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ABSTRACT

The purpose of this paper is the construction of an uncertain probabilistic model for the mechani-

cal properties of the cortical bone. The main objective is firstly to propose a probabilistic simplified

model adapted to the ultrasonic axial transmission technique and secondly to present an experi-

mental identification using this technique. The simplified model is constructed as a fluid-solid

semi-infinite multilayered system in which the solid layer (the cortical bone) is a nonhomogeneous

anisotropic elastic material and the two others semi-infinite layers are fluids. The uncertainties are

related to the elasticity tensor and are taken into account with a probabilistic model. In this paper,

the parameters of the probabilistic model are the mean elasticity tensor and a dispersion coeffi-

cient. A complete application is presented for the human cortical bone for which an experimental

database is available.

1 INTRODUCTION

Biomechanical systems such as the cortical bone, are very complex systems which are difficult

to model in regard to their constitutive material at the microscopic scale. Such a biomechanical

system can be modeled using a mechanical model which can be more or less sophisticated using

or not a multiscale approach. Nevertheless, assumptions yielding modeling simplifications and

approximations are introduced and therefore the developed model is always a rough approximation

of the real biomechanical system. In this paper, such sources of uncertainties are taken into account

in order to extend the domain of validity of a simplified model and, therefore, a probabilistic model

is constructed to take into account uncertainties in the model of elasticity tensor of the cortical

bone. This construction is carried out using Information Theory with the available information

derived from the mechanical and probabilistic properties for the random elasticity tensor. The

parameters of the probabilistic model are the mean elasticity tensor and a dispersion parameter

characterizing the level of uncertainties. The identification of these parameters is performed by

using in vivo measurements obtained with the axial transmission technique: an acoustic pulse
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is applied on the skin layer in the ultrasonic range and the velocity of the first arriving signal

is measured. Thus, the purpose of this paper is the experimental identification and validation

of the probabilistic model developed to take into account uncertainties in the elasticity tensor of

the cortical bone using the ultrasonic axial transmission technique. In this paper, the uncertain

simplified mechanical model is constructed as a fluid-solid semi-infinite multilayered system in

which the solid layer (representing a cortical bone) is a homogeneous anisotropic elastic material

and the two others semi-infinite layers are fluids (representing the skin and the marrow bone).

This model is obviously quite simple in regard to the real biomechanical system. Nevertheless,

it allows the velocity of the first arriving signal to be accurately predicted. The solver used for

this problem is presented in [1]. The experimental database is obtained by in vivo ultrasonic axial

transmission on cortical bones of a given set of patients. A computational optimization problem

is then introduced, consisting in minimizing a cost function with respect to the parameters of the

probabilistic model. This cost function is defined by taking into account the type of experimental

observations. The stochastic solver used to solve the optimization problem is based on the Monte

Carlo method for which the simplex algorithm is used at each iteration. The complete stochastic

model is presented with its experimental validation.

2 EXPERIMENTAL DATABASE
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Cortical layer of a long bone

soft tissue
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Transmitter
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Figure 1. Experimental configuration

The ultrasonic axial transmission technique is used to construct an experimental database

(see for instance [3-5]). The experimental configuration is described by Fig. 1. A device has

been designed and is made up of several receivers and transmitters. A coupling gel is applied

at the interface between the device and the skin of the patient. Each transmitter generates an

acoustical impulse in the ultrasonic range that propagates in the coupling gel, the skin, the muscle,

the cortical bone and the marrow. The axial transmission technique consists in recording these

signals at several receivers located in the device. The first arriving contribution of the signal (FAS)

is considered. Following the signal processing method used with the experimental device, the

velocity of FAS is determined from the time of flight of the first extremum of the contribution.

Figure 2 shows a part of a simulated signal and the FAS.

These in vivo measurements were previously performed on a population of 168 subjects

examined at the third distal radius. This group is a subset of a larger group of patients who par-

ticipated to a clinical evaluation of the bidirectional axial transmission device. The multi-element

probe operating at a center frequency of 1 MHz recorded twenty series of axially transmitted sig-

nals without particular angular scanning protocol except natural micro-movements of the operator.

The experimental database finally consisted of 2018measurements of FAS velocity. Each velocity
measurement is considered as a realization of a random variable V exp. Thus, the database is made

up of N = 2747 statistical independent realizations V exp(θ̂1), . . . , V
exp(θ̂N) of random variable

V exp. The mean value of V exp is vexp = E{V exp} and its coefficient of variation∆exp is defined by

(∆exp)2 = E{(V exp)2}/(vexp)2 − 1 in which E{·} is the mathematical expectation. Accordingly,
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Figure 2. First arriving signal

the database consists of N = 2018 statistically independent realizations V exp(θ̂1), . . . , V
exp(θ̂N)

of random variable V exp. Using the usual statistical estimators and since N is sufficiently large,

vexp and ∆exp can be estimated by

vexp =
1

N

N
∑

k=1

V exp(θ̂k) , ∆exp =
1

vexp

√

√

√

√

1

N

N
∑

k=1

V exp(θ̂k)2 − (vexp)2 .

