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ABSTRACT. The stochastic dynamics of a drill-string is analyzed, where the uncertainty is in the bit-

rock nonlinear interaction model. The Maximum Entropy Principle is used to construct a probabilistic

model for the nonlinear operator related to the bit-rock interaction model. A numerical model is

developed using the Timoshenko beam theory and it is discretized by means of the Finite Element

Method. The nonlinear dynamics analyzed considers the main efforts that the column is subjected to

as, for instance, imposed rotation at the top, fluid-structure interaction, impact between the column

and the borehole, and finite strains (what couples axial, torsional and lateral vibrations).

KEYWORDS: probabilistic model, local nonlinearities, nonlinear stochastic dynamics, drill-string

dynamics, bit-rock stochastic model.

1 INTRODUCTION

Drill-strings are slender structures used to dig into the rock in search of oil. The drill-string dy-

namics must be controlled to avoid failures [8], see a general vibration perspective of the oil and gas

drilling process in [16]. We consider a vertical well for which the length of the column may reach

some kilometers. The drill-string is composed by thin tubes called drill-pipes and some thicker tubes

called drill-collars. The thicker tubes are in the bottom region which is known as the Bottom-Hole-

Assembly (BHA). The forces taking into account are: the motor torque (as a constant rotation speed

at the top); a constant supporting force; the torque and force at the bit; the weight of the column;

the fluid forces; the impact and rubbing between the column and the borehole; the forces due to the

stabilizer; plus the elastic and kinetic forces due to the deformation and to the motion of the structure.

In the literature, the nonlinear dynamics of a drill-string is modeled in several different ways,

e.g.[2, 18, 7]. These models are able to quantify some effects that occur in a drilling operation, as the

stick-slip oscillations, for instance, but they cannot correctly predict the dynamic response of a real

system. This is explained, first, because the above models are too simple compared to the real system

and, second, because the uncertainties are not taken into account.

Moreover, a fluid-structure interaction that takes into account the drilling fluid that flows inside

and outside the column is not considered in any of the above mentioned works. This kind of fluid-

structure interaction model was proposed in [10] for a plane problem in another context, and it was

extended for our problem [11]. To model the column, the Timoshenko beam model is employed

and the Finite Element Method is used to discretize the system. Besides, it is considered: finite

strain with no simplifications (higher order terms are not neglected); quadratic terms derived from the

kinetic energy; impact and rubbing between the column and the borehole; stabilizers; fluid-structure

interaction; and a bit-rock interaction that models how the bit penetrates the rock.

A stochastic bit-rock interaction is analyzed because it is one of the most important sources of

uncertainties of this problem. The bit-rock interaction model chosen was the one developed in [18]

because it describes well the penetration of the bit into the rock (so we can analyze the rate-of-

penetration-ROP).

The nonparametric probabilistic approach [13, 14] is used to model the uncertainties in the bit-rock

interaction which is represented by a nonlinear operator. Note that a new strategy has to be developed



to take into account uncertainties in a local nonlinear operator. The probability density function is

derived using the Maximum Entropy Principle [12, 5, 6]. Two probabilistic models are analyzed:

one that allows only change in the parameters (called non-coupled model) and another that permits

changes in the model (the usual nonparametric model). Then, by perturbing the bit-rock operator, the

robustness of the models used is analyzed.

The paper is organized as following. In Section 2 the mean model is presented and in Section 3 the

probabilistic model of the bit-rock interaction model is developed. The numerical results are shown

in Section 4 and the concluding remarks are made in Section 5.

2 MEAN MODEL

In this Section the equations used to model the problem are presented. The Total Lagrangian

(TL) formulation is used, six degrees of freedom are considered in the points of discretization (three

translations, u, v and w, and three rotations θx, θy and θz), the stress tensor is the second Piola-Kirchhoff

tensor and finite strains are considered (Green-Lagrange strain tensor). The main hypothesis are the

following: (1) the drill-string is axisymmetric about x-axis; (2) the following strain components are

neglected: eyy ∼ ezz ∼ γyz ∼ γzy ∼ 0; (3) the rotations θy and θz are small, i.e, sin(θy) ∼ θy, sin(θz) ∼ θz
and cos(θy) ∼ cos(θz) ∼ 1; (4) the stress-strain relationship is linear; and (5) the rotation θx is finite

(the rotational speed θ̇x, of course, is not constant over the element).

