
z2I2

pq+1 − zI2
pq

)
/4−z3I0

pq, f
(3)
pq (0) = −3(α4−1)1/2(z3I1

pq +

z4I1
p,q+1)/2 + (α4 − 1)3/2

(
3zI3

pq − 3z2I3
p,q+1 + z3I3

p,q+2

)
/8, f

(4)
pq (0) = 9z5I0

pq +

3z6I0
p,q+1 + 3(α4 − 1)

(
z3I2

pq − z4I2
p,q+1 − z5I2

p,q+2

)
/2 + (α4 − 1)2(−15zI4

pq +

15z2I4
p,q+1 − 6z3I4

p,q+2 + z4I4
p,q+3)/16.

Now all ingredients for the computation of the polynomials q3 and q4 are col-

lected. Computation by hand remains cumbersome. Therefore we prepared

a Maple worksheet which allows the computation of the qi’s up to arbitrary

order. Due to the structure of the f
(j)
pq ’s, Lemma 2.2 can be extended by uti-

lizing standard symbolic integration methods. Clearly, hardware resources

will limit the number of computable qi’s. We report the result for q3 and q4

in Appendix B.

Remark 2.2. We also computed the qi’s with the method described in Hall

(1992) up to order 6 with complete coincidence. The method proposed in Hall

(1992) involves the computation of moments of more complicated statistics

and seems more time consuming.

3. Rates of convergence and generalized self-normalized sums

In case of α3 = 0 we obtain q1(y) ≡ 0. This vanishing of q1 for vanishing

skewness of ζ1 can be interpreted in that way that on the n−1/2 scale, the

6
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Edgeworth approximation of the cdf Fn of the statistic Sn cannot be dis-

tinguished from Φ. On the n−1 scale, however, there are always detectable

differences between the two cdf’s, because it is impossible to find a value for

α4 such that q2 becomes the null polynomial. In other words, the rate of

convergence of Fn towards Φ can at most achieve O(n−1).

In the remainder of this section, we will present an approach to improve

this rate of convergence for certain values of the moments αj. The idea is

to utilize a generalized norming sequence an (say) in the denominator of the

t-statistic, i.e., we investigate ”generalized self-normalized sums” of the type

Tn =
√
nζ̄/
√
an
∑n

i=1(ζi − ζ̄)2 instead of Sn. Hereby, we consider norming

sequences an of the special form

an =
1

n(1−∑M
j=1Cjn

−j/2)
(5)

(implying limn→∞ nan = 1) for some integer M . We now derive a formal

expansion for the generalized self-normalized sum Tn. Our investigations

shall lead to an expansion of the form

FTn(t) = Φ(t) +
r∑
i=1

n−i/2q̃i(t)ϕ(t) + o(n−r/2) (6)

if the (r + 2)-th moment of ζ1 exists. The coefficients of the polynomials

q̃i in (6) depend not only on the cumulants of ζ1, but additionally on the

constants Cj appearing in the formal description (5) of the norming sequence

an. Expansion (6) will prove useful in analyzing optimal rates of convergence

for the self-normalized sum Tn by choosing optimal norming constants Cj.

Notice that Tn = Sn/bn with bn =
√
nan. Therefore, FTn(t) = P(Tn ≤

t) = P(Sn ≤ bnt) = Fn(bnt). From (1) we get under the necessary moment

7
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condition that for given r ≥ 1 it holds

FTn(t) = Φ(bnt) +
r∑
i=1

n−i/2qi(bnt)ϕ(bnt) + o(n−r/2). (7)

In order to compute the q̃i’s, we now have to find suitable expansions of

Φ(bnt) and ϕ(bnt) in terms of Φ(t) and ϕ(t). This can be done by notic-

ing that we can express the leading terms on the right-hand side of (7)

(which is the expansion for FTn) by Φ(bnt)+
∑r

i=1 n
−i/2qi(bnt)ϕ(bnt) = Φ(t)+

ϕ(t)
[
hn(t) +

∑r
i=1 n

−i/2qi(bnt)gn(t)
]
, where the auxiliary functions hn and gn

are defined by

hn(t) =

[
Φ(bnt)

Φ(t)
− 1

]
Φ(t)

ϕ(t)
, gn(t) = ϕ(bnt)/ϕ(t).

