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Abstract: Let A and B be independent n × n complex matrices with elements i.i.d. as
X1 + iX2 and Y1 + iY2, respectively, where i = (−1)1/2, X1 and X2 are independent and
identically distributed, Y1 and Y2 are independent and identically distributed. We obtain
Edgeworth expansions for the distribution of any element of AB (and so for trace AB),
in Cartesian coordinates. If X1 or Y1 is symmetric about zero, the expansions are given to
O(n−4). A specific example applicable to reverberation systems is the case when X1 and
Y1 are both Gaussian.
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1 Introduction and summary

Let A, B be independent n × n complex matrices with elements independent and identically
distributed (i.i.d.) as

Ajk
L= X1 + iX2, Bjk

L= Y1 + iY2,

where i = (−1)1/2, X1 and X2 are i.i.d. as X, Y1 and Y2 are i.i.d. as Y , and X, Y are real
random variables with finite moments. The need to know the distribution of the product,
AB, arises in many applied areas. An early problem is in the study of reverberation
systems: in systems with n feedback speakers A is the transmission function of the room
with the speakers, and B is that of the feedback system. Schroeder (1964, page 1720) notes
that A (that is X) is Gaussian distributed by a Central Limit Theorem argument. Such
products also arise with respect to the capacity of mobile multiple-antenna communication
links (Marzetta and Hochwald, 1999; Abhayapala et al., 2003; Godavarti et al., 2003),
dynamics of nearly periodic disordered multi-span beams (Bouzit and Pierre, 2000), and
wave component analysis of energy flow in complex structures (Wester and Mace, 2005a,
2005b).
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The aim of this note is to obtain the distribution of AB and its trace. The distribution
of trace AB is just that of (AB)11 with the parameter n replaced by n2.

The results are organized as follows. In Section 2, we obtain the moments and cumulants
of AB when n = 1. In Section 3, we obtain Edgeworth expansions for the distribution of an
arbitrary element of AB in Cartesian form. We make specific references to the mentioned
example on reverberation systems: see Example 3.1 for specific results, where both A and
B are assumed to be Gaussian.

Elements (AB)jk and (AB)lm are independent if and only if j 6= l and k 6= m. Expan-
sions for their joint distribution could be obtained for the case when they are dependent
by a straightforward extension of the method given here. The same is true for the joint
distribution of any fixed number of elements of AB.

2 Moments and cumulants

An arbitrary element of AB may be written as
n∑

j=1

(X1j + iX2j) (Y1j + iY2j) = SnU + iSnV , (2.1)

where

SnU =
n∑

j=1

Uj , SnV =
n∑

j=1

Vj, Uj = X1jY1j − X2jY2j, Vj = X2jY1j + X1jY2j,

{Xkj } are i.i.d. as X, {Ykj } are i.i.d. as Y and {Xkj } is independent of {Ykj }. So,{(Uj

Vj

)}
are i.i.d. as

(U1

V1

)
. We assume that mrX = EXr and mrY = EY r are finite for

r = 1, 2, 3, . . .. Then mrs = EU r
1V s

1 is finite for r, s = 1, 2, 3, . . . and may be expressed in
terms of {mrX ,msY }:

m10 = EU1 = 0, m01 = EV1 = 2m1Xm1Y ,

m20 = EU2
1 = 2m2Xm2Y − 2m2

1Xm2
1Y ,

m02 = EV 2
1 = 2m2Xm2Y + 2m2

1Xm2
1Y ,

m11 = EU1V1 = 0.

Swapping (X1, Y1) with (X2, Y2) we see that

(U1, V1)
L= (−U1, V1)

so that mjk = κjk = 0 for j odd, where κjk is the corresponding joint cumulant. Also,
E exp(sU1) = E exp(sXY )E exp(−sXY ), so

mr0 =
r∑

j=0

(
r

j

)
(−1)jmjXmjY mr−j,Xmr−j,Y ,

and E exp(sV1) = {E exp(sXY )}2, so

m0r =
r∑

j=0

(
r

j

)
mjXmjY mr−j,Xmr−j,Y ,
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and the cumulants of U1 and V1 are given by

κr0 = κr(U1) = {1 + (−1)r } κr(XY ), κ0r = κr (V1) = 2κr(XY ).

