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Abstract

This paper discusses the relationship between quadratic irrational numbers and periodic
continued fractions. By using some basic properties of this relationship, we will show how
to compare exactly two quadratic irrationals. Instead of using their numerical values which
are approximations of the real values, we use their corresponding continued fractions each
of which contains only a finite set of integers.

Key words: quadratic irrational, periodic continued fraction, exact comparison.

1 Introduction

During our recent study about discrete rotations based on hinge angles for 2D and 3D digi-
tal images [1], we encounter the problem of comparing quadratic irrationals when we would
like to observe the discretization of the rotation space induced by hinge angles. There exist
various techniques for calculating quadratic irrationals; for instance Talor series transfor-
mation, Babyloian method, Exponential identity, Bakhshali approximation, etc. However
these methods compare quadratic irrationals by using their approximative values, which
means that the comparison is “true” with a given precision. For our purpose, we need to
compare two quadratic irrationals with their “exact values”. An exact approach, employing
only integers, has been proposed in [1] by using the square function. The disadvantage is
that square function generates large integers, which are out of range of types int, long in
C/C++ and thus, that is a limitation to implement. Our approach is based on another rep-
resentation altogether for quadratic irrationals by using continued fraction expansion, which
are represented by sets of integers. Indeed, quadratic irrationals can be represented exactly
using periodic continued fractions, and this representation is unique. This provides an exact
method that represent such continuing fractions, as well as compare them, which allows us
avoid numerical errors.

This paper is organized as follows: in section 2, we introduce some basic notions of
quadratic irrationals. Section 3 is devoted to formulate the problem of comparing exactly
two quadratic irrationals and to give a solution based on continued fraction representation.
Then, in section 4 we compare our method with some others : Approximation method and
square comparison method. Finally, we conclude the paper with discussion of future work
and some applications in section 5.

2 Quadratic irrationals

In this section, we present several mathematical concepts that will be useful to understand
the problem of comparison of quadratic irrationals. We first begin by the definition of
irrational numbers.

Definition 2.1 An irrational number is any real number which cannot be expressed as
a fraction a

b , where a and b are integers with b non-zero, and is therefore not a rational
number.
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Informally, this means that an irrational number cannot be represented as a simple
fraction. In this paper, we are interested in a special kind of irrational numbers that are
called quadratic irrational numbers. There are several ways in which quadratic irrationals
can be represented. In this paper we refer the definition and results to mathematical analysis
books given by K. Rosen [4].

Definition 2.2 A real number x ∈ R is a quadratic irrational 1 if there exist A,B,C ∈ Z
and A 6= 0 such that Ax2 + Bx + C = 0 and D = B2 − 4AC > 0 and D is not a perfect
square 2.

Consequently, the solutions of this equation are quadratic irrational numbers, that can
be expressed as:

x =
−B ±

√
B2 − 4AC

2A
.

According to Definition 2.2, quadratic irrationals have to satisfy two conditions: they
must be the solution of a quadratic equation and be irrational.

We define now a special kind of quadratic irrationals, called reduced surd, because of their
interesting properties associated with continued fraction that we will discuss in Section 3.

Definition 2.3 A quadratic irrational Q is said to be reduced if Q > 1 is the root of a
quadratic equation with integer coefficients whose conjugate root Q lies between -1 and 0.

We will present as follow a lemma that will be used in the algorithms of Section 3 in
other to solve the problem of exact comparison.

Lemma 2.1 A quadratic irrational Q can be expressed in the form Q =
p+
√
q

r , where q is
not square free, r 6= 0 , p, q, r ∈ Z that satisfies r|q − p2.

Proof : Suppose that Q =
p′+
√
q′

r′ where p′, q′, r′ ∈ Z, r′ 6= 0 and r′ - q′ − p′2. By
multiplying both numerator and denominator of Q′ with absolute value of denominator r′,
we obtain:

Q =
|r′|p′ + |r′|

√
q′

|r′|r′
=
|r′|p′ +

√
r′2q′

|r′|r′
.

Then, we have (|r′|r′)|(r′2q′ − r′2p′2).

