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Provability and the Continuum
Hypothesis. A Letter.
Institute of Actuaries Scotland.

J.I. Pillay.1

Abstract
A recent development in the theory of M-sets has paved a new means
of an approach to CH. Here we further clarify the theory and form
part two of our previous paper[P].

Notation

Object oi, Bi

M−set A set of Mechanisms.
Object sets Oi,Bi

Information sets I
The set Bi will be used to represent binary numbers.
A set of positions associated with a one symbol we will denote by pos
Elements of pos we will denote by p(1)j .
Sets of transformations Ti.
A knowable set H is denoted by K(H)
A Predictably knowable set H is denoted by PK(H)
A Writable set H is denoted by W (H)
Pow(n) n|xn for a free variable x.
RX Reasons for statement X.
Arith(S) a statement made in arithmetic.

1.1 M-sets.

Definition 1.1.1.1. Object-Representation Ro.
An entity that makes use of symbols and spatial positions as parameters for
use in distinguishing one object from another within an object set O. In
addition, the mapping between O :→ I the object set to the set of informa-
tion that we wish to map each object to, is implicitly established with the
entity.
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J.Groenwald, Mrs.R.M.Moodley, Mrs.J.west. In addition to this, many thanks to my
uncle Devaraj.N, U.Devaraj, P.Pillay and my father R.Pillay.
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Definition 1.1.1.2. I-Representation R.
A representation that conjuncts symbols and placements for these referred
to as spatial positions for use in structuring the mapping T (Ri) 7→ ji{j ∈ I}.

Definition 1.1.2. ϕ-operation.
Given an ordered set S := {oi} of objects oi, the ϕ-operation is the most
fundamental of operations, that transforms one object of {S} to the next.

Definition 1.1.3. Mechanism M.
A transformation resulting in a single change in symbol or spatial ordering
of a representation, is known as the Mechanism responsible .

1.1.2 Multiplicative M-sets.

With the aim of forming a more complete understanding of arithmetic op-
erations, we consider the M−sets associated with natural numbers raised
to a specific power.
An extremely beautiful observation we discovered, that when used in com-
bination with the multinomial theorem aides us greatly in our undertaking
of this task.

Observation 1.1.2.1.
Bi is simply a summation of the form : Σ10ji |j ∈ N . Bn

i can be expressed
via the use of the multinomial expression as : ΣCi(10)

ki .

(1010)n =
( . |C1

i × (1000)k1 × (10)k2 . |C2
i × (1000)k3 × (10)k4 . . )

Figure 1.

1.2 Heritability, predictability and comparability.

Definition 1.2.1. Formal Writable Statements.
If a mapping R → I is formed, then I is writable. Written W (I)
Such statements are representable or R-writable with respect to elements of
I.

Definition 1.2.2. Formal Comparability.
If a language L can be established that enables the transcribing of the dif-
ferences or equality between {Ij ∈ I|∀j}, the sets being compared, then the
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set I is said to be comparable, written comp(I).

Definition 1.2.3.1 Formal Predictability.
Given a functional F , the mapping mi 7→ T (Oi)|{oi∀i ∈ K}, is predictable
writable if ∀mj ∈ TF 7→ F (S), is knowable ∀oi . Such functionals are pre-
dictable, or predictable writable, written PW (R).

Observation 1.2.3.2 Predictable Information.
Given that the mapping TR 7→ I is onto. In addition if the series of mech-
anisms by which the transformation operates is also ’finite-knowable’ , then
I is predictable-knowable.

PW (R) requires that the set I associated is knowable, by this we mean
that elements of I associated with the transformation I 7→ (X) is ascer-
tainable with no restriction or ambiguity and is available for the mapping
T (R) :→ I. If this is the case, then we say that I is knowable, written :
K(I).

In addition to the above definition, if information is predictably knowable,
we write PK(I).

Definition 1.2.5.
An arithmetic theory is a set (R,L) of representations and a language L
where L 7→ T .

Definition 1.2.6.
The L on a theory T is a set of transformations T (R) :→ I along with the
representations Rl 7→ T , that are used to describe the transformations T .

