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ABSTRACT A methodology which performs the robust updating of complex uncertain dynamical systems with

respect to modal experimental data in the context of structural dynamics is constructed. Since both model uncer-

tainties and data uncertainties must be considered in the computational model, then the uncertain computational
model is constructed by using the nonparametric probabilistic approach. An extension to the probabilistic case

of the input error methodology for modal analysis introduced by [1] is presented. Such robust updating formulation
leads to solve a mono-objective optimization problem in presence of inequality probabilistic constraints. A numerical

application is presented.

Introduction

The updating of computational models using experimental data is currently a challenge of interest in structural

dynamics. Many updating formulations have been proposed using deterministic computational models (see for
instance [1, 2, 3]. Knowing that deterministic computational models are not sufficient to accurately predict the dy-

namical behaviour of complex structures, the uncertainties have then to be taken into account in the computational
models by using probabilistic models as soon as the probability theory can be used. More recently, the terminol-

ogy of robust updating has been introduced in order to define updating formulations using uncertain computational

models. We then can distinguish robust updating with respect to parameter uncertainties [6, 7] (using a parametric
probabilistic approach) from robust updating with respect to both model uncertainties and parameter uncertainties

[8, 9] (using the non-parametric probabilistic approach [4, 5]). The motivation of this paper is to propose a robust up-

dating methodology with respect to both model uncertainties and parameter uncertainties using modal experimental
data by constructing a formulation based on the input errors. Such a methodology is based on the deterministic up-

dating formulation [1]. This paper proposes to extend such a deterministic updating formulation to the probabilistic
case. The paper is organized as follows. Section 1 is devoted to the description of the available experimental data

(experimental eigenfrequencies and experimental eigenmodes). In Section 2, the deterministic updating method-

ology [1] is summarized. Section 3 deals with the robust updating formulation. In this robust updating context,
there are model uncertainties which are such that the available experimental data can not exactly be reproduced

by any computational model. This context does not allow the strategy of deterministic updating to be effective. The

main idea is thus to implement the nonparametric probabilistic approach in a mean computational model in order to
take into account both model uncertainties and parameter uncertainties. First of all, a modified Craig and Bampton

dynamical substructuring method [10, 11] is used in order to construct a mean reduced matrix equation allowing the
deterministic residue to be calculated. In a second step, the generalized matrices of this mean reduced equation are

replaced by random matrices for which the probability model is explicitly constructed. With such an approach, the

uncertainty level of each random matrix is controlled by a dispersion parameter. We then obtain a random residue
which is defined as a function of the updating parameters which are the updating mean parameters related to the

mean computational model and the dispersion parameters which allow the uncertainty level in the computational



model to be controlled. In a third step, the cost function is defined as the second-order moment of the norm of the

random residue. Difficulties arise from a conceptual point of view. A straightforward generalization of the determin-
istic optimization problem which would consist in optimizing the cost function with respect to the admissible set of

the updating parameters would yield a deterministic updated computational model which would not be compatible

with the existence of model uncertainties in the computational model. The formulation is then modified by adding
probabilistic constraints related to the nonreducible gap between the uncertain computational model and the exper-

iments due to the presence of model uncertainties. In Section 4, a numerical example is presented.

Description of the experimental data

The assumptions concerning the available experimental data are given. It is assumed that experimental modal anal-
ysis has been carried out on one manufactured dynamical system with free free boundary conditions. Consequently,

there are m = 6 rigid-body modes associated with 6 zero eigenvalues which are not taken into account in the anal-

ysis. The experimental data consists in r experimental elastic eigenvalues denoted by 0 < λexp
1 < . . . < λexp

r . The
corresponding experimental eigenmodes are measured at nobs observation points. One then denotes by [Φexp] the

(nobs × r) real modal matrix whose columns are the corresponding experimental eigenmodes  exp

1
, . . . , exp

r
.

Deterministic modal analysis updating formulation

It is assumed that the manufactured dynamical system can be modeled by a deterministic computational model
which is called the mean computational model. The method proposed in [1] is briefly summarized below.