3 Continued fraction expansion

It is known that a quadratic irrational can be represented by a continued fraction. The
research of this relationship began from 17th century. Some useful properties are known [2]
[4]; For instance, Leonhard Euler proved that the infinite simple continued fraction of an
irrational number is eventually periodic if this number is a quadratic irrational. Then in
1770, Joseph-Louis Lagrange found out the proof that the continued fraction expansion of
any quadratic irrational is periodic.

1It is also known as a quadratic irrationality or quadratic surd.
2A perfect square is a number that can be written as the product of some integer with itself, i.e :

√
x = a

with a ∈ Z.
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3.1 Continued fraction

Before describing our method for the exact comparison, we first provide definitions of con-
tinued fractions and some important properties that will be used in the method.

Definition 3.1 A simple continued fraction has an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + ...

where a0 ∈ Z and ai ∈ Z+ for i = 1, 2, 3.... They are called the partial quotients of the
continued fraction.

Hereafter, we will deal with the cases when partial quotients are all positive.

The number of terms ai is limited for finite continued fractions, while it is unlimited
for infinite continued fractions. In the case of finite continued fractions, we thus write

[a0; a1, a2, a3, ...an] = a0 +
1

a1 +
1

a2 +
1

a3 + ...

+
1

an

.

Similarly, we denote infinite continued fractions by

[a0; a1, a2, a3, ...] = a0 +
1

a1 +
1

a2 +
1

a3 + ...

.

In this paper, when we say continued fractions, they mean infinite continued fractions ;
otherwise, we will specify the term for each case.

For the problem of comparison, there are two special forms of continued fractions that
interest us: periodic continued fraction and purely periodic. The are defined as follow:

Definition 3.2 An infinite continued fraction is called a periodic continued fraction, if
its terms eventually repeat from some point until infinite. The minimal number of repeating
terms is called the period of the continued fraction.

A periodic continued fraction thus has the form:

[a0; a1, a2, a3, ..., ak−1, ak, ak+1, ..., ak+m, ak, ak+1, ..., ak+m, ...],

for which we also write

[a0; a1, a2, a3, ..., ak−1, ak, ak+1, ..., ak+m].
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Definition 3.3 A continued fraction which is periodic from the first partial quotient is called
purely periodic.

We denote as:

[a0; a1, a2, a3, ..., ak−1, ak, a0, a2, a3, ..., ak−1, ak, ...] = [a0, a1, a2, a3, ..., ak−1, ak].

If the period starts with the second partial quotient, the continued fraction is called
simply periodic which is represented by:

[a0; a1, a2, a3, ..., ak−1, ak, a1, a2, a3, ..., ak−1, ak, ...] = [a0; a1, a2, a3, ..., ak−1, ak].

Then, a purely periodic is also simplify periodic but the reverse is not true.

3.2 Continued fraction expansions of quadratic irrationals

So far we have studied the basic notions of quadratic irrationals and continued fractions. We
are now interested in their relationship to solve the exact comparison of two quadratic irra-
tionals. For this, we will first present two fundamental theorems that indicate the bijection
between a quadratic irrational and a continued fraction. We just formulate the result and
refer to the literature [2] [3] for proofs.

The first one was proved by J-L Lagrange.

Theorem 3.1 Quadratic irrationals are the real numbers that can be exactly represented
by periodic continued fractions.

The next one was shown by A. Ya. Khinchin [Theorem 14].

Theorem 3.2 There is a one-to-one correspondence between a real number and a con-
tinued fraction, which is either finite or infinite.

Galois then found out then an interesting property between reduce surds and purely
periodic continued fractions.

Theorem 3.3 The continued fraction which represents a quadratic irrational Q is purely
periodic if and only if Q is a reduced surd.

In fact, Galois showed more than this result. He proved that if Q is a reduced quadratic
surd and Q is its conjugate, then the continued fractions for Q and for 1

Q
are both purely

periodic, and the repeating block in one of those continued fractions is the mirror image of
the repeating block in the other.
From Theorem 3.3, we can state the following lemma that is useful for the exact comparison
algorithm.