2.1 Arithmetic Language.

Observation 2.2.1.1.
Let Ai be a set of Ci elements. We have from our previous observations that,
PK(∀pj(1) ∈ Ai) which enables us to construct a set CY = Σ|pj(1)| for all
combinations of Ci occupying positions such that ∩{pj(1) ∈ Ci|Poss} ̸= 0
for some set of positions occupied by Ci. This set can be used for struc-
turing mappings of the form ∩|pj(1)| ∈ Ai 7→ u ∈ UY . In cases where
subsequent to the initial such mappings, there are again overlapping posi-
tions so much so that ∩|pj(1)| ∈ A′

i for the now transformed Ai denoted
by A′

i, exceeds in magnitude, values available for the mapping ∩|pj(1)| ∈
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A′
i 7→ u ∈ UY , then we transform A′

i at each such junction where overlap-
ping positions present by combining only magnitudes available for map-
ping ∩|pj(1)| ∈ A′

i 7→ u ∈ UY and subsequently follow the process on
∩|pj(1)| ∈ A′′

i 7→ u ∈ UY . As these can be built up alongside S so as to be
able to call upon these on demand for deductive purposes, we can conclude
that if PK(| ∩ pj ∈ Ai|), then PK(| ∩ pj ∈ Ai|) 7→ UY ⇒ PK(RY (UY ))
where RY (UY ) is the set of recursive or follow up uses required of UY .
Importantly also PK(Pos(Ai)) ⇒ PK(Pos(u) ∩ Pos(Ai))|u ∈ UY . This
implies a chain on knowledge from only the initial knowledge Pos(Ai).To

elaborate on the previous mapping K(∩Pos(Ai)) ⇒ K(
∀pj∈Pos(Ai)

∩ pj 7→

UY , (Consequent(Pos))) ⇒ K(
∀pj∈Pos

∩ pj 7→ UY ′ , (Consequent(Pos′))), so

on. As such, the knowledge of the mapping to UY implies the knowledge
(with no calculation) to its consequent mapping to UY . This process is de-
noted by RU . The above arguments amount to one thing, which is that,
predictably knowing the distribution of (1) will result in predictably know-
ing where the transformation will result. As such, all associated information
is available for mapping with a language, also, the information being pre-
dictable ensures the finiteness of the associated language.

Observation 2.1.1.2
For growing n, Ci vary in accordance with the combinatorial expression:

Jk :=

(
m

m− xi

)

In general, the |Ci| terms follow the schematic {p(p− 1)(p− 2)..} in magni-
tudes. The associated magnitudes are thus knowable for growing Pow(n).
Given any p ∈ H := {h, h− 1, h− 2..} in L−form, that is, of the form Σ2r,
for arbitrary r, the remainder of such forms can easily be ’known’ from the
recursive pattern :

1 0 1 0 0 0
1 0 0 1 1 1
1 0 0 1 1 0
1 0 0 0 1 1
1 0 0 0 1 0

Here each subsequent row is one minus its previous. The proof of the pattern
being recursive is trivially obtained via mathematical induction and will be
omitted here.
Naturally each Cj ∈ Ai is associated with set of the form H := {h, h −
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1, h − 2..}. If we assume the form of h of Cj which is the largest of all
other h′ of all other cj ∈ Ai, then K(L − form(Cj)∀j) is established
as the L-form of h is knowable along with the expansion of the product
∀k∈H
Π L− form({k|H 7→ Cj}), as the form of all elements of H are knowable

along with the nature of the products of the form Σ2r.
The order of the elements of the set H are thus ’knowable’ and ’predictable
writable’. I here is associated with the set (L− form(pi)) which the recur-
sive pattern shows is PK(I) thus I := (ord(Ai), L−form(Ci)) and PK(I),
where Ai here denotes the positional distribution of all Ci.