The mean computational model of the dynamical system is constructed using the finite element method and has

n DOF (degrees of freedom). It is assumed that the finite element mesh is compatible with the nobs experimental
measurement points. Let s be the  s-vector of the updating parameters of the mean computational model called

the updating mean parameters. Vector s belongs to an admissible set S corresponding to a given family of mean
computational models. Let [M(s)] and [K(s)] be the finite element mass and stiffness matrices. Since the dynamical

system has free free boundary conditions, matrices [M(s)] and [K(s)] are (n × n) positive-definite and positive

symmetric real matrices. These matrices are then block decomposed with respect to the n1 = nobs experimental
measurement DOF and the n2 = n − nobs non measured DOF. The matrix formulation allowing the deterministic

updating to be solved consists in modifying the usual generalized eigenvalue problem by introducing the (n × 1)
residue vector !α(s) defined, for α = 1, . . . , r, by!α(s) =

[
rα(s)
0

]
=

([
[K11(s)] [K12(s)]
[K12(s)]

T [K22(s)]

]
− λexp

α

[
[M11(s)] [M12(s)]
[M12(s)]

T [M22(s)]

]) [  exp

α 
2,α

(s)

]
(1)

In Eq. (1), for a given updating mean parameter s belonging to S, the component rα,k(s) of vector !α(s) quantifies

the residue with respect to the mean computational model which is induced by the experimental elastic eigenvalue

and by the eigenmode number α for the DOF number k. Since the information concerning the experimental eigen-
modes is only available on a restricted number of DOF corresponding to the experimental measurement points, it is

assumed that no errors are induced on the nonmeasured DOF. Equations (1) and (??) allow the unknown quantities 
2,α

(s) and rα(s) to be calculated under the condition that the matrix [Bα(s)] defined by

[Bα(s)] = [K22(s)] − λexp
α [M22(s)] , α = 1, . . . , r . (2)

is invertible. It is assumed that the number r of experimental eigenvalue/eigenmodes which has to be considered

in this deterministic updating is chosen in order to fulfill this condition. The deterministic updating is solved by
simultaneously minimizing the residue vectors rα(s) for all α belonging to {1, . . . , r}. The cost function is defined as

a function of the updating mean parameters s by

j(s) = ||[R(s)]||2F , (3)

in which the (r× r) real matrix [R(s)] is defined by [R(s)]αβ =  exp,T

α
rβ(s). In Eq. (3), ||[X ]||2F = tr([X ] [X]T ). The

solution of this deterministic updating problem is then given by

sopt = arg min
s∈S

j(s) . (4)



Robust modal analysis updating formulation

In this Section, it is assumed that the computational model used for modeling the manufactured dynamical system
for which experimental modal data are available contains significant model uncertainties. Consequently, the deter-

ministic modal analysis updating formulation presented above can be improved in taking into account the presence

of model uncertainties. We then propose to adapt the deterministic modal analysis updating formulation to the ro-
bust updating context. Firstly, a mean reduced matrix model (required by the use of the non-parametric probabilistic

approach) based on the Craig and Bampton dynamical substructuring method [10, 11] for which the coupling inter-
face is constituted of the nobs measurements DOF is constructed. For brevity, the details of the construction of such

a mean reduced matrix model are not given. For a given α belonging to {1, . . . , r}, we have

[  exp

α 
2,α

(s)

]
= [Hα(s)]

[ exp

α

q
α
(s)

]
, (5)

in which the matrix [Hα(s)] is the projection basis and where q
α
(s) is the  N -vector of the generalized coordinates.

Let ! = N + nobs. The mean reduced matrix equation which allows rα(s) and q
α
(s) to be calculated is then written

as [
rα(s)
0

]
=
(
[Kred,α(s)] − λexp

α [Mred,α(s)]
) [ exp

α

q
α
(s)

]
, (6)

in which the matrices [M red,α(s)] and [Kred,α(s)] are the (!× !) positive-definite and positive symmetric real mass

and stiffness matrices defined by [M red,α(s)] = [Hα(s)]T [M(s)] [Hα(s)] and [Kred,α(s)] = [Hα(s)]T [K(s)] [Hα(s)].
In a second step, the nonparametric probabilistic approach [4, 5] is used to model uncertainties in Eq. (6). The

method consists in replacing the deterministic matrices [Mred,α(s)] and [Kred,α(s)] by random matrices [Mred,α(s, δM )]
and [Kred,α(s, δK)] for which the details concerning the construction of the probability model of these random matri-
ces can be found in [4, 5]. Let ! = (δM , δK) be the vector of the dispersion parameters which have to be updated.