Hence, if we find suitable expansions for bn, hn(t) and gn(t), the work is done,

because the q̃i’s can then simply be obtained by collecting the n−i/2 terms

of the expansions of hn and gn and putting them together with the original

qi’s, evaluated at the transformed argument values bnt. Indeed, the required

expansions for bn and gn(t) are simple applications of the Taylor series of

the square root and the exponential functions. For the expansion of hn(t),

well-known asymptotic expansions for Mills’ ratio are needed additionally.

We provide the expansions up to order n−2 in Appendix C.

Having expanded hn(t) and gn(t) in this manner, we finally obtain the

first two q̃i’s as q̃1(t) = α3 t
2/3+C1t/2+α3/6 and q̃2(t) = 3tC1

2/8+α4t
3/12+

α3
2t/6−t3C1

2/8−α3
2t3/9−α3

2t5/18+α3C1t
2/4+tC2/2−t3/2−α3C1t

4/6−
α4t/4. We omit expressions for q̃i for i > 2 here because of lack of space.

Remark 3.1. Setting M = 2, C1 = 0 and C2 = 1 in (5), we get the stu-

dentized sum S̃n =
√
nζ̄/
√

(n− 1)−1
∑n

i=1(ζi − ζ̄)2 and the corresponding ap-

8
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proximation polynomials are just the ones given in Section 11.4.2 of Lehmann

and Romano (2005).

Theorem 3.1. (Rate of convergence for generalized self-normalized sums).

Let ∆n(x) = |FTn(x)− Φ(x)|.

(i) If α3 6= 0 or C1 6= 0, then ∆n(x) = O(n−1/2).

(ii) If α3 = C1 = 0 and (α4 6= 6 or C2 6= 3), then ∆n(x) = O(n−1).

(iii) If α3 = C1 = 0 and α4 = 6 and C2 = 3 and (α5 6= 0 or C3 6= 0), then

∆n(x) = O(n−3/2).

(iv) If α3 = C1 = 0 and α4 = 6 and C2 = 3 and α5 = C3 = 0, then

∆n(x) = O(n−2).

Proof. We have to subsequently solve q̃i(t) ≡ 0 for Ci and αi+2 for i = 1, 2, 3.

For i = 1, this is trivial. Plugging in α3 = C1 = 0 in q̃2(t) leads to

q̃2(t) = (α4/6− 1)t3/2 + (C2 − α4/2)t/2, hence, to the assertion in case (ii).

With α3 = C1 = 0 and α4 = 6 and C2 = 3, we obtain q̃3(t) = −α5 t
4/20 −

α5 t
2/5+tC3/2−α5/40, and part (iii) of the theorem is proven. For the proof

of part (iv), we finally set α3 = C1 = 0, α4 = 6, C2 = 3 and α5 = C3 = 0 lead-

ing to q̃4(t) = (3/2− α6/45) t5 + (α6/18− 11/4) t3 + (α6/6 + C4/2− 45/4) t.

Since the coefficients in the latter polynomial are linearly independent, it is

impossible to find values for (α6, C4) such that q̃4 becomes the null polyno-

mial and therefore the assertion of part (iv) follows. �
Theorem 3.1 shows that the generalized self-normalized sum Tn can lead

to a rate of convergence of ∆n(x) up to O(n−2), which is an improvement

over the approximation quality of Sn.

9
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Remark 3.2. As pointed out in Remark 3.1, the studentized sum S̃n can be

generated from Tn by setting Ci = 0 for all i 6= 2 and C2 = 1. According to

Theorem 3.1, it can therefore only achieve a rate of convergence of O(n−1).

