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Abstract

The nonlinear parabolic equation (NPE) is a time-domain method widely used in underwater sound propagation
applications. It allows simulating weakly nonlinear sound propagation within an inhomogeneous medium. For this
method to be suited for outdoor applications, it must account for the effects of an absorbing ground surface. The
NPE being formulated in the time domain, complex impedances cannot be used. The ground layer is thus included
in the computational system with the help of a second NPE model based on the Zwikker-Kosten model. A two-way
coupling between these two layers (air and ground) is required for the whole system to behave correctly. Coupling
equations are derived from linearized Euler equations. In the frame of a (small-angle) parabolic model, this two-way
coupling only involves spatial derivatives, making its implementation easy. Several propagation examples are then
presented, and the method is shown to give satisfactory results for a wide range of ground characteristics. Finally, the
problem of including Forchheimer’s nonlinearities in the two-way coupling is addressed and an approximate solution
is proposed.
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1. Introduction

Due to their high amplitudes, sound waves from explosions propagate over large distances. The need to
develop numerical models that can handle main features of finite-amplitude sound propagation outdoors is
obvious. Specifically, in addition to nonlinearities, numerical models must take into account meteorological
and ground effects (refraction, dissipation, hilly terrain, ground impedance).

In this work a nonlinear parabolic equation (NPE) model is used to simulate finite amplitude sound
propagation. This method has first been developed by McDonald and Kuperman in 1987 [1] and has been
successfully used for underwater acoustics simulations [2,3]. It has also been used together with other methods
to simulate blast wave propagation in air [4–7]. In this article, the method is adapted to handle sound
propagation over impedant ground surfaces.

The fundamental principle of the NPE is the resolution of a simplified nonlinear wave equation over
a moving window surrounding the wavefront. This implies that the method is suitable for finite-length
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signals only. As the calculation domain is limited to a small area around the signal, computational cost is
greatly reduced compared to Euler’s equations methods. On the other hand backward propagation cannot
be accounted for. For the derivation of the NPE model, the reader may refer to articles by McDonald[8] or
Caine and West[9]. The simplest formulation of the NPE is[1,10]:

DtR = −∂x

(

c1R + c0
β

2
R2

)

− c0

2

∫

∇2
⊥

R dr (1)

where t is the time variable, x is the main propagation direction, ∇2
⊥

is the transverse Laplacian, c0 is
the ambient sound speed, c1 is the sound speed perturbation in the window and R = ρ′/ρ0 , with ρ the
acoustic density perturbation and ρ0 the ambient medium density. For air, the coefficient of nonlinearity β is
calculated with the help of the ratio of specific heat at constant volume and pressure γ, i.e. β = (γ + 1) /2,
and is approximately equal to 1.2 for air under normal conditions. The sound speed c (x, y) is allowed to
vary within the domain. The first term on the right hand side of Eq (1) simulates refraction and nonlinear
effects; the second term calculates diffraction. The transverse Laplacian operator reduces to ∂2

z for a 2D
Cartesian domain, where z is the transverse propagation direction. Dt is a moving window operator and is
defined by:

Dt = ∂t + cwin∂x (2)

where cwin is the moving window celerity. Eq (1) can be used to propagate weak shocks over moderate
distance within a domain with spatially-varying sound speed. Various modifications and additions to this
original model were made during the past two decades : spherical and cylindrical formulations [11], ther-
moviscous effects [12], high-angle formulation [13], propagation in multiple medium [2], propration through
turbulence [14]. . .

In this work, a NPE model that includes the effects of a soft ground on propagation is proposed. The
ground layer, characterized by a Zwikker–Kosten (ZK) model, is included as a propagation medium in the
calculations. The derivation of the NPE model for porous ground layers is described in section 2. Combined
with a boundary interface condition, presented in section 3, and a NPE model for atmospheric media, it
allows to simulate finite-amplitude sound propagation over an impedant ground surface. Several propagation
examples are then presented and finally, an approximate solution to include Forchheimer’s nonlinearities in
the two-way coupling is presented.