To obtain κr(XY ) one uses the usual formula in terms of the moments, in this case
E(XY )r = mrXmrY = tr say. This can be written as

κr(XY ) =
r∑

j=1

(−1)j−1(j − 1)!Brj(t),

where Brj(t) is tabled on page 307 of Comtet (1974) up to r = 12, and is called the partial
ordinary Bell polynomial for the sequence t = (t1, t2, . . .): see also Withers and Nadarajah
(2009).

The Edgeworth expansions up to O(n−1) and O(n−5) require the cross-cumulants of
(U1, V1) up to order three and eight, respectively. These are given in Appendix A for the
general case up to order three and for the case of X or Y symmetric about zero up to order
eight.

However, simpler methods for obtaining these are available in special cases using

E exp (uU1 + vV1) = EMY (uX1 + vX2)MY (vX1 − uX2) , (2.2)

where MY (s) = E exp(sY ).

Example 2.1 Suppose Y ∼ N (0, 1). Then MY (s) = exp(s2/2), so the right hand side of
(2.2) is equal to E exp(Q/2) for Q = 2T (X2

1 + X2
2 ) and 2T = u2 + v2. So,

E exp(Q/2) =
∞∑

r=0

Mr T r/r!,

where

Mr = E
(
X2

1 + X2
2

)r =
r∑

j=0

(
r

j

)
m2jm2r−2j .

Expanding gives

m2j,2k = 2−rMr(2j)!(j!)−1(2k)!(k!)−1, (2.3)

where r = j + k, and other moments being zero. So,

(U1, V1)
L= (V1, U1)

even if X is not symmetric. Also the log of the right hand side of (2.2) is equal to

2 log E exp
(
TX2

)
= 2

∞∑

r=1

κr

(
X2
)
T r/r!.

Expanding gives

κ2j,2k = κr

(
X2
)
21−r(r!)−1

(
r

k

)
(2j)!(2k)!,

where r = j + k, and other cumulants being zero. Since (U1, V1) is not altered by swapping
(X1,X2) with (Y1, Y2), this also cover the case when X ∼ N (0, 1) and Y is arbitrary.

3



Example 2.2 Suppose both X and Y are N (0, 1). Then X2
1 + X2

2 is χ2
2, E exp(tχ2

2) =
(1 − 2t)−1, so Mr = 2rr! and κr(X2)21−r(r!)−1 = r−1, so (2.3) and (2.4) simplify to

m2j,2k = rκ2j,2k =
(

r

j

)
(2j)!(2k)!, (2.4)

where r = j + k. So, m2r,0 = (2r)!, κ2r,0 = 2(2r − 1)!, κ20 = 2, κ40 = 12, κ60 = 240,
κ80 = 10080, κ22 = 4, κ42 = 48, κ62 = 1440, κ44 = 864, and so on.

Example 2.3 Similarly, one may show that if X ∼ N (µX , vX) and Y ∼ N (µY , vY ) then
the c.g.f. of (U, V ) is

KU,V (u, v) = − log (1 − 2TvXvY ) + (1 − 2TvXvY )−1 (τ + 2vmXmY ) − τ,

where 2T = u2+v2 and τ = m2
X/vX+m2

Y /vY . So, κ2i,2j = λij(r−1+τ) for r = i+j ≥ 1, and
κ2i,2j+1 = (2j+1)λij(2mXmY ) for r = i+j ≥ 1, where λij = r!(2i)!(2j)!(vX vY )r/{i!(r−i)!}
for r = i + j.