The strategy used in this work is, in some respects, similar to the one used in [7], but there are

several important additional features, such as (1) impact and rubbing between the column and the

borehole; (2) shear (Timoshenko beam model); (3) finite θx; (4) fluid-structure interaction; (5) all

the terms of the strain energy are used in the analysis; (5) a bit-rock interaction model that allows

the simulation of the bit penetration is used; and (6) constant force at the top (supporting force or

weight-on-hook).

To derive the dynamic equations, the extended Hamilton Principle is used. The first variation of Π

must vanish

δΠ =

∫ t2

t1

(δU − δT − δW)dt = 0 . (1)

where U is the potential strain energy, T is the kinetic energy and W is the work done by the noncon-

servative forces and by any force not accounted for in the potential energy.

General equations. In the discretization by means of the Finite Element Method, a two-node

approximation with six degrees of freedom per node is chosen. The nodal displacement is written as

ue = Nuue, ve = Nvue, we = Nwue, θxe = Nθxue, θye
= Nθyue, θze = Nθzue. Where N are the shape

functions (see [11]); ue, ve and we are the displacements in x, y and z directions; θxe, θye and θze are the

rotations about x, y and z axis. The element coordinate is ξ = x/le, and

ue =
(

u1 v1 θz1 w1 θy1
θx1 u2 v2 θz2 w2 θy2

θx2

)T
, (2)

where (·)T means transpose. The dynamics is computed from a prestressed configuration, uS =

[K]−1(fg + fc + f f ). After assemblage, the final discretized system is written as

([M] + [M f ]) ¨̄u + ([C] + [C f ]) ˙̄u + ([K] + [K f ] + [Kg(uS )])ū = fNL(t, ū, ˙̄u, ¨̄u) , (3)

where ū = u − uS . u is the R
m-valued response for which m is the number of degrees of freedom of

the system. [M], [C] and [K] are the usual mass, damping and stiffness matrices; [M f ], [C f ], [K f ]

are the added fluid mass, damping and stiffness matrices, and f f is the fluid force vector; fg is the

gravity force; fc is a concentrated reaction force at the bit; [Kg(uS )] is the geometric stiffness matrix

and fNL(t,u, u̇, ü) is the nonlinear force vector that is decomposed in

fNL(t,u, u̇, ü) = fke(ü, u̇,u) + fse(u) + fip(u) + fbr(u̇) + g(t) . (4)



where fke is composed by the quadratic terms of the kinetic energy; fse is composed by the quadratic

and higher order terms of the strain energy; fip are the forces due to the impact and rubbing between

the column and the borehole; fbr are the forces due to the bit-rock interactions, see section ; and g

is the force that corresponds to the Dirichlet boundary condition (rotation imposed at the top). For a

detailed explanation of each term of the nonlinear force see [11].

Fluid-structure interaction. The drilling fluid (mud) is responsible to transport the cuttings (drilled

solids) from the bottom to the top to avoid clogging of the hole. It also plays an important role in

cooling and stabilizing the system [1]. The rheological properties of the mud are complexes, see [3]

for instance. There is no doubt that the drilling fluid influences the dynamics of a drill-string, but

to solve the complete problem would be too expensive computationally. There are some works that

study only the drilling fluid flow, as, for example, [4]. In this work a linear fluid-structure coupling

model similar to [10] is used. In this simplified model there are the following hypotheses: the inside

fluid is inviscid, while the outside flow is viscous, the flow induced by the rotation speed about x-axis

is not considered in the analysis and the pressure varies linearly with x.

For short, the element equations are presented. These equations are an extension and an adaptation

of the model developed in [10].

[M f ]
(e) =

∫ 1

0

(

M f + χρ f Ao

)

(NT
wNw + NT

v Nv)ledξ ,

[K f ]
(e) =

∫ 1

0

(

−M f U
2
i − Ai pi + Ao po − χρ f AoU2

o

)

(N′
T
wN′w + N′

T
v N′v)

1

le

dξ+

+

∫ 1

0

(

−Ai

∂pi

∂x
+ Ao

∂po

∂x

)

(NT
θy

Nθy + NT
θz

Nθz)ledξ ,

[C f ]
(e) =

∫ 1

0

(

−2M f Ui + 2χρ f AoUo

)

(NT
θy

Nθy + NT
θz

Nθz)ledξ+

+

∫ 1

0

(

1

2
C fρ f DoUo + k

)

(NT
wNw + NT

v Nv)ledξ ,

f
(e)

f
=

∫ 1

0

(

M f g − Ai

∂pi

∂x
−

1

2
C fρ f DoU2

o

)

NT
u ledξ .