2. NPE model for rigidly-framed porous media

The domain considered is two-dimensional with main axes x (horizontal direction) and z (vertical direc-
tion). Total density ρT and total pressure pT variables are noted as follows:

ρT = ρ0 + ρ′ (3a)

pT = p0 + p′ (3b)

where ρ0 and p0 are ambient density and ambient pressure, respectively, and ρ′ and p′ are acoustic per-
turbations of these quantities. Components of the flow velocity vector V are u and w, which are the flow
velocities in the x- and z-directions, respectively. Partial derivation with respect to the variable i is noted
∂i.
The nonlinear parabolic equation (NPE) model for sound propagation in porous ground media is based on
a nonlinear extension of the Zwikker–Kosten (ZK) model [15]. The ground is considered equivalent to a
continuous fluid for sound waves. A sound wave causes a vibration of air particles contained in the ground
pores, while the ground frame does not vibrate. The ground layer is characterized by a set of 4 parameters:
the DC flow resistivity σ0, the porosity Ω0, the tortuosity Φ and the Forchheimer’s nonlinearity parame-
ter ξ. These quantities are assumed fixed in space and time. In this context, equations of continuity and
conservation of momentum are [16–18]:
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∂tρT + ∂x (ρT u) + ∂z (ρT w) = 0 (4a)

Φ∂t (ρT u) + ∂x

(

pT + ΦρT u2
)

+ ∂z (ΦρT uw) + σ0Ω0 (1 + ξ |u|) u = 0 (4b)

Φ∂t (ρT w) + ∂z

(

pT + ΦρT w2
)

+ ∂x (ΦρT uw) + σ0Ω0 (1 + ξ |w|) w = 0 (4c)

Combining Eqs (4) and eliminating terms of third order in x-derivatives and of second order in z-derivatives
gives:

Φ∂2
t ρT = ∂2

x

(

pT + Φρ0u
2
)

+ ∂2
zpT + σ0Ω0∂x [(1 + ξ |u|)u] + σ0Ω0∂zw (5)

To find an expresion for the flow velocities u and w we use the perturbation expensions method. The same
scalings and expansions as in refs [1,8] are used (however, note that the sound speed in the ground layer is
c0/

√
Φ). Eq (4a) can be rewritten:

(

ǫ∂t −
c0√
Φ

∂x

)

(

ρ0 + ǫρ′1 + ǫ2ρ′2 + · · ·
)

= − ∂x

[

(

ρ0 + ǫρ1 + ǫ2ρ2 + · · ·
)

(

ǫu1 + ǫ3/2u2 + · · ·
)]

− ǫ1/2∂z

[

(

ρ0 + ǫρ1 + ǫ2ρ2 + · · ·
)

(

ǫw1 + ǫ3/2w2 + · · ·
)]

(6)

Equating terms of order ǫ and ǫ3/2 gives:

u1 =
c0√
Φ

ρ1

ρ0
(7a)

w1 = 0 (7b)

Note that ρ′ = ρ1 + O
(

ǫ2
)

, u = u1 + O
(

ǫ3/2
)

and w = w1 + O
(

ǫ3/2
)

. Substitution of u and w by u1 and
w1 in Eq (5) leads to an error consistent with the accuracy sought. The total pressure pT is substituted by
a second-order expansion in ρ′ from an assumed adiabatic equation of state:

pT = p0 + c2
0ρ

′ + c2
0

(

γ − 1

2ρ0

)

ρ′2 (8)

where γ is the ratio of specific heats at constant pressure and volume. Inserting Eq (8) in Eq (5) yields:

Φ∂2
t ρ′ = c2

0∂
2
x

[

ρ′ +

(

γ + 1

2ρ0

)

ρ′2
]

+ c2
0∂

2
zρ′ +

σ0Ω0c0

ρ0

√
Φ

∂x

[(

1 +
ξc0√

Φ

∣

∣

∣

∣

ρ′

ρ0

∣

∣

∣

∣

)

ρ′
]

(9)

A “moving-frame” operator D⋆
t is introduced:

D⋆
t = ∂t +

c0√
Φ

∂x (10)

The parabolic approximation gives [9]:

∂2
t −→ −2

c0√
Φ

D⋆
t ∂x +

c2
0

Φ
∂2

x (11)

Replacing the second time derivative in Eq (9) and rearranging gives a NPE model for propagation in porous
media:

D⋆
t R = − c0√

Φ
∂x

(

β

2
R2

)

− c0

2
√

Φ

∫

∂2
zR dx − σΩ

2Φρ0

(

1 +
ξc0√

Φ
|R|

)

R (12)

where β is the hydrodynamic nonlinearity parameter and R is a dimensionless density perturbation (R =
ρ′/ρ0). Eq (12) can be used to simulate sound propagation within a porous ground layer. However, if one
wants to couple air/ground models, a last modification must be done. Indeed, both models use different
frame speeds: c0 and c0/

√
Φ. Correcting for the frame-speed difference leads to the following substitution:

D⋆
t −→ Dt +

c0√
Φ

(

1 −
√

Φ
)

∂x (13)

Eq (12) becomes:

DtR = − c0√
Φ

∂x

[

(

1 −
√

Φ
)

R +
β

2
R2

]

− c0

2
√

Φ

∫

∂2
zR dx − σΩ

2Φρ0

(

1 +
ξc0√

Φ
|R|

)

R (14)
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The NPE model described by Eq (14) is able to simulate finite amplitude sound propagation within a
rigid, framed, porous material described by a set of 3+1 parameters. Note that if Φ = 1 and losses in the
layer are neglected, the model exactly reduces to the usual NPE model for atmospheric propagation (Eq (1)
, [19]). Eq (14) allows to draw some conclusions about finite-amplitude sound propagation in porous media:
(a) the sound speed in the medium is inversely proportional to the square root of the material tortuosity, i.e.

c = c0/
√

Φ; (b) the attenuation in the ground layer is composed of a linear term (the term containning σ0Ω0

term) plus a nonlinear term (the term containing ξ); (c) in the frame of this model, the material resistivity
is proportional to the overdensity R.

3. Derivation of a boundary interface condition

3.1. Derivation

As both models use the same moving-frame speed, they can be combined to simulate finite-amplitude
sound propagation over a rigidly-framed porous ground layer. This section aims at establishing a first-

order boundary interface condition to couple these two propagation models. The variables p
′a
i,j and p

′g
i,j are

introduced to denote quantities in layer A (air layer) and layer G (porous ground layer), respectively, at
range i∆x in the moving window and altitude j∆z. The fluid-fluid interface is taken to be midway between
two vertical grid points with indexes j = 0 and j = 1. Auxiliary virtual points p

′a
i,0 and p

′b
i,1 are created

(see Figure 1). In the following we assume that the deformation of the interface by the wave is small [2].

p
′a
i,j

p
′g
i,j

j = 1

j = 0

Fig. 1. The fluid-fluid interface is taken to be midway between two vertical grid points with indexes j = 0 and j = 1. Auxiliary

virtual points (red circles) p
′a
i,0

and p
′g

i,1
are created.

Interfacial boundary conditions are continuity of pressure and normal flow velocity:

[p′a] = [p′g] [wa] = [wg] (15)

where the square brackets denote a quantity across the interface. We seek for expressions of wa and wg

involving the pressure disturbance p′ to the first order. As a first order boundary interface condition is
sought, linearized equations are used; for the air layer A we use the linearized Euler equation:

ρ0∂t (wa) = −∂zp
a
T (16)

The perturbation expansion method is used and the same scalings as in section 2 and in refs [1,8] are used.
Rewriting Eq (16) and equating terms of order 1 and 3/2 gives:

wa
1 = 0 wa

2 = (ρ0cw∂x)
−1

∂zp
′a
1 (17)

Note that wa = wa
1 + wa

2 + O
(

ǫ5/2
)

. To the order of accuracy sought in this work it can be written:

wa = (ρ0c0∂x)
−1

∂zp
′a
1 (18)
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To find an expression for wg we start from the following equation [20]:

Φρ0∂tw
g = −Ω0∂zp

g
T − σ0Ω0w

g (19)

The same procedure is applied; one can find:

wg =
(√

Φρ0c0∂x − σ0Ω0

)−1

Ω0∂zp
′g
1 (20)

The interfacial condition for the continuity of vertical velocities wa and wg can now be written:

[

(ρ0c0∂x)
−1

∂zp
′a

]