Example 2.4 Suppose that X ∼ Poisson (λ). Then one may show that the joint non-
central moments of (U, V ) are

mrs = E

r+s∑

k=0

λkBrs,k(A),

where A = {Ars}, Ars = Y r
1 Y s

2 +Y s
1 (−Y2)r, and Brs,k(A) is the partial exponential bivariate

Bell polynomial. So, one obtains κr0 = 0 for r odd,

κ20 = 2λm2Y + 2λ2κ2Y ,

κ40 = 2λm4Y + 2λ2
(
7m4Y + m2

2Y − 4m1Y m3Y

)

+4λ3
(
3m4Y + m2

2Y − 6m3Y m1Y + 2m2Y m2
1Y

)

+2λ4
(
m4Y + m2

2Y − 4m3Y m1Y + 2m2Y m2
1Y − 2m4

1Y

)
,

κ01 = 2λm1Y ,

κ02 = κ20,

κ11 = 0,
κ03 = 2λm3Y + 6λ2 (m3Y − m2Y m1Y ) + 2λ3µ3Y ,

κ21 = 2λm2Y m1Y + 2λ2 (m3Y − m2Y m1Y ) + 2λ3µ3Y ,

and so on.

3 Cartesian Edgeworth expansions

As noted in (2.1), an arbitrary element of AB can be written as

SnU + iSnV =
n∑

j=1

(Uj + iVj) ,
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where
(Uj

Vj

)
are i.i.d. with cumulants {κrs} given by Section 2. In particular, κ10 = 0,

κ01 = 2m1Xm1Y , κ20 = κ02 = 2(m2Xm2Y − m2
1Xm2

1Y ), and κ11 = 0. So, as n → ∞,

Yn = (nκ20)
−1/2

(
SnU

SnV −nκ01

)
L→
(

N1

N2

)
,

where N1 and N2 are i.i.d. N (0, 1) random variables. Also by Bhattacharya and Rao (1976),
if X and Y are nonlattice, then so is (U1, V1), so Yn has the Edgeworth expansions

PYn(y) = P (Yn ≤ y) =
∞∑

j=0

n−j/2Pj(y),

pYn(y) = ∂2PYn(y)/∂y1 ∂y2 =
∞∑

j=0

n−j/2pj(y),

where

Pj(y) = P̃j (−∂/∂y) Φ (y1)Φ (y2) ,

pj(y) = ∂2Pj(y)/∂y1∂y2 = P̃j (−∂/∂y) φ (y1) φ (y2) ,

where Φ(·) and φ(·) are the distribution and density of a standard normal, and P̃j(t) are
certain polynomials in t = (t1, t2). In particular,

P̃0(t) = 1, P̃1 = ∇1, P̃2 = ∇2 + ∇2
1/2, P̃3 = ∇3 + ∇2∇1 + ∇3

1/6, . . . ,

where

∇j(t) =
∑

r+s=j+2

tr1t
s
2Krs, Krs = κ

−(r+s)/2
20 κrs/ (r!s!) .

So,

P̃1(t) =
∑

r+s=3

tr1t
s
2Krs = t31K30 + t21t2K21 + t1t

2
2K12 + t32K03,

and

p1(y) = (H31K30 + H21H12K21 + H12H22K12 + H32K03)φ (Y1) φ (Y2) ,

where Hjk = Hj(yk) and Hj(x) = φ(x)−1(−∂/∂x)jφ(x), the jth Hermite polynomial, ex-
pressable as Hj(x) = Re E (x + iN (0, 1))j . Similarly,

P1(y) = − (H21φ1Φ2K30 + H22Φ1φ2K03 + H11φ1φ2K21 + H12φ1φ2K12) ,

where φi = φ(yi) and Φi = Φ(yi). Higher order pj(y) and Pj(y) can be written down
similarly.

