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ABSTRACT

In this work, an energy-based automatic sub-structuring method is proposed. The established en-
ergy formulation is applicable in the low- and medium-frequency ranges when using a stochastic
vibroacoustic model. The idea evolved from recent work which aimed to take into account sys-
tem parameters and model uncertainties in vibroacoustic modeling by applying a probabilistic
approach of uncertainties. Numerical and experimental results showed statistical properties of the
frequency response functions in low- and medium-frequency ranges in a stochastic context. Thus,
although inspired from the Statistical Energy Analysis (SEA) method, the used energy formulation
is a quite different method and it has the advantage of being applicable in low-frequency ranges
where the SEA and its derivations fail to apply. The stochastic model is constructed using the
non-parametric probabilistic approach. A simplified model is constructed based on the proposed
energy formulation. This model is robust regarding model and system parameters uncertainties
as well as from the conception point of view thanks to a less dispersed response which is inde-
pendent of the direction of excitation. Based on this model the automatic substructuring method
is developed using the theory of information. The method was verified numerically on a vehicle
structure.

1 INTRODUCTION

Vibroacoustic design of automotive vehicles is becoming more and more complex due to the in-
creasing demand of acoustic comfort. Thus, car makers are forced to increase the quality of the
design process while keeping the cost within affordable limits. However, in the current design
process, the complexity of an automotive vehicle structure as well as the numerous noise sources
leads to study a large number of Frequency Response Functions (FRF), making the analysis a very
exhausting process. Moreover, the existence of modeling uncertainties (data and model errors) as
well as product uncertainties increases the difficulty of analyses. In a context of development costs
reduction, the need for more robust and simplified models becomes a necessity.
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In the past years statistical methods such as the Statistical Energy Analysis (SEA) [1] and its
derivations were adopted as a powerful tool for the analysis of vibroacoustic behavior of complex
structures in the high-frequency range. These methods are very efficient, because they synthesize
the dynamical behavior of the structure in a very few, robust quantities such as power exchange or
energies see for example[2][3][4][5][6] [7][8][9][10]. Unfortunately, they do not apply in the low-
and medium-frequency ranges, due to some specific assumptions or pre-requisites such as space
and frequency averaging.
Recently developed probabilistic vibroacoustic models now allow investigating the ensemble sta-
tistical properties of the dynamic responses of an industrial product, including design diversity as
well as manufacturing uncertainties.

In the present work, a sub-structuring method based on an energy approach is presented.
The energy method is based on a probabilistic computational model. The use of the probabilistic
model is essential as it allows a statistical analysis without having to average over space or fre-
quency. This permits the application of the energy approach in the low- and medium- frequency
ranges. In this method the vibroacoustic system usually represented by, input forces, output veloc-
ities related using Frequency Response Functions (FRF), is represented using input and response
power spectral density functions related using a dimensionless FRF. These dimensionless FRF are
independent of the excitation and observation directions. It is shown that the vibroacoutic system,
observed using these dimensionless FRF, has a zone behavior. This means that neighbor points
lying in one zone have similar behavior regarding an input excitation to the system. Thus, a sim-
plified model is constructed leading to an automatic sub-structuring method of the vibroacoutic
system of a complex structure.
In the first part of the paper, the probabilistic computational model is presented. The energy method
is presented in the second part. In the third part, the simplified model is presented. In the fourth
part, the numerical validation is given. finally a conclusion is given in the last part of the paper.