3 SIMPLIFIED MODEL

A simplified model of the biomechanical system made up of the coupling gel, the skin, the cortical

bone and the marrow has been developped in [1, 2]. This simplifed model is composed of an

elastic solid semi-infinite layer between two acoustic fluid semi-infinite layers (see Fig. 3). Let
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Figure 3. Geometry of the multilayer system

R(O, e1, e2, e3) be the reference Cartesian frame where O is the origin of the space and (e1, e2, e3)
is an orthonormal basis for this space. The coordinates of the generic point x in  3 are (x1, x2, x3).
The thicknesses of the layers are denoted by h1, h and h2. The first acoustic fluid layer occupies

the open unbounded domain Ω1 , the second acoustic fluid layer occupies the open unbounded

domainΩ2 and the elastic solid layer occupies the open unbounded domainΩ. Let ∂Ω1 = Γ1∪Σ1,

∂Ω = Σ1 ∪ Σ2 and ∂Ω2 = Σ2 ∪ Γ2 (see Fig. 3) be respectively the boundaries of Ω1, Ω and Ω2 in

which Γ1, Σ1, Σ2 and Γ2 are the planes defined by

Γ1 = {x1 ∈  , x2 ∈  , x3 = z1}
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Σ1 = {x1 ∈  , x2 ∈  , x3 = 0}
Σ2 = {x1 ∈  , x2 ∈  , x3 = z}
Γ2 = {x1 ∈  , x2 ∈  , x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Therefore, the domains Ω1, Ω and Ω2 are

unbounded along the transversal directions e1 and e2 whereas they are bounded along the vertical

direction e3. Let u be the displacement field of the solid elastic and, for k = 1, 2, let pk be the

pressure field in the fluid occupying the domain Ωk. Let ρ and ! be the mass density and the

Cauchy stress tensor field of the solid. A line source modeling the acoustical impulse is applied in

domain Ω1. This line source is defined with a source density Q1 such that

∂Q1

∂t
(x, t) = ρ1 F (t)δ0(x1 − xS

1 )δ0(x3 − xS
3 ) , (1)

in which F (t) = F1 sin(2πfct)e
−4(t fc−1)2 where fc = 1 MHz is the central frequency and F1 =

100 N; ρ1 is the mass density of domain Ω1; δ0 is the Dirac function at the origin and xS
1 and xS

3

are the coordinates of a line source modeling the acoustical impulse. At time t = 0, the system is

assumed to be at rest. Let [C] be the effective elasticity matrix of the solid layer such that

[C] =


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√
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√
2c1233 2c1223 2c1231 2c1212

















. (2)

For a transverse isotropic homogeneous medium, all the components [C]ij are zeros except the
following

[C]11 =
e2

L(1 − νT )

(eL − eLνT − 2eT ν2
L)

, [C]22 =
eT (eL − eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

, (3)

[C]12 =
eT eLνL

(eL − eLνT − 2eT ν2
L)

, [C]23 =
eT (eLνT + eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

, (4)

[C]44 = gT , [C]55 = gL , (5)

with [C]22 = [C]33, [C]12 = [C]13 = [C]21 = [C]31, [C]23 = [C]32 and [C]55 = [C]66 and

where (1) eL and eT are the longitudinal and transversal Young moduli, (2) gL and gT are the

longitudinal and transversal shear moduli and (3) νL and νT are the longitudinal and transversal

Poisson coefficients such that gT = eT /2(1 + νT ). For a given effective elasticity matrix [C], the
displacement field in the solid layer and the pressure fields in the two fluids are calculated using the

fast and efficient hybrid solver presented in [1]. For a given mean elasticity matrix [C], this solver
allows the displacement field u in Ω and the pressure fields p1 and p2 in Ω1 and Ω2 respectively,

to be calculated. Then, the velocity vvelo of the first arriving signal is deduced. Consequently, it is

possible to construct a mapping gvelo such that

vmod = gvelo([C]) . (6)

4 STOCHASTIC SIMPLIFIED MODEL

It is assumed that uncertainties are only related to the components cijkh of the effective elasticity

tensor. The introduced probabilistic model is presented in [2]. The construction of the probabilistic
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model consists in substituting [C] by a randommatrix [C] for which the probability density function
is constructed using the information theory (see [6, 7]) with the available information defined as

follows: (1) the random matrix [C] is a second-order random variable with values in the set  +(!)
of all the (6 × 6) real symmetric positive-definite matrices; (2) the mean value of random matrix

[C] is the mean elasticity matrix [C]; (3) the norm of the inverse matrix of [C] is a second-order
random variable. It has been shown in [8, 9] that the random matrix [C] can then be written as