Now suppose that X is symmetric about zero. Then by Appendix A, κrs = 0 unless
both r and s are even, so P̃j = ∇j = 0 for j odd, P̃2 = ∇2, P̃4 = ∇4 + ∇2

2/2, P̃6 =
∇6 + ∇4∇2 + ∇3

2/6, and so on. Also κrs = κsr, so

P̃2(t) = ∇2(t) =
2∑

t41K40 + t21t
2
2K22,

∇4(t) =
2∑(

t61K60 + t41t
2
2K42

)
,

∇6(t) =
2∑(

t81K80 + t61t
2
2K62

)
+ t41t

4
2K44,
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where

2∑
f (t1, t2) = f (t1, t2) + f (t2, t1) .

So,

P̃4(t) =
2∑(

t81P80 + t61t
2
2P62 + t61K60 + t41t

2
2K42

)
+ t41t

4
2P44,

where

P80 = K2
40/2, P62 = K40K22, P44 = K2

40 + K2
22/2,

and

P̃6(t) =
2∑(

t121 P12,0 + t101 t22P10,2 + t81t
4
2P84 + t101 P10,0 + t81t

2
2P82 + t61t

4
2P64 + t81K80

)
t61t

6
2P66

+t41t
4
2K44,

where

P12,0 = K3
40/6, P10,2 = K2

40K22/2, P84 =
(
K3

40 + K40K
2
22

)
/2,

P10,0 = K60K40, P82 = K42K40 + K60K22,

P64 = K60K40 + K42K40 + K42K22,

P66 = K3
22/6 + 6K2

40K22.

So,

pYn(y) =
∞∑

j=0

n−jp2j(y), (3.1)

and

P (Yn ≤ y) =
∞∑

j=0

n−jP2j(y), (3.2)

where P0(y) = Φ1Φ2, p0(y) = φ1φ2, and, for r = 2, 4, . . .,

Pr(y) =

{
2∑

ar(y) + br(y)

}
φ1φ2, (3.3)

and

Pr(y) = −
2∑

Ar(y)Φ1Φ2 +

{
Br(y) +

2∑
Cr(y)

}
φ1φ2, (3.4)

where

2∑
f(y) = f (y1, y2) + f (y2, y1) .
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In particular,

a2(y) = H41K40, b2(y) = H21H22K22,

A2(y) = H31K40, B2(y) = H11H12K22, C2(y) = 0,
a4(y) = H81P80 + H61K60 + H61H22P62 + H41H22K42,

b4(y) = H41H42P44,

A4(y) = H71P80 + H51K60, B4(y) = H31H32P44,

C4(y) = H51H12P62 + H31H12K42,

a6(y) = H12,1P12,0 + H10,1H22P10,2 + H81H42P84

+H10,1P10,0 + H81H22P82 + H61H42P64 + H81K80,

b6(y) = H61H62P66 + H41H42K44,

A6(y) = H11,1P12,0 + H91P10,0 + H71K80,

B6(y) = H51H52P66 + H31H32K44,

C6(y) = H91H12P10,2 + H71H32P84 + H71H12P82 + H51H32P64,

and so on.

Note 3.1 We have pYn(y) = pYn(y1, −y2) = pYn(−y1, y2), so Zn = (|Yn1|, |Yn2|)′ has
density

pZn(y) = 4pYn(y)

on (0, ∞)2 and

P (Zn ≤ y) = 4 {PYn(y) − PYn (y1, 0) − PYn (0, y2) − PYn(0)} .

Also PYn(0) = 1/4 and pZn(y) = pZn(y2, y1).

Example 3.1 Suppose X and Y are N (0, 1). Then by Example 2.2

K2j,2k = 2−j−k(j + k)−1

(
j + k

j

)
.