A justification for the special role of C2 = 3 can be given by noticing that

the norming an = (n− 3)−1 leads to variance standardization of Tn, that is,

VarTn = 1, if the ζi are iid normally distributed as N(0, 1). The special role

of α4 = 6 in parts (ii) - (iv) of Theorem 3.1 is not clear to us.

Finally, we give an example where Theorem 3.1 (iv) applies.

Example 3.1. Let ϕ(x|σ) denote a normal density with respect to mean 0

and variance σ2 and suppose the density u (say) of ζ1 is a mixture of two

normal densities, more precisely, let u(x) = αϕ(x|σ1) + (1− α)ϕ(x|σ2) with

σ2
1 = (2α)−1, σ2

2 = (2(1 − α))−1 and α = (2 +
√

2)/4. Then Eζ1 = Eζ3
1 =

Eζ5
1 = 0, Eζ2

1 = 1 and Eζ4
1 = 6. Hence, noticing that Eζ6

1 = 90 and setting

C1 = C3 = 0 and C2 = 3, Theorem 3.1 (iv) applies in this case.

4. An Edgeworth-type expansion in terms of Student’s t-distri-

bution

The investigations in Section 3 can be utilized in a very straightforward

way to derive an Edgeworth-type expansion for Tn of the form

FTn(t) = Ftν (t) +
r∑
i=1

n−i/2Qi(t)ϕ(t) + o(n−r/2) (8)

in terms of Student’s t-distribution with ν = n − 1 degrees of freedom the

cdf of which is denoted by Ftν in formula (8). Note that a Tn with norming

sequence an = (n − 1)−1 and ζ1 ∼ N (0, 1) is exactly tν-distributed. In the

10
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latter case, Tn will be denoted as tν in the remainder. Equation (8) gives

insight in the asymptotic magnitude of the deviation of the cdf of Tn from

Ftν . It might be interesting to analyze if a t-approximation of Tn will lead to

an improved rate of convergence in comparison with a normal approximation.

Especially, we aim at answering the question if the norming constants Cj can

be employed to correct for higher-order moment differences of ζ1 compared

with a standard normal variate.

In order to derive the Qi’s in (8), we denote by q∗i , i = 1, . . . , k, the

approximation polynomials that arise for Tn = tν in (6), i.e., the q̃i’s for

special choices M = 2, C1 = 0 and C2 = 1 in (5) and by setting the

αj’s equal to the (central) moments of the standard normal distribution.

By subtracting the resulting expansion from the general expansion for Tn,

we immediately conclude that Qi(t) = q̃i(t) − q∗i (t), i = 1, . . . , r. Carrying

out these calculations explicitly, we obtain the first four q∗i (t) as q∗1(t) =

q∗3(t) ≡ 0, q∗2(t) = − t
4

(t2 + 1) , q∗4(t) = −t (3 t6 − 7 t4 + 19 t2 + 21) /96. Con-

sequently, the first two Qi’s are given by Q1(t) = q̃1(t), Q2(t) = −α2
3/18t5 −

α3C1t
4/6 − (1/4 + α2

3/9− α4/12 + C2
1/8) t3 + α3C1/4t

2 + (3C2
1/8 + C2/2 +

α2
3/6− α4/4 + 1/4)t. Considering rates of convergence, it becomes apparent

that Q1 only vanishes for α3 = C1 = 0 and Q2 only vanishes if additionally

α4 = 3 and C2 = 1, i.e., the first four moments of ζ1 coincide with a standard

normal variate and the first two norming constants C1 and C2 are chosen as

in the classical t-distribution case. As stated in Corollary 4.1 below, anal-

ogous requirements are also necessary for vanishing polynomials Q3 to Q8.

As a conclusion, utilizing the t-approximation (8) instead of the normal ap-

proximation (6) does not help to increase rates of convergence, since norming

11
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cannot be used to compensate for moment differences.