(5)

in which,

M f is the fluid mass per unit length, ρ f is the density of the fluid, χ =
(Dch/Do)2 + 1

(Dch/Do)2 − 1
(> 1), Dch is

the borehole (channel) diameter, Di,Do are the inside and outside diameters of the column, Ui,Uo are

the inlet and outlet flow velocities, pi, po are the pressures inside and outside the drill-string, Ai, Ao

are the inside and outside cross sectional area of the column and C f , k are the fluid viscous damping

coefficients.

It is assumed that the inner and the outer pressures (pi and po) vary linearly with x

pi =
(

ρ f g
)

x + pcte , (6)

po =

(

ρ f g +
F f o

Ao

)

x , (7)



where pcte is a constant pressure and F f o is the friction force due to the external flow given by

F f o =
1

2
C fρ f

D2
oU2

o

Dh

. (8)

In the above equation, Dh is the hydraulic diameter (=4Ach/S tot) and S tot is the total wetted area

per unit length (πDch + πDo). Note that the reference pressure is po|x=0 = 0. Another assumption is

that there is no head loss when the fluid passes from the drill-pipe to the drill-collar (and vice-versa).

The head loss due to the change in velocity of the fluid at the bottom (it was going down, then it goes

up) is given by

h =
1

2g
(Ui − Uo)2 . (9)

Note that if the geometry and the fluid characteristics are given, only the inlet flow at x = 0 can

be controlled because the fluid speed is calculated using the continuity equation and the pressures are

calculated using the Bernoulli equation.

Examining Eq. (5), it can be seen that the mass matrix due to the fluid is the usual added mass

that, in our case, represents a significative part of the total mass (in norm). For example, using

representative values (used in our simulations), the added mass is around 50%, what changes the

natural frequencies in about 20%.

The stiffness matrix due to the fluid depends on the speed of the inside and outside flow, on the

pressure and on the pressure derivatives. Analyzing the signs in the equation (Eq. 5) it can be seen

see that the outsize pressure tends to stabilize the system while the inside pressure and the flow tends

to destabilize the system. The term (−piAi + poA0) plays a major role on the stiffness of the system

because, even though pi is close to po, in the drill collar region (in the bottom) A0 is around ten times

Ai what turns the system stiffer at the bottom.

The damping matrix due to the fluid depends on the flow velocity as well as in the viscous pa-

rameter of the fluid, which are not well established values. There are uncertainties to determine the

damping characteristics and a stochastic model should be developed to the damping, but in this work a

detailed analysis will not be addressed. Finally, the force vector (f f ) represents the buoyancy induced

by the fluid and it is the only force in the axial direction (x-direction).

Bit-rock interaction. The model used in this work is the one developed by [18], which can be

written as

fxbit = −
u̇bit

a2Z(θ̇bit)2
+

a3θ̇bit

a2Z(θ̇bit)
−

a1

a2

txbit = −
u̇bita4Z(θ̇bit)

2

θ̇bit

− a5Z(θ̇bit)

(10)

where fxbit is the axial force (also called weight-on-bit), txbit is the torque about x-axis and a1, . . . , a5

are positive constants that depend on the bit and rock characteristics as well as on the weight-on-bit.

Note that u̇bit is the rate-of-penetration (ROP). Z(θ̇bit) is the regularization function so that when θ̇bit

approaches to zero txbit and u̇bit vanish.

Z(θ̇bit) =
θ̇bit

√

(θ̇bit)2 + e2
. (11)

Equation (10) was derived in a stable operation with θ̇bit ∼ 100 RPM and with fxbit ∼ 100 kN. In

this model the bit exerts only an axial force ( fxbit) and a torque (txbit) about x-axis what couples axial

and torsional vibrations.