In particular, K40 = 2−3, K60 = 2−3/3, K80 = 2−6, K22 = 2−2, K42 = 2−3, K62 = 2−3,
K44 = 3 · 2−5, P80 = 2−7, P62 = 2−5, P44 = 3 · 2−6, P12,0 = 2−10/3, P10,2 = 2−9,
P84 = 5 · 2−10, P10,0 = 2−6/3, P82 = 5 · 2−6/3, P64 = 5 · 2−5/3 and P66 = 5 · 2−6/3. So,

Yn = (2n)−1/2 (SnU , SnV )
′

7



satisfies (3.1)-(3.4) with

a2(y) = 2−3H41, b2(y) = 2−2H21H22,

A2(y) = 2−3H31, B2(y) = 2−2H11H12, C2(y) = 0,
a4(y) = 2−7H81 + 2−5H61 (4/3 + H22) + 2−3H41H22,

b4(y) = 3 · 2−6H41H42,

A4(y) = 2−7H71 + 2−3H51/3, B4(y) = 3 · 2−6H31H32,

C4(y) = 2−5H41H12 + 2−3H31H12,

a6(y) = 2−10H12,1/3 + 2−9H10,1H22 + 5 · 2−10H81H42

+10−6H10,1/3 + 5 · 2−6H81H22/3 + 5 · 2−6H61H42/3 + 2−6H81,

b6(y) = 5 · 2−3H61H62/3 + 3 · 2−5H41H42,

A6(y) = 2−10H11,1/3 + 10−6H91/3 + 2−6H71,

B6(y) = 5 · 2−3H51H52/3 + 2−3H31H32,

C6(y) = 2−9H91H12 + 5 · 2−10H71H32 + 5 · 2−6H71H12/3 + 5 · 2−6H51H32/3.

Appendix A

Here, we give expressions for the joint moments mrs = EU rV s and corresponding cumulants
κrs for U = X1Y1 − X2Y2 and V = X2Y1 + X1Y2, where X1, X2

L= X and Y1, Y2
L= Y and

X1, X2, Y1, Y2 are independent real random variables with finite moments mrX = EXr,
mrY = EY r for r = 1, 2, . . .. In Section 2, we showed that mrs = κrs = 0 for r odd, and
gave expressions for general mr0, m0r. So,

κ10 = m10 = 0, κ01 = m01 = 2m1Xm1Y ,

κ20 = m20 = κ02 = 2
(
m2Xm2Y − m2

1Xm2
1Y

)
,

κ11 = m11 = 0, κ30 = m30 = 0, κ12 = m12 = 0.

Also

m21 = 2 (m1Xm2Xm3Y − 2m1Xm2Xm1Y m2Y + m3Xm1Y m2Y ) ,

so

κ21 = 2
(
m1Xm2Xm3Y − 4m1Xm2Xm1Y m2Y + m3Xm1Y m2Y + 2m3

1Xm3
1Y

)
.

This gives all the cumulants needed for the Edgeworth expansions up to O(n−1).

We now assume Y is symmetric about zero, or equivalently, X is symmetric about
zero. We give those cumulants needed for the Edgeworth expansions up to O(n−5). So,
(U, V ) L= (X1Y1 + X2Y2,X2Y1 − X1Y2)

L= (V,U). So, mrs = msr, κrs = κsr, mrs = κrs = 0
unless both r and s are even,

m2r,0 =
r∑

j=0

(
2r
2j

)
m2j,Xm2j,Y m2r−2j,Xm2r−2j,Y

8



and

m2r,2s =
2r∑

j=0

(
2r
j

) 2s∑

k=0

(
2s
k

)
mj+2s−k,X m2r−j+k,Xmj+k,Y m2r−j+2s−k,Y

× {I(j, k even ) − I(j, k odd )} ,

where I(A) = 1 or 0 for A true or false. So,

m20 = 2m2Xm2Y , m40 = 2
(
m4Xm4Y + 3m2

2Xm2
2Y

)
, (A.1)

m60 = 2 (m6Xm6Y + 15m4Xm2Xm4Y m2Y ) , (A.2)
m80 = 2

(
m8Xm8Y + 28m6Xm2Xm6Y m2Y + 35m2

4Xm2
4Y

)
, (A.3)