=

[

(√
Φρ0c0∂x − σ0Ω0

)−1

Ω0∂zp
′g

]

(21)

Rearranging Eq (21) leads to:
[√

Φ∂zp
′a − σ0Ω0

ρ0c0

∫

∂zp
′a dx

]

=
[

Ω0∂zp
′g

]

(22)

A trapezöıdal law and finite-differences expressions for p
′a and p

′g and their derivatives are used to discretize
Eq (22). For a layer l we use:

[

p
′l
]

=
p

′l
i,1 + p

′l
i,0

2
(23a)

[

∂zp
′l
]

=
(

p
′l
i,1 − p

′l
i,0

)

∆z−1 (23b)

Replacing these approximations into Eq (22) gives expressions for unknown quantities p
′a
i,0 and p

′g
i,1:

p
′a
i,0 =

(

A1 − G1

A0 + G1

)

p
′a
i,1 +

(

G0 + G1

A0 + G1

)

p
′g
i,0 +

(

SA

A0 + G1

) i+1
∑

m=Nx

(

p
′a
m,1 − p

′a
m,0

)

(24a)

p
′g
i,1 =

(

G0 − A0

A0 + G1

)

p
′g
i,0 +

(

A0 + A1

A0 + G1

)

p
′a
i,1 +

(

SA

A0 + G1

) i+1
∑

m=Nx

(

p
′a
m,1 − p

′a
m,0

)

(24b)

where Nx is the total number of points is the x-direction and with:

A0 = A1 =
√

Φ +
σ0Ω0∆x

2c0ρ0
(25a)

G0 = G1 = Ω0 (25b)

SA =
σ0Ω0∆x

c0ρ0
(25c)

Eqs (24) give expressions for the unknown virtual points pa
i,0 and pg

i,1, and thus allow, used together with
the atmospheric and porous ground NPE models, to simulate weakly nonlinear sound propagation over an
impedant ground.

3.2. Properties

Limitations: first-order formulations of the constitutive equations have been used to derive the boundary
interface condition. This implies that hydrodynamic and Forchheimer’s nonlinearities can’t be taken into
account in the two-way coupling.

Causality: the x-integral present in NPE models (see for example Eq (1)) is calculated from the right to
the left of the calculation grid, and the same method is used for coupling (note the sum indexes in Eqs
(24)). This ensures that no perturbation is introduced ahead of the point where the wave hits the ground,
and thus implies that the interface condition is causal.
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Consistency to classical boundary conditions: if one sets Φ = +∞ we obtain from Eqs (24): p
′a
i,0 = p

′a
i,1

which is the condition for a totally rigid interface. A transparent interface condition can be obtained by
setting σ0 = 0, Ω0 = 1 and Φ = 1 (parameters for an air layer). This leads to: A0 = A1 = 1 and G0 = G1 = 1

and thus p
′a
i,0 = p

′g
i,0 and p

′g
i,1 = p

′a
i,1. If one sets σ = 0 and Ω0 = 1, Eqs (24) become:

p
′a
i,0 =

√
Φ − 1√
Φ + 1

p
′a
i,1 +

2√
Φ + 1

p
′g
i,0 (26)

p
′g
i,1 =

1 −
√

Φ√
Φ + 1

p
′g
i,0 +

2
√

Φ√
Φ + 1

p
′a
i,1 (27)

which is the interface condition for two fluid layers with densities ρ0 and
√

Φρ0 [2].

Numerical implementation: from a numerical point of view, a common way for solving for diffraction is
to use first order finite-differences approximation. This leads to a tridiagonal system of equations that is
solved columnwise, from the right to the left of the calculation grid. The boundary interface condition can
thus be naturally included in the diffraction solver by imposing values on corresponding points without any
additional solver modifications.

4. Numerical examples

In this section some numerical examples of sound propagation over porous ground layers are presented to
illustrate the coupling method and evaluate its performances.