2 CONSTRUCTION OF THE PROBABILISTIC VIBROACOUSTIC COMPUTATIONAL
MODEL

The vibroacoustic problem to be solved consists in a three dimensional damped elastic structure
without rigid body displacements and is coupled with an internal damped acoustic cavity. The
mean vibroacoustic system is not show in this paper the reader is referred to [11] for the general
formulation and to [12] and [13]for the formulation devoted to automotive structures. For all
angular frequencyω belonging to the frequency band of analysis withB = [ωmin, ωmax] with
ωmin > 0, the reduced mean computational vibroacoustic model [11] is written as

us(ω) = Ψqs(ω) , pf(ω) = Φqf (ω) , (1)

in which theC
n-vectorqs(ω) of the generalized structural coordinates associated with then first

structural elastic modes constituting the matrixΨ and theC
m-vectorqf (ω) of the generalized

acoustical coordinates associated with them first acoustic modes constituting the matrixΦ which
includes the constant pressure mode at zero eigenfrequency, verify the matrix equation

[

A
s(ω) C

ω2
C
T

A
f (ω)

] [

qs(ω)
qf(ω)

]

=

[

f
s(ω)

f
f (ω)

]

. (2)

In Eq. (1),us(ω) andpf (ω) are theCns-vector of the structural DOF and theCnf -vector of the
acoustical DOF. In Eq. (2),As(ω) andA

f(ω) are the generalized dynamical stiffness matrices for
the structure and for the acoustic cavity which are written as

A
s(ω) = −ω2

M
s
n + iωs

n + K
s
n , (3)

A
f(ω) = −ω2

M
f
m + iωf

m + K
f
m . (4)
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In Eq. (3),Ms
n,

s
n andK

s
n are positive-definite symmetric real(n×n) matrices corresponding to the

generalized mass, damping and stiffness matrices. In Eq. (4) devoted to the acoustic cavity,M
f
m is

a positive-definite symmetric real(m×m) matrix corresponding to the generalized ”mass” matrix
and,fm andK

f
m are the positive symmetric real(m×m) matrices corresponding to the generalized

”damping” and ”stiffness” matrices. Finally, in Eq. (2),C is the real (n×m) matrix corresponding
to the generalized vibroacoustic coupling matrix and wheref

s(ω) andf
f (ω) are the generalized

structural forces and the generalized acoustical sources applied to the vibroacoustic system.
The non-parametric probabilistic approach [14][15][16] is used to construct the statistical

computational vibroacoustic model in order to take into account both parameter uncertainties and
model uncertainties. the implementation of this method to an automotive vehicle structure can be
found in reference [12] In such an approach, the matrices of the reduced mean computational vi-
broacoustic model are replaced by random matrices whose mean values are equal, by construction,
to the matrices of the reduced mean computational vibroacoustic model. Consequently, Eqs. (1)
and (2) are replaced by the following random equations

Us(ω) = ΨQs(ω) , Pf(ω) = ΦQf (ω) , (5)

in which theC
n-valued random vectorQs(ω) and theCm-valued random vectorQf (ω) verify the

random matrix equation
[

As(ω) C

ω2CT Af(ω)

] [

Qs(ω)
Qf (ω)

]

=

[

f
s(ω)

T f
f(ω)

]

, (6)

in which the random matricesAs(ω) andAf(ω) are written as

As(ω) = −ω2Ms
n + iωDs

n +Ks
n , (7)

Af(ω) = −ω2Mf
m + iωDf

m +Kf
m . (8)

In Eq. (7),Ms
n,D

s
n andKs

n are random matrices with values in the set of all the positive-definite
symmetric real(n × n) matrices. In Eq. (8),Ms

n is a random matrix with values in the set of
all the positive-definite symmetric real(m ×m) matrices and,Df

m andKf
m are random matrices

with values in the set of all the positive symmetric real(m × m) matrices. Finally, in Eq. (6),
C is a random matrix with values in the set of all the real(n × m) matrices. The probability
distributions of these seven random matrices are completely defined in the non-parametric proba-
bilistic approach and a generator of independent realizations of these random matrices is explicitly
known(see [14][15][16]). It should be noted that, in this random matrix theory, the statistical fluc-
tuation level of each random matrix is controlled by a dispersion parameterδ > 0. If δ = 0
(deterministic case) the random matrix is equal to its mean value. The larger the value ofδ, the
larger is the uncertainty level.