One could try to substitute ϕ in (8) by the pdf ftν of the tν-distribution,

i.e., consider an expansion of the form

FTn(t) = Ftν (t) +
r∑
i=1

n−i/2Q̃i(t)ftν (t) + o(n−r/2). (9)

Closely related expressions for FTn for fixed n have already been investigated

in 1949 by A. K. Gayen in Gayen (1949) based on M. S. Bartlett’s paper

Bartlett (1935) by first deriving expressions for the corresponding pdf fTn .

In order to derive explicit expressions for the first four Q̃i(t)’s in (9), we

make use of the expansion ϕ(t) = ftν (t) [1 + (1 + 2t2 − t4)/(4n) +O(n−2)] .

Substituting the latter expansion in (8) leads to Q̃i ≡ Qi, i = 1, 2, and

Q̃i(t) = Qi(t)+Qi−2(t)(1+2t2−t4)/4, i = 3, 4. Unfortunately, we could only

reproduce Gayen’s (1949) results up to order n−1. Taking limits (n→∞) in

Gayen’s paper also yields Q̃i ≡ Qi, i = 1, 2. However, the expressions of order

O(n−3/2) associated with the factors α3
3 and α3α4 seem to be in error in Gayen

(1949), p. 359, and also taking limits (n→∞) in these expressions does not

coincide with our result. Anyhow, we recomputed the original approximation

method by Bartlett (cf. Bartlett (1935)) which underlies Gayen’s (1949)

calculations and reproduced the Q̃i’s for i = 1, . . . , 4.

Utilizing Chung’s method, the derivations in Sections 3 and 4 and higher

order expansions for the ratio ϕ(t)/ftν (t), we calculated the polynomials

Qi and Q̃i up to order 8. Therewith, we can finally summarize our results

regarding rates of convergence of |FTn−Ftν | as follows. To this end, denote the

k-th moment ofN (0, 1) by α∗k and let ∆αk = α∗k−αk, where αk denotes the k-

th moment of ζ1. Moreover, let C∗2 = 1, C∗k = 0 for k 6= 2 and ∆Ck = C∗k−Ck,

12
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where the Ck’s denote the norming constants in the denominator of Tn as

appearing in the definition of an in (5).

Corollary 4.1. Assume that the (M + 2)-nd moment αM+2 of ζ1 is finite

for some integer 1 ≤ M ≤ 8 and the distribution of ζ1 has a nontrivial

absolutely continuous component with respect to the Lebesgue measure. Then

|FTn − Ftν | = O(n−k
∗/2), where k∗ = min{k ∈ {1, . . . ,M} : ∆αk+2 6= 0 ∨

∆Ck 6= 0}. If no such k∗ exists, then |FTn − Ftν | = o(n−M/2).

Since each polynomial Qi or Q̃i, respectively, only depends on αj, j = 3, . . . ,

i + 2 and Cj, j = 1, . . . , i, and equations (8), (9) are valid for Tn = tν , it is

clear that also for M > 8 the conditions

∆αi+2 = 0 ∧∆Ci = 0 for all i = 1, . . . ,M (10)

imply Qi(t) ≡ 0 and Q̃i(t) ≡ 0 for all i = 1, . . . ,M , i. e., conditions (10)

are sufficient for vanishing polynomials up to the M -th. We conjecture that

conditions (10) are also necessary conditions for any M ≥ 1 as stated in

Corollary 4.1 for 1 ≤M ≤ 8.

Remark 4.1. Maple worksheets for computing the polynomials appearing

in the Edgeworth expansions investigated in this paper are available at http:

//www.helmut-finner.de. One worksheet computes the polynomials qi with

Chung’s 1946 method up to arbitrary order. A further worksheet computes

these polynomials for i ≤ 5 with the method described in Hall (1992) based on

a smooth function approach. Finally, as an additional crosscheck we provide

a worksheet based on the Bartlett-Gayen method for the polynomials Q̃i with

norming sequence (n− 1)−1.