4.1. Configuration

In order to verify the correctness of the NPE model developed, results from propagation over impedant
ground layers are compared to analytical solutions. The sound speed is constant through the domain (c0 =
340 m.s−1), and there is no absorption from air included. Waves decay at a cylindrical rate. The source
is positioned at (xs, zs) = (0.0, 1.4) m and the signal used is a sine pulse with wavelength λ = 0.27 m
(f = 1259.25 Hz) (the amplitude is low enough for the propagation to be considered linear). A virtual
receiver is placed 10 m away from the source and at altitude z = 1.4 m. The receiver position ensures
that we are within the parabolic equation angular validity domain (the angle from source to image–receiver
is θ ≈ 15◦). Spatial steps are equal to 7.5 10−3 m in both directions, thus giving a spatial resolution of
about 36 points/λ. The resolution is a bit higher than necessary to ensure sufficient resolution at higher
frequencies and near the boundary. The time step is dx/c0, so that at each time step the window advances one
spatial step. Since semi-implicit schemes are used (Crank-Nicolson method), the CFL condition is satisfied.
The NPE window is 3x3 meters (width x height). Three different ground layers of thickness 1 meter are
considered. The first ground layer is a perfectly rigid surface (Φ ≫ 1). The second and third layers have
identical tortuosity (Φ = 3) and porosity (Ω0 = 0.3), but different flow resistivities (σ0 = 500 kPa.s.m−2

and σ0 = 100 kPa.s.m−2).

4.2. Reference solutions

Solutions of the two-dimensional Helmoltz equation are used as references. This solution for the propaga-
tion in an homogeneous atmosphere over an impedant ground surface is (for 2-dimensional waves):

pr = iπH
(1)
0 (kR1) + QiπH

(1)
0 (kR2) (28)

where pr is the complex pressure at the receiver, k is the wavenumber, R1 and R2 are the source–receiver

and image source–receiver distances, respectively, and H
(1)
0 is the Hankel function of the first kind and order
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zero. Q is the cylindrical reflection coefficient and can be calculated with the help of Laplace transforms (see
Appendix A1 in [21]). The normalized impedance used to calculate the reflection coefficient is:

Z =

√

Φ

Ω2
0

+ i
σ0

ρ0Ω0ω
(29)

The real and imaginary parts of the normalized impedances described in section 4.1 are shown in Figure 2.

Fig. 2. Real and imaginary parts of the ground layers normalized impedances.

4.3. Results

Figure 3 shows snapshots of the propagation at three different times (from left to right: 3.7, 11.4, 20.2
ms) for the three different ground layers (from top to bottom: rigid, σ0 = 500 kpa.s.m−2 and σ0 =
100 kpa.s.m−2). One can see that as the ground is softer, the wave propagate deeper into the layer.

Time signals are recorded at the virtual receiver (xr = 10 m, zr = 1.4 m); two modifications are done on
raw signals: first, in order to obtain a free field reference, time histories are cropped after the direct wave.
Original signals are then cleaned for leading spurious oscillations 1 . Sound pressure levels (SPLs) relative to
free field at the receiver are shown in Figure 4, for both analytical and NPE calculations.

Very good agreement can be observed, independantly of the ground properties: even for the softest layer
(σ0 = 100 kpa.s.m−2) the difference between analytical and NPE calculations is at most about 1 dB.
The frequency where negative interference occurs is 1325 Hz, 1273 Hz and 1246 Hz for rigid, hard (σ0 =
500 kpa.s.m−2) and soft (σ0 = 100 kpa.s.m−2) layers, respectively. As one can see on Figure 4 the NPE
model presented does not only accurately recreate reflected wave amplitude decrease, but does acccount for
this frequency shifting due to the additional delay given during reflection.

5. Including Forchheimer’s nonlinearities in the two-way coupling

While flow resistivity dependance on particle velocity (Forchheimer’s nonlinearities) are accounted for in
the NPE model for porous ground layers (last term in Eq (14)), the two-way coupling between both domains
does not contain high-amplitude effects on ground characteristics. This would lead to wrong solutions, since
an additional attenuation would be introduced in the ground layer, but the increased rigidity of the interface

1 This is only necessary for the case where the interface is totally rigid: spurious oscillations, even very weak, prevent obtaining
a full negative interference.
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Fig. 3. Snapshots of the propagation at three different times (from left to right: 3.7, 11.4, 20.2 ms) for the three different ground
layers (from top to bottom: rigid, σ0 = 500 kpa.s.m−2 and σ0 = 100 kpa.s.m−2)

wouldn’t be accounted for. A solution is to artificially increase the flow resistivity appearing in the coupling
parameters (Eqs (25)) according to:

σ0 −→ σ0

(

1 + ξwi
)

(30)

where wi is the vertical particle velocity at the interface. We then use Eq (17) to obtain an approximation
of wi; we have:

wi = (ρ0c0)
−1

∫

∂zp
i
1 dx + O

(

ǫ5/2
)

(31)

where pi
1 is the first-order approximation of the pressure at the interface. The flow resistivity in the coupling

parameters is thus updated according to:

σ0 −→ σ0

(

1 +
ξ

ρ0c0

∫

∂zp
i
1 dx

)

(32)

At the beginning of each time step, the flow resistivity is thus updated with the help of pressure values at
the interface at the previous time step. This method, although approximate, allows to include Forchheimer’s
nonlinearities in the interfacial condition.

5.1. Numerical example

To illustrate the effects of Forchheimer’s nonlinearities a simulation is performed with a ground layer
with very low flow resistivity (σ0 = 10 kpa.m.s−2, φ = 3, Ω0 = 0.3) and three different Forchheimer’s
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Fig. 4. SPLs relative to free field at the receiver for the three different ground layers, for NPE and analytical solutions. The
source ans receiver are placed at altitude zs = 1.4m; the receiver is 10 meters away from the source.

nonlinearity parameters: ξ = 0 s.m−1, ξ = 2.5 s.m−1 and ξ = 10 s.m−1. The sound speed is constant
through the domain (c0 = 340 m.s−1), and there is no absorption from air included. Waves decay at a
cylindrical rate. The source is positioned at (xs, zs) = (0, 3) m; the receiver is placed 10 meters away from
the source at the same height. Spatial steps are equal to 10−2 m in both directions, the NPE window is 4x6
meters (width x height) and the ground layer is 1 meter thick. The source signal used is a sine pulse with
wavelength λ = 0.5 m (f = 680 Hz) with peak amplitude p0 = 3 kPa. Snapshots of the propagation are
shown in Figure 5 for three different times (from left to right: 11.7, 22 and 33.8 ms) for the three different
Forchheimer’s nonlinearity parameters (from top to bottom: ξ = 0 s.m−1, ξ = 2.5 s.m−1 and ξ = 10 s.m−1).
One can see that as the parameter ξ is increased the ground layer becomes more and more rigid and the
reflected wave amplitude is higher. Unfortunately no numerical or experimental meaning of validation were
available at the time of writing.

6. Conclusion & perspectives

A NPE model based on a nonlinear extension of the Zwikker-Kosten model has been derived; it allows to
simulate weakly nonlinear propagation within a porous ground layer. Next, two-way coupling equations have
been derived from linearized Euler equations. This interfacial boundary condition couples air and ground
NPE models and allows the NPE model to account for the effects of soft ground layers. This method has
been shown to give very good agreement with analytical solutions for a wide range of ground properties.
It provides a simple but efficient way of taking into account ground impedances. Finally an approximate
method to include Forchheimer’s nonlinearities in the two-way coupling is presented. In a previous work,
the NPE model for porous ground layers and the interfacial condition have been adapted to handle non
flat topographies [22]. Two-way coupling equations could also be derived for multilayered ground surfaces
without much additional work. With atmospheric refraction and dissipation included, it provides a complete
NPE model for weakly nonlinear wave propagation. Propagation of waves from explosions can be simulated
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Fig. 5. Snapshots of the propagation at three different times (from left to right: 11.7, 22 and 33.8 ms) for the three different
Forchheimer’s nonlinearity parameters (from top to bottom: ξ = 0 s.m−1, ξ = 2.5 s.m−1 and ξ = 10 s.m−1).

using a three stages procedure: first, a method based on Euler equations is used in the near field, where the
propagation is highly nonlinear. Next, NPE models can propagate weakly nonlinear waves over moderate
distances and finally, when the wave amplitude is low enough, (linear) frequency-domain method like the
PE can be used. This hybrid method allows to propagate waves from explosions over distances up to several
kilometres [4].
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