We note further that there will be in amount, the number of terms as there
are xi in the combinatorial expression. These will have a maximum number
less than or equal to n, the exponential power to which Bi is raised.
Thus ’knowing’ the associated L−forms of the set {p, (p− 1), (p− 2), ..} al-
lows us to ’know’ the progression of Ci as n grows, from Observation 2.2.1.
the step down process along with the RU mappings being knowable for such
systems as well. In summation, expressions involving growing n on Pow(n)
associated with terms of a statement, again have predictable information
associated.In order to better see how one can build a rep around RU , is by
taking note of the type of groupings possible of ∩pos. For instance, take
note of the number of ones along the columns of the above matrix, we can
easily know what progression in number will appear along the columns (as
these are inductive in nature) . A blueprint now exists of the number of ones
that will appear along such columns starting from any one Bi, this enables
us to ’know’ what types of numbers are possible of Bn

i , in terms of ΣCi thus
enabling us to know this finally in terms of the representation : Σ2p-Rep.
Note importantly that Bn

i will have utmost i in Ci overlapping positions.
These along with overlapping positions of ΣBn

i can be represented. Since the
matrix is always of the same structure regardless of size and is additionally
finite in nature, we can always ’know’ the progression (what is possible of)
of RU thus making it representable. This exact same technique is possible
of ∩pos(Ci) as these are also predictably knowable. Predictably knowability
of one thing implies PK of the same thing in a different representation.

Observation 2.1.1.3 (Relative Positions)
Given an initial set of positional values, the information of positions as-
sociated with Ci 7→ Bi

n is ’knowable’ via the multinomial distribution.
Furthermore, the positions at which Ci appears are mapped to powers of
{ut+p|u ∈ Bi, t ∈ Po(Bi), t ∈ Pow}, where the set Pow is that of the powers
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of terms appearing in the multinomial distribution. Since the distributional
expansion is writable, we have: PK(I := {Pow(Bi)}).

{Xn|Bi ∈ B,n ∈ N} 7→
C1
i − C2

i − − C3
i − C4

i C5
i

P 1
o − P 2

o − − P 3
o − P 4

o P 5
o

Figure 4.

Observation 2.1.1.4
An entire side of a statement is a summation of the form : ΣCi(Po). Their
relative positions is what is altered by a change in variable values. A
convenient aspect of this representation that enables comparability is that
both {SL, SR} of the statement Arith(S) can be written in terms of L −
form(base(2r)). In addition, Pos(Ci) associated with variables of the form
xy is simply their dot product : (Pos(Ci))x ⊙ (Pos(Ci))y. This follows sim-
ply from the rules associated with the expansion of products of the form
(ΣA)(ΣB). Their relative position constraints are in fact also their dot
product respectively, thus PK(I 7→ {Pos(xy)}). This gives indication that
the an entire side of a statement is predictably writable with respect to some
r in 2r as a base, which is what we aimed to establish.

From the observations made, one thing seems clear, any arithmetic equa-
tion can be broken into a series of transformations on Oi that are know-
able and predictable. Specifically we have shown that the mechanisms by
which the transformations operate for any statement are finite in measure
and additionally, these are predictable on Oi, meaning that an onto map-
ping of these to Oi exists. This enables one the opportunity to ascertain
whether, for any O′

i a corresponding exists for this result, and additionally
one could also ascertain whether . This is because we can know the mecha-
nisms by which T ’s form O′

i, and knowing PK(Form(output)) means that
one can know all types of outputs possible, which enables one to form a
generic type of predictable condition/s ck that need to be met in order for
pos(LHS) = pos(RHS). This we call the generic conditioning property.
This again follows from the logic that knowing form output is possible in
a finite descriptive manner as the transformations associated thereof are fi-
nite in nature. Using this, and the fact again that transformations of the
other side of the equation is also finite. one can use the finite nature of the
structure associated to see whether oi can be constructed that results in the
finite generic needs of Ck.
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Sufficiency Theorem 2.1.1.1
All statements that can arithmetically be made in terms of F−1 can be
rewritten in terms of F .
Proof
This follows from the nature of the formation of the Fundamental Theorem
of Algebra.

Theorem 2.1.1.2
Statements S made with arithmetic entities are predictably knowable and
thus have associated theories capable of proving them.