Reduced model. Usually the final discretized FE system have big matrices (dimension m×m) and

the dynamic analysis may be time consuming, which is the case of the analysis presented. One way

to reduce the system is to project the nonlinear dynamical equation on a subspace Vn ∈ R
m, with

n << m. In this paper, the basis used to generate Vn for the reduction basis is formed by the normal

modes, but, as it will be pointed out later, these normal modes have to properly be chosen (they can

not be taken simply in the order that they appear). The normal modes are obtained from the following

generalized eigenvalue problem,

([K] + [K f ] + [Kg(uS )])φ = ω2([M] + [M f ])φ , (12)

where φi is the i-th normal mode and ωi is the i-th natural frequency. We use the representation

u = [Φ] q, where [Φ] is a (m × n) real matrix composed by n normal modes obtained using the

prestressed configuration. Projecting the equation on the subspace spanned by these normal modes

yields

[Mr] q̈(t) + [Cr] q̇(t) + [Kr] q(t) = [Φ]T fNL(t, ū, ˙̄u, ¨̄u) , (13)

in which

[Mr] = [Φ]T ([M] + [M f ])[Φ], [Cr] = [Φ]T ([C] + [C f ])[Φ]

[Kr] = [Φ]T ([K] + [K f ] + [Kg(uS )])[Φ] (14)

are the reduced matrices.

3 PROBABILISTIC MODEL OF THE BIT-ROCK INTERACTION MODEL

The parametric probabilistic approach allows physical parameter uncertainties to be modeled. It

should be noted that the underlying deterministic model defined by Eq. (10) exhibits parameters (a1,

a2, a3, a4 and a5) which are obtained by an identification process, so it would be difficult to propose a

stochastic model for each one, moreover they are not independent from each other. We then proposed

to use the nonparametric probabilistic approach of uncertainties [13] consisting in globally modeling

the operator of the constitutive equation, Eq. (10), by a random operator.

In the early works, the nonparametric probabilistic approach was applied for linear operators [14].

Recently is was extended to geometrically nonlinear dynamical systems [9], but the type of problem

studied here is completely different. We are dealing with a nonlinear operator that is an interaction

model (bit-rock interaction), therefore it requires a different methodology, and we propose to use the

nonparametric idea.

For convenience Eq. (10) is rewritten in the matrix form as

fbit(ẋ) = −[Ab(ẋ)]ẋ , (15)

in which [Ab(ẋ)] is the positive-definite matrix depict by:

[Ab(ẋ)] =

































(

a1

a2u̇bit

+
1

a2Z(θ̇bit)2
−

a3θ̇bit

a2Z(θ̇bit)u̇bit

)

0

0













a4Z(θ̇bit)
2u̇bit

θ̇2
bit

+
a5Z(θ̇bit)

θ̇bit













































, (16)

and

fbit(ẋ) =

(

fbit

tbit

)

and ẋ =

(

u̇bit

θ̇bit

)

.

To verify the positive-definiteness of [Ab(ẋ)], in our case, we simply check if the diagonal terms

are greater than zero, and this is true for the range of values that we are working with.



The nonparametric probabilistic approach consists, for all deterministic vector ẋ, in modeling the

matrix [Ab(ẋ)] by a random matrix [Ab(ẋ)] with values in the set M+n (R) of all positive-definite sym-

metric (n × n) real matrices, with n = 2. Note that for each instant the matrix [Ab(ẋ)] will be different

because it depends on ẋ that changes with time.

In order to apply the nonparametric probabilistic approach for the operator [Ab(ẋ)], we have to

define the available information and in a second step construct the probability density function of the

random matrix using the Maximum Entropy Principle. The available information is made up of

1. ∀ ẋ, random matrix [Ab(ẋ)] is positive definite almost surely,

2. E{[Ab(ẋ)]} = [Ab(ẋ)] ,

3. E{||[Ab(ẋ)]−1||2
F
} = c1 , |c1| < +∞ ,

in which E{·} is the mathematical expectation, ||·||F denotes the Frobenius norm of the matrix (||[B]||F =

(tr{[B][B]T })1/2) and [Ab(ẋ)] is the matrix of the mean model. Following the methodology of the

nonparametric probabilistic approach, the mean value is written, using the Cholesky decomposition,

as

[Ab(ẋ)] = [Lb(ẋ)]T [Lb(ẋ)] , (17)

and the random matrix [Ab(ẋ)] is defined by

[Ab(ẋ)] = [Lb(ẋ)]T [Gb][Lb(ẋ)] . (18)