It can be shown from the construction of the probability model that dispersion parameter ! must belong to the ad-

missible set ∆ =
{
[0 ,
√ +1 +5

] × [0 ,
√ −m+1 −m+5

]
}

. It should be noted that there exists an algebraic representation

useful to the Monte Carlo numerical simulation. The stochastic matrix equation whose unknowns are the random

residue vector Rα(s,!) and the random vector Qα(s) of the random generalized coordinates is written as

[
Rα(s,!)
0

]
=
(
[Kred,α(s, δK)] − λexp

α [Mred,α(s, δM )]
) [  exp

α

Qα(s,!)] , (7)

Note that the calculation of random vector Qα requires the inversion of the random matrix [B2,α(s,!)] defined by

[B2,α(s,!)] = [K2,α(s,!)] − λexp
α [M2,α(s,!)] (8)

where [M2,α(s,!)] and [K2,α(s,!)] are the matrix blocks corresponding to the random generalized coordinates. It

is assumed that the number r of experimental eigenvalues is chosen under the assumption that random matrix
[B2,α(s,!)] is invertible almost surely. The robust updating formulation requires to define the cost function from the

uncertain computational model as a function of the updating mean parameter s and of the dispersion parameter !.

In coherence with Eq. (3), the cost function denoted by j(s,!) is written as

j(s,!) = E{||[R(s,!)]||2F } , [R(s,!)]αβ =  exp,T

α
Rβ(s,!) . (9)

Note that the cost function j(s,!) tends to the cost function j(s) as δM and δK go to zero, which means as the

structure tends to be deterministic. The straightforward generalization of Eq. (4) to the random case would yield the

solution (sopt,!opt
) to be written as

(sopt,!opt
) = arg min

s∈S
j(s,!) . (10)

The following comment shows that this formulation is not adapted to the robust updating context. If the deterministic

updating context assumed that there were no model uncertainties and no parameter uncertainties, then it would
mean that the family of deterministic models would be able to exactly reproduce the experimental data. In that case,

the deterministic cost function would be zero for the updated solution. In the present context of robust updating,

there are model uncertainties which are then taken into account by a class of computational model generated with
the nonparametric probabilistic approach. The above formulation for robust updating tends to minimize the model



uncertainties ( → 0) which means that this formulation is equivalent to the deterministic updating formulation.

However, since it is assumed that there are significant model uncertainties, the class of deterministic computational
models is not able to reproduce the experiments. Consequently, the cost function is doubtlessly minimized but is

nonzero and there still exists an irreducible distance between each eigenvalue /eigenvector of the updated computa-

tional model and each experimental eigenvalue / eigenvector. The above formulation for robust updating is then not
correct. In order to generate a larger class of uncertain computational models, additional probabilistic constraints

involving these distances are added in the formulation of the robust updating optimization problem.

∆Λ(s, ) =

√√√√1

r

r∑

α = 1

{∆Λα(s, )}2 , ∆Λα(s, ) =
|Λα(s, ) − λexp

α |

λexp
α

, (11)

∆Φ̃(s, ) =

√√√√1

r

r∑

α = 1

{∆Φ̃α(s, )}2 , ∆Φ̃α(s, ) =
||!̃α(s, ) −"exp

α
||

||"exp
α

||
. (12)

In Eqs. (11) and (12), for each α belonging to {1, . . . , r}, the positive-valued random eigenvalue Λα(s, ) and the nobs -valued random eigenvector !̃α(s, ) restricted to the measurement DOF are defined by the generalized eigen-

value problem related to the uncertain computational model which is written as: find (Λα(s, ),!α(s, ))

0 =
(
[Kred,α(s, δK)] − Λα(s, ) [Mred,α(s, δM )]