3 PRESENTATION OF THE ENERGY METHOD

The Random equations are solved using the Monte Carlo method and the random response of each
realization is obtained on the physical degrees of freedom. Letµ = ns + nf be the total number
of DOF. One will only use the subset{j1, . . . , jα, . . . , jν} of theν observed and excited DOF of
the vibroacoustic system. In general, one hasν ≪ µ. Note that the excited DOF are the same as
the observed DOF. The excited DOF correspond to external forces applied to the structure and/or
to external acoustic sources in the acoustic cavity. Forα fixed in {1, . . . , ν}, let t �→ fα(t) be
the function fromR into R

ν representing the excitation vector relative to the DOFjα which is
written asfα(t) = {0, . . . , fα

α (t), . . . , 0} and which is such thatfα(−t) = fα(t). It is assumed
that fα is square integrable onR. Let fα(ω) =

∫

R e−iωtfα(t) dt be its Fourier transform which is
real function such thatfα(−ω) = fα(ω). Consequently, we havefα(ω) = {0, . . . , fα

α (ω), . . . , 0}.
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finally it will be assumed that the support ofω �→ f α(ω) is the bounded intervalB ∪ B in which
B = [−ωmax,−ωmin]. Let Z(ω) be the(µ× µ) complex random matrix such that

Z(ω) =

[

Ψ 0
0 Φ

] [

As(ω) C

ω2CT Af(ω)

]

−1 [

ΨT 0
0 ΦT

]

, (9)

which exists for allω in B. Let Z(ω) be the(ν × ν) complex random matrix such that, for allα
andβ in {1, . . . , ν}, one has

Zαβ(ω) = Zjαjβ . (10)

For allω fixed inB, letT(ω) be the(ν × ν) complex random matrix defined by

T(ω) = iωZ(ω) . (11)

The functionω �→ T(ω) is called the matrix-valued random FRF related to the excited and the
observed DOF. It should be noted thatT(−ω) = T(ω). Let Vα(ω) be theν complex random
vector of the velocity responses for the observed DOF{j1, . . . , jν}. One then has

Vα(ω) = T(ω)fα(ω) . (12)

It can be shown that the system represented by equation 12 can be represented in terms of input
and output power density functions as follows,

π
R(ω) = E(ω)πin(ω) . (13)

whereπin andπR(ω) are the input and response power density functions vectors of the vibroa-
coustic system respectively. The random input power density vector of the vibroacoustic system
induced by the excitationfα is defined by

πin = (π1

in, . . . , π
α
in, . . . , π

ν
in) (14)

it can be shown thatπin(ω) can be written as

πin(ω) = 2Y(ω)sf(ω) . (15)

wheresf(ω) is the input forces spectral density vector defined bysf = (sf
1
(ω), . . . , sfν(ω)) where

one can write,
sfα(ω) = (1/2π)fα

α (ω)
2 , (16)

andY(ω) is the diagonal mobility matrix defined by,

Yαβ(ω) =

{

Re(Tαα(ω)) if α = β
0 if α �= β

. (17)

Similarly the Random spectral density functionsv of the velocity responsesV1, . . . ,Vν is such
that

sv(ω) = (sv
1
(ω), . . . , svν(ω)) . (18)

wheresvα(ω) =
1

π
‖ Vα(ω) ‖2 is the spectral density function of the response velocityVα. sv(ω)

can be related to the power density function using the equation,

sv(ω) = Y(ω)πR(ω) , (19)

Also in Eq. (13)E(ω) is the dimensionless FRF which can be defined as a normalisation of the
usual FRF with respect to the input and output mobilities of the system [17] such that,

E(ω) = Y(ω)−1H(ω)Y(ω)−1 . (20)
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whereH(ω) is the term to term square of the FRF such thatHβα(ω) = |Tβα(ω)|
2.