In the above equation, [Gb] is a random matrix satisfying the following available information,

1. random matrix [Gb] is positive definite almost surely,

2. E{[Gb]} = [ I ] ,

3. E{||[Gb]−1||2F} = c2 , |c2| < +∞ ,

in which [ I ] is the identity matrix. It should be noted that, in this construction, the random matrix

[Gb] neither depends on ẋ nor on time. Taking into account the available information and applying

the Maximum Entropy Principle yields an explicit expression [14] of the probability density function

p[Gb] which is written as

p[Gb]([Gb]) = 1M+n (R)([Gb])CGb
det([Gb])

(n+1)
(1−δ2)

2δ2 exp

{

−
(n + 1)

2δ2
tr[Gb]

}

, (19)

in which det(·) is the matrix determinant, tr(·) is the matrix trace and δ is the dispersion parameter of

the distribution. The constant of normalization is written as

CGb
=

(2π)−n(n−1)/4
(

n+1
2δ2

)n(n+1)(2δ2)−1

{

∏n
j=1 Γ

(

n+1
2δ2
+

1− j

2

)} , (20)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1e−tdt and the dispersion

parameter δ is given by

δ =

{

1

n
E{||[Gb] − [I]||2F}

}
1
2

. (21)

The random generator of independent realizations of random matrix [Gb], for which the probability

density function is defined by Eq. (19), is given in [14]. Attention with the stochastic solver because

while matrix [Ab(ẋ)] changes with time, random matrix [Gb] is constant in time.



In the deterministic equation, we have

LNL(u(t), u̇(t), ü(t)) = fbr(u̇(t)) , (22)

where LNL represents all the terms in Eq. (3) except the bit forces fbr. The only nonzero components

of fbr are related to the axial and torsional d.o.f. at x = L, which are represented by fbit, Eq. (15). For

the stochastic equation, we have

LNL(U(t),
˙
U(t),

¨
U(t)) = Fbr(

˙
U(t)) , (23)

where U(t) is the random response and Fbr is the random force at the bit for which the only nonzero

components are related to the axial and torsional d.o.f. at x = L. This force is Fbit which is the random

variable related to fbit and is written as Fbit = [Lb(ẋ)]T [Gb][Lb(ẋ)]ẋ. Let

[Gb(s1)], . . . , [Gb(sν)] (24)

be ν independent realizations of random matrix [Gb]. For each realization s j, we have to solve the

deterministic equation

LNL(U(t, s j),
˙
U(t, s j),

¨
U(t, s j)) = Fbr(

˙
U(t, s j)) . (25)

4 NUMERICAL RESULTS

The drill-string was discretized using 56 finite elements. For the dynamics analysis it was used 10

lateral modes, 10 torsional modes, 10 axial modes and also the two rigid body modes of the structure

(axial and torsional), so matrix [Φ] is composed by 32 modes. For the time integration procedure,

a scheme based on the Newmark method has been implemented with a procedure to equilibrate the

system response in each time step. The system parameters used are representative values that are

found in the literature [2, 18, 7], see appendix A.

Fig. 1 shows 50 Monte Carlo simulations and the 95% envelope for the nonparametric model using

δ = 0.01.

10 15 20 25 30 35 40 45

5

10

15

20

Stochastic response, ROP

Time (s)

s
p

e
e

d
 o

f 
th

e
 b

it
 (

m
/h

)

10 15 20 25 30 35 40 45

6

8

10

12

14

16

18

Stochastic response, ROP

Time (s)

s
p

e
e

d
 o

f 
th

e
 b

it
 (

m
/h

)

Deterministic

Mean of the Stoch. Model

95% confidence limits

Figure 1: δ = 0.01. Nonparametric model, rate-of-penetration, ROP. Left: 50 Monte Carlo simula-

tions. Right: 95% envelope.

Fig. 2 shows the 95% envelope of the rotation speed of the bit using δ = 0.01.
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Figure 2: δ = 0.01. Nonparametric model, rotation speed of the bit, 95% envelope.

Note that even for a small dispersion, δ = 0.01, the stochastic response presents a significative

variance. The probability space is richer when the usual nonparametric model is used, i.e., there is

an extra coupling and model uncertainties are taken into account. The dispersion will be increased to

verify the robustness of the bit-interaction model to model uncertainties, Fig. 3.
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Figure 3: δ = 0.1. Nonparametric model, 95% envelope. Left: rate-of-penetration, ROP. Right:

rotation speed of the bit.