[C] = [L]T [G][L] , (7)

in which the (6 × 6) upper triangular matrix [L] corresponds to the Cholesky factorization [C] =
[L]T [L] and where the probability density function p[G] of random matrix [G] is written as

p[G]([G]) = " +(!)([G]) c (det[G])b exp{−atr[G]} , (8)

where a = 7/(2δ2), b = a(1−δ2), " +(!)([G]) is equal to 1 if [G] belongs to  +(!) and is equal to
zero if [G] does not belong to  +(!), tr[G] is the trace of matrix [G] and where positive constant c
is such that

c =
(2π)−15/2a6 a

∏6
j=1 Γ(αj)

,

in which αj = 7/(2δ2) + (1 − j)/2 and where Γ is the Gamma function. The parameter δ allows
the dispersion of the random matrix [C] to be controlled. Thus, the parameters of the probabilistic
model of uncertainties for the elasticity matrix are the components of [C] and the coefficient δ. The
velocity of the FAS constructed using this stochastic simplified model is a random variable denoted

by V mod that corresponds to the random experimental velocity V exp introduced in Section 2 and

we have (see Eq. (6) )

V mod = gvelo([C]) . (9)

5 OPTIMIZATION PROBLEM FOR THE IDENTIFICATION

The stochastic simplified model parameters that have to be identified are the coefficients eL, νL,

gL, eT and νT relative to [C], the mass density ρ and the coefficient δ. Let a be the vector such that

a = (ρ, eL, νL, gL, eT , νT ). The identification problem consists in finding vector a and coefficient

δ such that the stochastic model can represent the experimental database in a statistical sense. The
optimal values (aopt, δopt) for (a, δ) is given by solving the following optimization problem

(a
opt, δopt) = arg min

(a,δ)
F cost(a, δ) , (10)

in which F cost(a, δ) is the cost function which has to be defined. The cost function F cost adapted

to the optimization problem is written as

F cost(a, δ) =
(vexp − vmod(a, δ))2

(vexp)2
+

(∆exp − ∆mod(a, δ))2

(∆exp)2
,

in which

∆mod =

√

E{(V mod(a, δ)2}
(vmod(a, δ))2

− 1 .

The optimization problem defined by Eq. (10) is solved by the simplex algorithm. For

each iteration of the simplex algorithm, the cost function is calculated in solving the stochastic

equations with the Monte Carlo numerical simulation method (see for instance [1, 2]).
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6 EXPERIMENTAL VALIDATION OF THE STOCHASTIC SIMPLIFIED MODEL

This section is devoted to the experimental validation of the stochastic simplified model. The

stochastic simplified model must be able to simulate the experimental database in a statistical

sense. The experimental validation is performed with the in vivo experimental database presented
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Figure 4. Graph of the realizations V exp(θ̂1), . . . V
exp(θ̂N)

in Section 2 and is made up of N = 2747 mesurements V exp(θ̂1), . . . , V
exp(θ̂N ) plotted in Fig. 4.

The identification of the vector a = (ρ, eL, νL, gL, eT , νT ) and the coefficient δ is carried out using
the method presented in Section 5 with h1 = 10−2m, h = 4 × 10−3m, h2 = 10−2m, ρ1 = ρ2 =
1000 kg.m−3 and c1 = c2 = 1500 m.s−1 The solution aopt =

(

ρopt, eopt
L , νopt

L , gopt
L , eopt

T , νopt
T

)

and

δopt are such that ρopt = 1598.8 kg.m−3, eopt
L = 17.717 GPa, νopt

L = 0.3816, gopt
L = 4.7950 GPa,

eopt
T = 9.8254 GPa, νopt

T = 0.4495 and δopt = 0.1029. For a = aopt and δ = δopt, the realizations

V mod(θ1), . . . , V
mod(θN) of random velocity V mod are constructed with the stochastic simplified

model and then, the probability density function v 7→ pV mod(v) of V mod is estimated. Figure 5
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Figure 5. Graphs of v 7→ log(pV exp(v)) and v 7→ log(pV exp(v; aopt, δopt)).

xyz - 6



compares the graphs of the probability density function v 7→ pV exp(v) of the random variable V exp

estimated with the N = 2747 experimental realizations V exp(θ̂1), . . . , V
exp(θ̂N) and the graph of

v 7→ pV mod(v) in logarithm scale. This figure shows that the stochastic simplified model is able to

predict in a statistical sense the velocity of the first arriving signal in a good accordance with the

experimental tests.

7 CONCLUSION

A simplified elastoacoustic model has been developed to simulate the ultrasonic wave propagation

in a complex biomechanical system made up of multilayered media. In order to improve the

simplified model, the uncertainties related to the solid layer have been taken into account using a

probabilistic approach. A method has been presented to identify the parameters of the stochastic

simplifiedmodel. The capability of the proposed stochastic simplified model to predict the velocity

of the first arriving signal in the statistical sense has been demonstrated using a large experimental

in vivo database.
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