Lemma 3.1 For any positive integer S that is not a perfect square, the continued fraction
of
√
S is simply periodic and more precisely it has the form

√
S = [a0; a1, a2, ..., an, 2a0].
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Proof. Let a0 = b
√
Sc. Since S is a positive integer,

√
S + a0 > 1. Because S is not a

perfect square, we have 0 <
√
S − a0 < 1 and its conjugate lies between -1 and 0, which

means −1 < −
√
S + a0 < 0. Therefore, from Definition 2.3,

√
S + a0 is a reduced quadratic

irrational. Applying Theorem 3.3 we then obtain:
√
S + a0 = [2a0; a1, a2, ..., an],

which is equivalent to √
S + a0 = [2a0; a1, a2, ..., an, 2a0].

Consequently, we have √
S = [a0; a1, a2, ..., an, 2a0].

3.3 Algorithm for finding corresponding continued fraction of a
quadratic irrational

Let us consider now two problems: finding the corresponding fraction of a square root, and
of a quadratic irrational.

3.3.1 Periodic continued fraction of a square root

To find the continued fraction of a square root, one of the most known methods was proposed
by K. Rosen, in [4]. This method base on the study of irrational numbers as continued frac-
tions obtained by J.L. Lagrange. Let consider that we would link to calculate the continued
fraction of a square root

√
S, where S is a positive integer and non perfect square. We obtain√

S = [a0; a1, a2, a3, ...] as result. The iterative algorithm, Algorithm 1, uses two sequential
integer parameters : mi and di, to obtain ai.

Lemma 3.1 says that the corresponding continued fraction of square roots of S is simply
periodic. It means the terms of expansion will repeat from some points until infinite. Be-
cause a program cannot be executed infinitely, we can stop it at the first repetition of the
extension. Thus, the stop condition is given by verify the doublet mi and di goes back as
the same one that is encountered before.

Algorithm 1: Calculate the periodic continued fraction of a square root

Input: A positive integer S
Output: A periodic continued fraction of

√
S, [a0; a1, a2, a3, ...]

1 m0 ←− 0
2 d0 ←− 1

3 a0 ←− b
√
Sc

4 i←− 0
5 repeat
6 mi+1 ←− diai −mi

7 di+1 ←−
S−m2

i+1

di

8 ai+1 ←− ba0+mi+1

di+1
c

9 i←− i + 1

10 until (mi−1, di−1) 6= (m1, d1);
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According to Lemma 3.1, algorithm can terminate if we have 2a0 while calculate the ai
with i > 0. For this, in Algorithm 1 we replace the condition at line 10 by ai 6= 2a0.

3.3.2 Periodic continued fraction of a quadratic irrational

K. Rosen proposed in [4] a method which allows us to get the corresponding continued frac-

tion of a quadratic irrational. Let Q =
p0+
√
q0

r0
, where q0 is not a perfect square, p0 and

r0 are integers. Algorithm can be applied if p0, q0 and r0 are satisfying r0|q0 − p20. For this
condition, Lemma 2.1 says that any quadratic irrationals of non square free can be expressed

in the form
p+
√
q

r that r|q − p2. We have Algorithm 2 as follows:

Algorithm 2: Calculate periodic continued fraction of a quadratic irrational

Input: p0, q0 and r0 represent the quadratic irrational Q =
p0+
√
q0

r0
Output: Corresponding periodic continued fraction : Q = [a0; a1, a2, a3, ...]

a0 ←− b
p0+
√
q0

r0
c

i←− 0
repeat

pi+1 ←− airi − pi

ri+1 ←−
q0−p2i+1

ri

ai+1 ←− b
pn+1+

√
q0

rn+1
c

i←− i + 1
until ai−1 6= 2a0;

Notice that pn, rn and an are integers.

4 Comparison of quadratic irrationals

In this section, we first formalize the problem of comparing quadratic irrationals, then explain
how to solve this problem with an exact approach using the continued fraction expansion.

4.1 Problem statement

Using Definition 2.2 in previous section, we now formulate the problem as follows. Suppose
that we have two quadratic irrationals Q1 and Q2 that have forms:

Qi =
pi +
√
qi

ri

where pi, qi, ri ∈ Z , qi > 0 and ri 6= 0 for i = 1, 2. Then, we would like to compare Q1 and
Q2, with an exact calculation by using only integers.