13
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A. Corrected derivatives g(i)(0), i = 1, . . . , 4

g(1)(0) =
1

2
z(α4 − 1)1/2x,

g(2)(0) = −z3 − 1

4
z(α4 − 1)x2,

g(3)(0) = −3

2
z3(α4 − 1)1/2x+

3

8
z(α4 − 1)3/2x3,

g(4)(0) = 9z5 +
3

2
z3(α4 − 1)x2 − 15

16
z(α4 − 1)2x4.

B. Polynomials q3 and q4

Theorem B.1. The polynomials q3 and q4 appearing in the Edgeworth ex-

pansion (1) are given by

q3(y) =

(
− 1

36
y6 +

5

24
y4 +

5

8
y2 +

5

48

)
α3α4 −

(
1

20
y4 +

1

5
y2 +

1

40

)
α5

+

(
1

162
y8 +

7

324
y6 − 35

216
y4 − 175

432
y2 − 35

432

)
α3

3

+

(
1

6
y6 − 1

4
y4 − 1

8
y2 − 1

16

)
α3,
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q4(y) =

(
− 1

1944
y11 − 5

1944
y9 +

5

108
y7 +

25

108
y5 − 5

216
y3 − 35

72
y

)
α3

4

+

(
1

216
y9 − 1

18
y7 − 5

12
y5 +

1

6
y3 +

29

24
y

)
α3

2α4

−
(

1

36
y9 − 1

12
y7 − 11

36
y5 − 1

36
y3 +

1

6
y

)
α3

2

+

(
1

60
y7 +

2

15
y5 − 1

12
y3 − 1

2
y

)
α3α5

−
(

1

288
y7 − 7

96
y5 +

11

96
y3 +

37

96
y

)
α4

2

+

(
1

24
y7 − 1

4
y5 +

1

24
y3 +

1

4
y

)
α4

−
(

1

45
y5 − 1

18
y3 − 1

6
y

)
α6 − 1

8
y7 +

3

8
y5.

C. Asymptotic expansions of bn, hn(t) and gn(t)

Lemma C.1. Setting λ = n−1/2, asymptotic expansions of bn, hn(t) and

gn(t) are given by

bn = 1 + (C1/2)λ+ (C2/2 + 3C1
2/8)λ2

+
[
C3/2 + C1C2 + 9C1

3/16− C1

(
C2 + C1

2
)
/4
]
λ3

+
[
C4/2 + C1C3 + C2

2/2 + 3C2C1
2/2− C1(C3 + 2C1C2 + C1

3)/8

− (C2 + C1
2
)2
/8− C1

(
C3/2 + C1C2 + C1

3/2
)
/4 + 59C1

4/128

+3C1
2
(
C2 + C1

2
)
/16
]
λ4 +O

(
λ5
)
,
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hn(t) = (C1t/2)λ+ (t/8)
(
4C2 + 3C1

2 − C1
2t2
)
λ2

+ (t/48)
(
24C3 + 36C1C2 + 15C1

3 − 12 t2C1C2 − 10 t2C1
3 + t4C1

3
)
λ3

− (t/384)
(−192C4 − 288C1C3 − 144C2

2 − 360C1
2C2 − 105C1

4

+ 96 t2C1C3 + 240 t2C1
2C2 + 105 t2C1

4 + 48 t2C2
2

− 24 t4C1
2C2 − 21 t4C1

4 + t6C1
4
)
λ4 +O

(
λ5
)
,

gn(t) = 1− (C1t
2/2)λ− (C1

2t2/2 + t2C2/2− t4C1
2/8
)
λ2

− (
t2C1C2 + t2C1

3/2 + t2C3/2− t4C1
3/4− t4C1C2/4 + t6C1

3/48
)
λ3

+
(
t4C2

2/8 + t8C1
4/384− t2C2

2/2− t2C1
4/2− t6C1

4/16 + 3t4C1
4/8

− t6C1
2C2/16 + t4C1C3/4− t2C1C3 − 3t2C1

2C2/2 + 3t4C1
2C2/4− t2C4/2

)
λ4

+ O(λ5).
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