)#α(s, ) , α = 1, . . . , r , !̃α(s, ) = [[I] [!]]#α(s, ) . (13)

The following probabilistic constraints are introduced. Let gΛ(s, ; βΛ, εΛ) and geΦ
(s, ; βΦ, εΦ) be the functions de-

fined by

gΛ(s, ; βΛ, εΛ) = βΛ − Proba
(
∆Λ(s, ) < εΛ

)
(14)

geΦ
(s, ; βΦ, εΦ) = βΦ − Proba

(
∆Φ(s, ) < εΦ

)
, (15)

in which Proba denotes the probability and where εΛ, εΦ and βΛ, βΦ denote a given error level and a given probability

level respectively. The robust updating formulation consists in defining, for a given $ = (βΛ, βΦ) belonging to

[0 , 1[×[0 , 1[ and for a given % = (ǫΛ, ǫΦ) belonging to ]0, +∞[×]0, +∞[, the solution (sopt, opt
) as

(sopt, opt
) = arg min

(s, ) ∈ {S × ∆}
g(s, ;$,%) < 0

j(s, ) , (16)

in which g(s, ;$,%) = (gΛ(s, ; βΛ, εΛ), geΦ
(s, ; βΦ, εΦ)). The existence of a solution for this optimization problem

cannot be proven in the general case. A specific analysis must be carried out for every application.

Numerical Validation

The numerical validation is carried out using the truss system presented in [1]. This structure is located in the

plane (OX , OY ) of a Cartesian coordinate system. The truss is constituted of 4 vertical bars, 4 diagonal bars
and 2 horizontal beams. For the non updated truss, all the bars and beams are made up of a homogeneous

isotropic elastic material with mass density ρ0 = 2 800 kg × m−3, Poisson ratio ν0 = 0.3 and Young modulus
E0 = 0.75 × 1011 N × m−2. The vertical bars have a constant cross-section of 0.6 × 10−2 m2 and a length of 3 m.

The diagonal bars have a constant cross-section of 0.3 × 10−2 m2 and a length of 5.83 m. The horizontal beams

have a constant cross-section of S0 = 0.4 × 10−2 m2, a constant beam inertia of 0.756 × 10−1 m4 and a length of
15 m. The truss has free-free boundary conditions. The mean finite element model of this truss is constituted of 41
bar elements (with two nodes) and 42 beam elements (with two nodes) yielding n = 166 DOF. There is only one

updating parameter s = ρ S0 with ρ the mass density of the upper beam which has to be updated. It should be
noted that for this non updated truss, s0 = 11.2 kg/m. The admissible set S for the updating parameter s of the

mean computational model is taken as S = [10 , 40] kg/m.

Since no experiment has been carried out on this truss, a numerical experiment is generated to represent the

experimental data basis. Note that this experimental data basis cannot be obtained with a deterministic updating
of the truss (δM = δK = 0) for which the mass density ρ of the upper beam is the updating parameter. The

experimental data basis is thus constituted of (1) r = 3 elastic experimental eigenfrequencies νexp
1 = 93 Hz,



νexp
2 = 110 Hz and νexp

3 = 170 Hz and (2) the translational components corresponding to nobs = 28 translational

measured DOF and representing the corresponding experimental eigenmodes. In the context of the robust updating,
the stochastic equations of the uncertain computational model are solved by using the Monte Carlo numerical

simulation. It can be shown that a convergence analysis yield optimal numerical parameters N = 110 modes and

ns = 600 relizations.
As explained, the robust updating formulation without inequality constraints does not allow the updating to be im-

proved with respect to the presence of model uncertainties. In this subsection, we prove this result by using the
numerical example. First, the case for which the level of uncertainty in the structure is assumed to be known is

considered with δ = δfix = 0.3. The updated uncertain computational model is characterized by updating param-

eters (sopt, δfix) = (26.2, 0.3) for which j(sopt, δfix) = 1.18. The generalized eigenvalue problem related to the
updated uncertain computational model is then solved by using ns = 10 000 realizations in order to characterize, for

each α belonging to {1, 2, 3} the probability density functions of the random variables ∆Λopt
α = ∆Λ(sopt, δfix) and