According to Theorems 3.1 and 3.2, for each quadratic irrational we can find out exactly
one corresponding periodic continued fraction. Let us consider

Q1 =
p1 +

√
q1

r1
= [a0; a1, a2, a3, ..., ak−1, ak, ak+1, ..., ak+m],
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Q2 =
p2 +

√
q2

r2
= [b0; b1, b2, b3, ..., bl−1, bl, bl+1, ..., bl+n]

where a0, b0 ∈ Z and ai, bj ∈ Z+ for i = 1, 2, ..., k + m and j = 1, 2, ..., l + n. This
representation allows us to describe the quadratic irrationals not by their numerical val-
ues, i.e. real values, but rather by their corresponding continued fractions which requires
only integers. Thus, the comparison between quadratic irrationals becomes the problem of
comparison their corresponding periodic continued fractions.

4.2 Algorithm for comparing two quadratic irrationals

We would like to compare two quadratic irrationals Q1 and Q2, given by:

Qi =
pi +
√
qi

ri

where pi, qi, ri ∈ Z , qi > 0 and ri 6= 0 for i = 1, 2. As discussing, our exact comparison
method is based on calculating the corresponding continued fraction. However, for comparing
we dont need to compute all terms of continued fraction expansions but the comparison
happen for each coup of terms having the same level of continued fractions. Precisely, let us
consider

Q1 =
p1 +

√
q1

r1
= [a0; a1, a2, ...] and Q2 =

p2 +
√
q2

r2
= [b0; b1, b2, ...].

Without loss of generality, we can assume k ∈ Z+ is the smallest index for which ak is unequal
to bk. In order to compare Q1 and Q2, we should calculate expression E = (−1)k(ak − bk).
There three cases:

1. Q1 = Q2 if and only if p1 = p2, q1 = q2 and r1 = r2 (Theorem 3.2 about unique
correspondence).

2. Q1 < Q2 if E < 0.

3. Q1 > Q2 otherwise.

As explaining before, the comparison will be done for each coup of terms ai and bi. For
calculating these terms we will use two methods that are described in section 3.

To apply Algorithm 1 for calculating continued factions, we need to modify quadratic
irrationals Qi into square root’s form, as follows:

Q1 =
r2p1 + r2

√
q1

r2r1
=

r2p1 +
√

r22q1
r2r1

,

Q2 =
r1p2 + r1

√
q2

r2r1
=

r1p2 +
√

r12q2
r2r1

Thus, comparing Q1 and Q2 becomes comparing the numerators of Q1 and Q2. If we have√
r22q1 = [a′0; a

′
1, a
′
2, ..., a

′
n, 2a

′
0],
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√
r12q2 = [b′0; b

′
1, b
′
2, ..., b

′
n, 2b

′
0].

Then we obtain the two numerators as

r2p1 +
√

r22q1 = [a′0 + r2p1; a′1, a
′
2, ..., a

′
n, 2a

′
0],

r1p2 +
√

r12q2 = [b′0 + r1p2; b′1, b
′
2, ..., b

′
n, 2b

′
0].

Now we can use Algorithm 1 in order to calculate the periodic continued fractions of two
square roots

√
r22q1 and

√
r12q2.

Function 1: Calculate i-th term of continued fraction using Algorithm 1

Input: A quartet of integer: a0, ai,mi and di
Output: A triplet of integer: ai+1,mi+1 and di+1

mi+1 ←− diai −mi

di+1 ←−
S−m2

i+1

di

ai+1 ←− ba0+mi+1

di+1
c

By using Algorithm 2, we can get directly the corresponding continued fraction of a
quadratic irrational without modify quadratic form into square root’s form.

Function 2: Calculate i-th term of continued fraction using Algorithm 2

Input: A quartet of integer: q0, ai, pi and ri
Output: A triplet of integer: ai+1, pi+1 and ri+1

pi+1 ←− airi − pi

ri+1 ←−
q0−p2i+1

ri

ai+1 ←− b
pn+1+

√
q0

rn+1
c

Finally, for comparing we have the algorithm using Algorithm 4 as follows:

8



Algorithm 3: Compare two quadratic irrationals

Input: Two triplets : (p1, q1, r1) and (p2, q2, r2) represent two quadratic irrational
Q1 and Q2

Output: Value indicating result of the comparison: 0 if Q1 = Q2; 1 if Q1 > Q2;
otherwise -1.