The spectral density function of the output velocity can then be related to the spectral density
function of the input forces in terms of mobility matrix and dimensionless FRF and using the
following equation

sv(ω) = 2Y(ω)E(ω)Y(ω) sf(ω) . (21)

it should be noted that the mobility matrix is a diagonal matrix due to the assumption of uncorre-
lated forces. This hypothesis might lead to loss of information in case of correlated forces. Thus,
in order to avoid this loss of information the system is projected on the local coordinates system
defined by the mean local mobilities. In these local coordinates the mobility matrix is diagonal by
definition. To calculate the local coordinates system letTp(ω) be the random matrix with values in
the set of all the symmetric complex(3 × 3) matrices and corresponding to the translational DOF
of the random FRF at a given pointp of the structure (note that the rotational DOF are not consid-
ered here). One then introduces the mean valueE{Tp(ω)} of the random matrixTp(ω) in which
E denotes the mathematical expectation. Letp(ω) be the symmetric real(3 × 3) matrix such that
p(ω) = ℜe{E{Tp(ω)}}. The representation of the random matrixTp(ω) in the local coordinates
attached to the given point and defined by the principal direction of the mean local mobility, is the
random matrix denoted byTloc

p (ω) and is written as

Tloc
p (ω) = Xp(ω)

TTp(ω)Xp(ω) . (22)

One can now consider the Eq. (20) in the local coordinates for all the local DOF of the structure at
pointsp and all the the global DOF of the acoustic cavity all together which can then be rewritten

Eloc(ω) = Yloc(ω)−1Hloc(ω)Yloc(ω)−1 . (23)

All other equations of the energy method still hold true in the local coordinates. Thus, these
equations are going to be used in what follows with a subscript or a superscriptloc to refer to
values in these coordinates.

4 CONSTRUCTION OF THE SIMPLIFIED MODEL AND SUB-STRUCTURING METHOD

The construction of the simplified model is based on the mean values of the energy method para-
meters. The mean value of a parameter is calculated using statistical averaging which is defined
as the mathematical expectation of this parameter. In what follows an underlined parameter repre-
sents a mean value. Taking the mathematical expectation of Eq. (21) in the local coordinates leads
us to the calculation of what we call the reference mean value of the spectral density function of
the output velocity calculated without any approximation,

svloc(ω)
ref = 2E{Yloc(ω)Eloc(ω)Yloc(ω)sfloc(ω)} . (24)

Now, letJ andO be the set of excitation and observation DOF respectively such thatJ = {kq, q =
1, ..., µ} andO = {jp, p = 1, ..., ν}, whereµ andν are the number of excitation and number of
observation DOF respectively as illustrated in Fig.(1).
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Figure 1. Schematic presentation of the sets of excitation and observation points.

Assuming that the excitation and observation DOFJ andO are sufficiently distant from
each, leteOJ be the real number such that for eachω in the frequency bandB, One can assume
that,

(Eloc(ω))jpkq ≃ eOJ(ω) . (25)

In order that this last assumption be verified, the quantityeOJ(ω) is computed using the reference
mean value of the output velocity such that,

eOJ =

∑ν

p=1
(E{svloc(ω)})jp

E{πloc
in }

∑ν

p=1
(Yloc(ω))jpjp

, (26)

The associated error due to this hypothesis can then be evaluated by definingεE(ω)jpkq such that

εE(ω)jpkq = |dB(ω)jpkq − dB(ω)appjpkq
| , (27)

dB(ω)jpkq = 10 log
10
Eloc(ω)jpkq , dB(ω)appjpkq

= 10 log
10

EOJ(ω)
app
jpkq

, (28)

whereEOJ(ω)
app
jpkq

= eOJ(ω) and which measures the accuracy of the calculation ofEOJ(ω)
app
jpkq

.