Proof
From observations (2.1.1.1) to (2.1.1.4) and the generic conditioning prop-
erty, we have that ∀mi ∈ T (S), K(mi 7→ T ). Thus K(IT (mi 7→ T )) as
we may simply associate the M-sets associated with the transformation to
elements of IT . Furthermore, the sum total of all our observations establish
PK(IP 7→ {T (S)|oi ∈ O}). The nature and finiteness of the information set
IP , as we can note from its definition contains only the knowable informa-
tion surrounding (Pos(in), Pos(out)) via the knowledge of K(mj 7→ T (S)),
and additionally the fact that these are finite and knowable from the on-
set of S, exposes a set of conditions cj ; which are knowable in terms of its
associated M−set required of the statement. Representations RI can be
associated with all Ij ∈ Arith(S), as we showed that PK(Ij) on the asso-
ciated conditions, which makes
comp(I(PK(Pos(SL))), I(PK(Pos(SR), Eq))) possible.
Finally since the existence of RI was established associated languages are
eminent, which establishes T (∪RI ,L).

Theorem 2.2.3.
If theories ∪T := (R,L,M) are established, where ∪L are capable of tran-
scribing s ∈ Arith(S), and s 7→ {True} then the expression X(∪L) 7→
{True} where X(∪L) := {Xi, Xi−1, ..}, if and only if s 7→ {True}.

Proof (Assuming equality as the connective)
s 7→ {True} ⇒ Ms 7→ s|Bi for free variables Bi. Now if sL = sR then
PosL = PosR|Bi for some Bi ⊆ B. Furthermore if PosL = PosR|Bi this
implies that Ms 7→ sL(Bi) = Ms 7→ sR(Bi). It is easy to see from the
previously established that individual mechanisms are unambiguous, specif-
ically they mean one single thing, additionally ∩Pos(B) = 0 thus ∩{M 7→
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B} = 0. We have previously established that RU (W (Base(2k), PosL)) 7→
RU (W (Base(2k), PosR)) is onto. Additionally RX merely derives from
I 7→ R and in no way enforces structure on the mapping M 7→ s. I here,
falls under the mapping IRIV 7→ {PK(PosV ), PK(Pos 7→ (L−form))} for
V := (L,R). Thus if (L)T 7→ IRI then for T such that (IRI ,L) ∈ T :=
(R,L,M), RX(LRI) 7→ {True} if and only if PosL = PosR|Bi. Since this
is also when s 7→ {True}, s 7→ {True} ⇒ RX(LRI) 7→ {True}. Further-
more, since

∪
∀iXi ∈ RX(LRI), s 7→ {True} ⇒ X 7→ {True}. Here since

∀x ∈
∪

∀iXi, x 7→ L(I) where L(I) is the linguistic representation ofR 7→ I.
This mapping L(I) 7→ I is one to one since L expresses R 7→ I. Thus the
series

∪
∀iXi makes true or false inferences from L(I), where, to restate,

L(I) is associated with {PK(PosV ), PK(Pos 7→ (L − form))}. Informa-
tion associated with the structure of

∪
∀imi 7→ {L− Form} is derived from

PK(Pos 7→ (L−form)), thus a series of L−statements forms a mapping of
the form L 7→ {I 7→ PK(Pos 7→ (L− form))}. PK(Pos 7→ (L− form)) is
derived from I 7→ {T (M)}. Thus since there exists an association between
L 7→ (I) and since I merely associates mechanism to information, if the
mechanism can only under certain M−sets map s 7→ {True}, then L can
only transcribe the circumstances under which this is so.

We conclude our ideas on M-sets by concluding the proof of Theorem 2.1
of [p]. To recap, we managed to show that between any pair of Cinf -type
elements exists another infinumerous set of Cinf -type elements.
A simple attempt in enumerating these shows us that a consequence of the
proof of Theorem 2.1[p], is that between any such enumeration elements
not in this set, and thus we can extend Cantor’s diagonalization argument
directly to the aforementioned proof.
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