Fig. 3 shows that there are some realizations that present negative rate-of-penetration. See Fig. 4,

where 50 Monte Carlo simulations for δ = 0.03 are plotted.
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Figure 4: δ = 0.03. Nonparametric model. 50 Monte Carlo simulations of the ROP.



Note that there are some realizations (the ones in the bottom of Fig. 4) that escape the limits of the

model we are working with because the bit loses contact with the soil. The bit-bounce phenomenon

is not considered in the current model. We may say then that the bit-rock interaction model is not

robust to model uncertainties. Using the nonparametric probabilistic model, a little perturbation in

the operator related to the bit-rock interaction (δ = 0.03) leads to a stochastic response with large

confidence region and there are some dynamic responses that get out of the model’s bound.

5 CONCLUDING REMARKS

The stochastic dynamics of a drill-string was analyzed and a probabilistic model was proposed for

the bit-rock interaction. As the parameters of the bit-rock interaction do not correspond to physical

parameters, it can easily be concluded that it is not really adequate to use the parametric probabilistic

approach to model the uncertainties, therefore the nonparametric probabilistic approach is used. This

corresponds to a completely novel approach to take into account model uncertainties in a nonlinear

constitutive equation. Since the dynamical system is globally nonlinear, an adapted strategy is de-

veloped to implement the stochastic simulation. The results showed that a small uncertainty in the

bit-rock operator yields a very spread response and there are some realizations that get out of the

model’s bound. This means that this bit-rock interaction model is very sensitive to model uncertain-

ties.

The Timoshenko beam model is used and the main forces that affect the dynamics are considered:

motor torque (as a constant rotation speed at the top), supporting force, stabilizers, bit-rock interac-

tion that describes the rate-of-penetration, impact and rubbing between the column and the borehole,

fluid-structure interaction (that flows downwards then goes upwards). Finite deformations were con-

sidered without neglecting the higher order terms and the vibration was computed about a prestressed

configuration.
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A DATA USED IN THE SIMULATION

Ωx = 100 [RPM] (imposed rotational speed about x-axis at x = 0 m), fc = 100 [kN] (initial

reaction force at the bit), Ldp = 1400 [m] (length of the drill pipe), Ldc = 200 [m] (length of the drill

collar), Dodp = .127 [m] (outside diameter of the drill pipe), Dodc = .2286 [m] (outside diameter of the

drill collar), Didp = .095 [m] (inside diameter of the drill pipe), Didc = 0.0762 [m] (inside diameter

of the drill collar), Dch = 0.3 [m] (diameter of the borehole (channel)), xstab = 1400 [m] (location of

the stabilizer), kstab = 17.5 [MN/m] (stiffness of the stabilizer per meter), E = 210 [GPa] (elasticity

modulus of the drill string material), ρ = 7850 [kg/m3] (density of the drill string material), ν = .29

[-] (poisson coefficient of the drill string material), ks = 6/7 [-] (shearing correcting factor), c1 = 0.01

[N.s/m] (friction coefficient for the axial rigid body motion), c2 = 0.01 [N.s/m] (friction coefficient

for the rotation rigid body motion), kip = 1e8 [N/m] (stiffness per meter used for the impacts), µip =

0.0005 [-] (friction coefficient between the string and the borehole), uin = 1.5 [m/s] (flow speed in the

inlet), ρ f = 1200 [kg/m3] (density of the fluid), C f = .0125 [-] (fluid viscous damping coefficient),

k = 0 [-] (fluid viscous damping coefficient), g = 9.81 [m/s2] (gravity acceleration), a1 = 3.429e − 3

[m/s] (constant of the bit-rock interaction model), a2 = 5.672e − 8 [m/(N.s)] (constant of the bit-rock

interaction model), a3 = 1.374e − 4 [m/rd] (constant of the bit-rock interaction model), a4 = 9.537e6

[N.rd] (constant of the bit-rock interaction model), a5 = 1.475e3 [N.m] (constant of the bit-rock

interaction model), e = 2 [rd/s] (regularization parameter). The damping matrix is constructed using

the relationship [C] = α([M] + [M f ]) + β([K] + [K f ] + [Kg(uS )]) with α = .01 and β = .0003.
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