∆Φ̃opt
α = ∆Φ̃(sopt, δfix). For each α belonging to {1, 2, 3}, Table 1 shows the mean values µ∆λα

and µ
∆Φ̃α

, and

the standard deviations σ∆λα
and σ

∆Φ̃α
of the random variables ∆Λopt

α and ∆Φ̃opt
α . Moreover, it can be verified by

studying the family of graphs corresponding to the function δ 7→ j(s, δ) for the admissible set S that if the uncertainty

level is unknown, then the robust updating optimization problem goes to the deterministic solution.
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Figure 1: Left figure : graph of δopt with respect to βΛ and εΛ for βΦ = 0, εΦ = +∞. Right figure : graph of sopt

with respect to βΛ and εΛ for βΦ = 0, εΦ = +∞.
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Figure 2: Left figure : graph of δopt with respect to βΦ and εΦ for βΛ = 0, εΛ = +∞. Right figure : graph of sopt

with respect to βΦ and εΦ for βΛ = 0, εΛ = +∞.

We now present the results concerning the robust updating formulation in presence of inequality constraints obtained



with Eq. (16). The updated mean parameter sopt and the updated parameter δopt are analyzed as a function of

the probability level and of the error level. Two cases are considered : (1) the case for which there is only one
probabilistic constraint for the eigenvalue corresponding to βΦ = 0 and εΦ = +∞. We then study the function

(βΛ, εΛ) 7→ δopt defined from the domain DΛ,δ into the set FΛ,δ and the function (βΛ, εΛ) 7→ sopt defined from

the domain DΛ,s into the set FΛ,s; (2) the case for which there is one probabilistic constraint for the eigenvector
corresponding to βΛ = 0 and εΛ = +∞. We then study the function (βΦ, εΦ) 7→ δopt defined from the domain

DΦ,δ into the set FΦ,δ and the function (βΦ, εΦ) 7→ sopt defined from the domain DΦ,s into the set FΦ,s. The Figure
2 shows a bi-dimensional representation of the graph of the functions (βΛ, εΛ) 7→ δopt and (βΛ, εΛ) 7→ sopt (case

1). Figure 3 shows the graph of the functions (βΦ, εΦ) 7→ δopt and (βΦ, εΦ) 7→ sopt (case 2). In these figures,

the blank zone corresponds to the values of the probability level and of the error level for which the optimization
problem defined by Eq. (16) has no solution. By comparing figures 2 and 3, it can be seen that DΛ,δ ⊂ DΦ,δ and

that DΛ,s ⊂ DΦ,s which means that the robust updating methodology allows the random eigenvectors to be better

updated than the random eigenvalues. In addition, Figure 2 shows that significant model uncertainties (δopt > 0.1)
are obtained for small values of probability level (β < 0.2). In opposite, Figure 3 shows that significant model

uncertainties on the eigenvectors (δopt > 0.1) are obtained for large values of the probability level (β < 0.6). These
results are coherent because we have introduced in the experimental data model errors only on the eigenvalues.

The figures 2 and 3 show that FΛ,δ = [0 , 0.25], FΦ,δ = [0 , 0.18], and FΛ,s = [31 , 36.4], FΦ,s = [22.4 , 31.1].
Clearly, the sets FΛ,s and FΦ,s are almost disjoint which means that the optimal uncertain computational model
strongly depends on the nature of the constraints used in the robust updating formulation. It can also be seen that

the updated uncertain computational model related to the eigenvector probabilistic constraint is more sensitive to

the updated mean parameter sopt than to the updated dispersion parameter δopt whereas the contrary is observed
when using the robust updating formulation related to the eigenvalue probabilistic constraint. Moreover, it can be

seen that FΦ,δ ⊂ FΛ,δ.