m22 = 2

(
2∑

m2
2Xm4Y − 2m2

2Xm2
2Y

)
, (A.4)

m42 = 2

(
2∑

m4Xm2Xm6Y − 2m4Xm2Xm4Y m2Y

)
, (A.5)

m62 = 2

(
2∑

m8Xm6Y m2Y − 12m6Xm2Xm6Y m2Y + 15
2∑

m6Xm2Xm4Y − 20m2
4Xm2

4Y

)
,

m44 = 2

{
2∑

m2
4X (m8Y − 16m6Y m2Y ) + 12m6Xm2Xm6Y m2Y + 18m2

4Xm2
4Y m2

4Y

}
,

where
∑2 f(X,Y ) = f(X,Y ) + f(Y,X).

The condition that Y
L= −Y can be weakened. For example, (A.1) and (A.4) hold if

EY = 0, (A.2), (A.3) and (A.5) hold and κ21 = 0 if EY = EY 3 = 0, and so on. So,
if EY = EY 3 = 0 (or EX = EX3 = 0) then the error in the Central Limit Theorem
approximation is O(n−1) not just O(n−1/2).
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So,

κ20 = 2m2Xm2Y ,

κ40 = 2
(
m4Xm4Y − 3m2

2Xm2
2Y

)
,

κ60 = 2
(
m6Xm6Y − 15m4Xm2Xm4Y m2Y + 30m3

2Xm3
2Y

)
,

κ80 = 2m8Xm8Y

+14
(

−4m6Xm2Xm6Y m2Y − 5m2
4Xm2

4Y ,+60m4Xm2Xm4Y m2Y − 90m4
2Xm4

2Y

)
,

κ22 = µ22 − µ20µ02 − 2µ2
11 = 2

(
2∑

m2
2Xm4Y − 4m2

2Xm2
2Y

)
,

κ42 = µ42 − 6µ20µ22 − 8µ11µ31 − µ02µ40 + 6µ2
20µ02 + 24µ2

11µ20

= 2

{
2∑

m4Xm2X

(
m6Y − 12m3

2Y

)
− 4m4Xm2Xm4Y m2Y + 42m3

2Xm3
2Y

}
,

κ62 = µ62 − µ02µ60 − 12µ11µ51 − 15µ20µ42 − 15µ40µ22

−20µ2
31 + 90µ22µ

2
20 + 30µ40

(
µ20µ02 + 2µ2

11

)

+240µ31µ11µ20 − 270µ02µ
3
20 − 360µ2

11µ
2
20

= 2
{ 2∑

m8Xm6Y m2Y − 14m6Xm2Xm6Y m2Y + 15
2∑

m6Xm2X

(
m2

4Y − 2m4Y m2
2Y

)

−20m2
4Xm2

4Y + 210m4Xm2
2Xm4Y m2

2Y − 30
2∑

m2
4Xm4Y m2

2Y

+270
2∑

m4Xm2
2Xm4

2Y − 2340m4
2Xm4

2Y

}
,

κ44 = µ44 − 6µ20µ24 − 6µ02µ42 − 16µ11µ33 − µ40µ04 − 16µ31µ13

−18µ2
22 + 6µ40µ

2
02 + 6µ04µ

2
20 + 96µ11 (µ31µ02 + µ13µ20)

+72µ22

(
µ20µ02 + 2µ2

11

)
− 18

(
µ2

20µ
2
02 + 12µ20µ02µ

2
11 + 8µ4

11

)

= 2
{ 2∑

m2
4X (m8Y − 16m6Y m2Y ) + 12m6Xm2Xm6Y m2Y

+16m2
4Xm2

4Y − 24
2∑

m6Xm2Xm4Y m2
2Y + 12m4Xm2

2Xm4Y m2
2Y

−36
2∑

m2
4Xm4

2Y + 432
2∑

m4Xm2
2Xm4

2Y − 738m4
2Xm4

2Y

}
.
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