5 NUMERICAL VALIDATION

The energy density field approach was applied to a numerical model of a production vehicle. The
finite element models of the numerical model of the structure and its internal cavity are shown in
fig. 2

Figure 2. Finite element mesh of the structure (a) and of the acoustic cavity (b)
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The model consists of 1 042 851 DOF for the structure, 9157 DOF for the acoustic cavity.
The frequency band of analysis was chosen to be B= [50,350] Hz. Only translational DOF were
considered for the structure. In the frequency band of analysis the structure has 1958 modes
including the 6 rigid body modes and the acoustic cavity has 160 modes including the zero pressure
mode. Forces were applied to twenty eight points of the structure including the motor support and
the front suspension while twelve acoustic sources were placed in the acoustic cavity for a total of
96 DOF. Observation points were assigned to each excitation point in order to obtain a square FRF
matrix. Six hundred realizations are necessary for the convergence of the Monte Carlo method
for both the structure and the acoustic cavity. fig 3 shows the mean values of all the Monte Carlo
realizations of the usual FRF and the dimensionless FRF corresponding to an excitation in the three
local directions at one point of the structure and observation at a DOF on another point.
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Figure 3: Mean values of the usual FRF (a) and dimensionless FRF (b). Excitation: at 3 structural
DOF of the right engine mount, observation: maximum mobility direction on the roof.

It can be seen that the dimensionless FRF show less fluctuations versus frequency than
the usual FRF. Moreover, when exciting in the three local DOF the resulting dimensionless FRF
have very close values and tend to converge towards an asymptotic value, which is not the case
for the usual FRF. This shows that, above a given frequency, these dimensionless FRF are slightly
dependent of the direction of excitation. Reciprocally, they are also nearly independent of the
observation direction. This property could lead to a significant reduction of the number of FRF
to be treated for such a complex model. In addition, the dimensionless FRF have been shown
to be much less sensitive to uncertainties than the usual FRF as shown in Fig.4. The proposed
formulation is thus more robust regarding the model and parameters uncertainties.
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Figure 4: Confidence regions of the dimensional FRF (a) and dimensionless FRF (b). Excitation:
right engine mount in its maximum mobility direction, observation: single point on the roof in its
maximum mobility direction.
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one may say that the vibrational FRF between two points may be separated into local ef-
fects described by the diagonal mobility matrices, and a global robust effect characterized by the
dimensionless FRF matrix. Similar results are observed for acoustic and vibroacoustic FRF. Figs. 5
From Fig. 5, it can be seen that, at low frequency the error betweenEOJ(ω) andEloc(ω) is high
at most of the matrix elements. At higher frequencies the error decreases away from the diagonal
terms, that is to say when the excitation and observation points are far enough from each others
confirming the starting hypothesis used for the construction of the simplified model. Such a be-
havior seems to hold true for frequencies higher than 170Hz. Starting at this frequency each block
on the diagonal of the matrix corresponds to the DOF’s located on the same part of the structure.
We can then conclude that the positive real valueeOJ (ω) can be used to approximateEloc(ω)jpkq
see Eq. (25) between zones of the structure for which the corresponding error function is small.
The scalar valueeOJ(ω) is then calculated for DOF located in each of these zones corresponding
to functional parts. the number of DOF’s is increased gradually and the error function is estimated
until the zone limits are obtained.
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Figure 5. Color plots ofεE(ω) at 70 Hz (a), 170 Hz (b), 270 Hz (c) and 350 Hz (d).

6 CONCLUSION

In this paper, an automatic sub-structuring method based on an energy approach has been pre-
sented. The energy method is derived based on a probabilistic computational model constructed
using the non parametric probabilistic approach of model and data uncertainties. In the energy
method the random vibroacoustic system is represented using input and response power density
functions related using a dimensionless FRF. This dimensionless FRF is independent of the exci-
tation or observation directions and less dispersed than the usual FRF. It has been seen that these
dimensionless FRF behaves similarly for neighbor DOF’s lying in the same zone. A simplified
model was constructed and a formula for obtaining a positive scalar considered as an indicator for
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sub-structuring was obtained. Using this sub-structuring indicator and the error induced by the
model simplification the boundaries of each zone are obtained.
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