if p1 = p2 and q1 = q2 and r1 = r2 then
return 0

else
E ←− 0
i←− 0
p1i ←− p1
q1i ←− q1
r1i ←− r1
p2i ←− p2
q2i ←− q2
r2i ←− r2
while E = 0 do

(p1(i+1), q1(i+1), r1(i+1))←− Function 2 (q1, p1i, q1i, r1i)
(p2(i+1), q2(i+1), r2(i+1))←− Function 2 (q2, p2i, q2i, r2i)
E ←− (−1)i(a1i − a2i)
i←− i + 1

end
if E > 0 then return 1
else return -1

end

4.3 Complexity

The complexity of comparing two periodic continued fractions depends on the number of
terms to examine. In the worst case, we have to compare all terms in the periodic expansion.
Thus, the complexity belongs to length of the repeating block of quadratic surd Q, given by:

Q =
p +
√
q

r
= [a0; a1, a2, ..., an, 2a0].

If the length of the partial quotients of Q and q are denoted by L(Q) and L(q); we have
L(Q) = L(q) = n + 1. Lagrange proved that the largest partial denominator ai in the
expansion is less than 2

√
q, and that L(q) < 2q. More recently Hickerson [5] and Podsypanin

[6], based on the divisor function3, have shown that L(q) is given by L(q) = O(
√

(q) ln q).

5 Discussion

In this section, we would like to compare our approach with several other methods: Approx-
imation method and Square comparison method to show why this approach is more efficient
than the others.

3divisor function is an arithmetical function related to the divisor of an integer. It counts the number of
divisors of an integer.
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5.1 Approximation method vs. Exact method

Square root of a positive integer number S which is not a perfect square is an irrational
number. There exist many methods for evaluating this value. It can be classified into two
categories : approximation methods and exact methods. We say approximation method
if we represent

√
S by an equivalence which is a infinitive real number4. For instance New-

ton’s method, Exponential identity, Rough estimation, Babylonian method, etc. However,
there are two problems with these approaches : (1) Computers normally use the IEEE5 rep-
resentation for real numbers; this standard represents a floating point number up to some
precision as supported by the computing hardware. However, irrational numbers, such as√

2, or even many rational numbers cannot be expressed exactly in this format. They must
be approximated. (2) An algorithm must terminate at some point when a sufficient approx-
imation is reached; as a result, only an approximation of quadratic irrational is provided.
For these reasons, the comparison of two quadratic irrationals is true only within some pre-
cision. By using periodic continued fraction to represent irrational numbers, our approach
is an exact method because it employs only integers to represent and to compare them.

5.2 Square comparison vs. Continued Faction comparison

Square approach is an exact comparison by using square function to avoid the irrational
numbers. For instance, we have two quadratic irrational Q1 and Q2

Q1 =
p1 +

√
q1

r1
and Q2 =

p2 +
√
q2

r2
.

If Q1 > Q2 then Q1 −Q2 > 0

Q1 −Q2 =
p1 +

√
q1

r1
−

p2 +
√
q2

r2
=

r2p1 + r2
√
q1

r2r1
−

r1p2 + r1
√
q2

r2r1
> 0,

because r1r2 > 0, thus
r2p1 + r2

√
q1 > r1p2 + r1

√
q2,

take the square two times

(r21q2 + r22q1 − (r2p1 − r1p2)
2)2 > 4r21r

2
2q1q2.

The below equation contains only integers. Therefore, we can verify Q1 − Q2 with integer
calculation. However the fact of using the square function, computation perform on big
values which are squares of integer values ! The comparison of quadratic irrationals with
continued factions approach (Algorithm 1) permit to calculate with integers that is smaller
than r2p1 + r2

√
q1 and r1p2 + r1

√
q2.

6 Conclusion

In this paper we presented a discussion on relation between quadratic irrationals and contin-
ued fractions, from that we introduced an exact comparison of two quadratic irrationals that

4Irrational number can’t be represented as terminating or repeating decimals.
5Standard for Floating-Point Arithmetic is the most widely-used standard for floating-point computation.
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is important in dividing parameter space of digital image transforms. We have determined
the complexity of this comparison that permit to reduce the complexity of general discrete
rigid transformation’s algorithm.
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