µ∆λ1
µ∆λ2

µ∆λ3
σ∆λ1

σ∆λ2
σ∆λ3

constraint on eigenvalue 7.7% 22.7% 15.2% 2.1% 2.8% 2%

constraint on eigenvector 1% 33% 11% 0.7% 1.2% 0.8%

no constraint , δfix = 0.3 4.7% 28.2% 18.2% 3.3% 6.1% 3.8%

µ
∆Φ̃1

µ
∆Φ̃2

µ
∆Φ̃3

σ
∆Φ̃1

σ
∆Φ̃2

σ
∆Φ̃3

constraint on eigenvalue 16% 27.5% 15.1% 1.7% 3% 2.6%

constraint on eigenvector 12.2% 19.9% 11.3% 0.7% 1.2% 1%

no constraint , δfix = 0.3 11.8% 18.4% 15.2% 3.2% 5.5% 4.2%

Table 1: Quantification of the errors induced by the updated computational model with respect to the experimental

data.

sopt δopt j(sopt, δopt) −gΛ(sopt, δopt, 0.25, 0.1) −g
Φ̃
(sopt, δopt, 0.25, 0.1)

constraint on eigenvalue 32.2 0.15 1.06 0.014 < 0
constraint on eigenvector 28.6 0.06 1.03 < 0 0.024

no constraint , δfix = 0.3 26.2 0.3 1.18 < 0 0.27

Table 2: Characteristics of the updated computational model for each case.

In order to analyze more precisely the results presented in the Fig. 2 and 3, we reanalyze the three cases for an
error level equal to 0.25 with a probability level equal to 0.1. For α belonging to {1, 2, 3}, let µ∆Λα

, µ
∆Φ̃α

and σ∆Λα
,

σ
∆Φ̃α

be the mean value and the standard deviation of random variable ∆Λα and ∆Φ̃α defined by Eqs. (11) and

(12). For each case, the main characteristics of the updated uncertain computational model are summarized in
Tables 1 and 2. In order to characterize the efficiency of the proposed robust updating methodology, Figs. 4 and 5

show the probability density functions of the random variables ∆Λopt
α and ∆Φ̃opt

α for the two cases. These figures

show that the updating is improved in the probabilistic context because the value of the error is smaller than for the
non updated mean computational model. It can be seen that if only one constraint is considered, then the other one

is not verified which means that there can remain an important error (for instance µ∆Λα
= 0.33 for case 2 for which

there is only one eigenvector probability constraint).
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Figure 3: Updated uncertain computational model corresponding to βΦ = 0, ǫΦ = +∞, βΛ = 0.1, ǫΛ = 0.25 and

yielding (sopt, δopt) = (32.2, 0.15). Left figure : graph of the probability density functions ∆Λopt
α (black line), of its first

order moment E{∆Λopt
α } (vertical gray line), of ∆λini

α (vertical black line) for α = 1 (upper graph), α = 2 (middle

graph), α = 3 (lower graph). Right figure : graph of the probability density functions ∆Φ̃opt
α (black line), of its first

order moment E{∆Φ̃opt
α } (vertical gray line), of ∆φ̃

ini

α
(vertical black line) for α = 1 (upper graph), α = 2 (middle

graph), α = 3 (lower graph).
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Figure 4: Updated uncertain computational model corresponding to βΛ = 0, ǫΛ = +∞, βΦ = 0.1, ǫΦ = 0.25 and

yielding (sopt, δopt) = (28.6, 0.06). Left figure : graph of the probability density functions ∆Λopt
α (black line), of its first

order moment E{∆Λopt
α } (vertical gray line), of ∆λini

α (vertical black line) for α = 1 (upper graph), α = 2 (middle

graph), α = 3 (lower graph). Right figure : graph of the probability density functions ∆Φ̃opt
α (black line), of its first

order moment E{∆Φ̃opt
α } (vertical gray line), of ∆φ̃

ini

α
(vertical black line) for α = 1 (upper graph), α = 2 (middle

graph), α = 3 (lower graph).



Conclusions

A not straightforward methodology to perform the robust updating of complex uncertain dynamical systems with
respect to modal experimental data in the context of structural dynamics has been presented. The present formu-

lation based on an input error methodology adapted to the deterministic updating problem has been extended to

the robust updating context required in presence of model uncertainties in the computational model. The robust up-
dating formulation leads a mono-objective optimization problem to be solved in presence of inequality probabilistic

constraints. An application is presented in order to validate the proposed approach.
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