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A drill-string is a slender structure that turns and drills into the rock in search of oil. There are many sources of uncertainties in this problem, but in this article only the weight-on-hook, which is the support force exerted by the hook at the top, is considered random. In a drilling operation there are three parameters that can be continuously controlled:

(1) the weight-on-hook, (2) the drilling fluid flow, and (3) the speed of the rotary table. The idea is to understand how a perturbation on the weight-on-hook affects the performance of the system, which is measured by the rate of penetration. A numerical model is developed using the Timoshenko beam theory and discretized by means of the Finite Element Method. The main efforts that the column is subjected to are considered: rotation at the top; hanging force at the top; bit-rock interaction; fluid-structure interaction that takes into account the drilling fluid that flows downwards the column then goes upwards in the annulus; shock and rubbing between the column and the borehole; and the own weight of the column. To derive the probability density function of the random variable WOH, the Maximum Entropy Principle is used, so that the probability distribution is coherent with the physics of the problem.

NOMENCLATURE

INTRODUCTION

In a drilling operation there are many sources of uncertainties as, for instance: the material properties of the column and the drilling fluid; the dimensions of the system, specially the borehole; the fluid-structure interaction; the bit-rock interaction, among others. This paper is concerned with the stochastic model of the weight-on-hook because it is one of the three parameters that are continuously controlled in a drilling operation. In [START_REF] Ritto | Drill-string dynamics coupled with the drilling fluid dynamics[END_REF] the modeling of a drill-string and the main forces that act on it is done, so not much details will be presented here.

Figure 1 shows the general scheme of the system analyzed. The forces taking into account are: the motor torque (as a constant rotation speed at the top Ω x ); a constant hanging force f hook ; the torque t bit and force f bit at the bit; the weight of the column; the fluid forces; the shocks between the column and the borehole; the forces due to the stabilizer; plus the elastic and kinetic forces due to the deformation and to the motion of the structure.

Figure 1 -General scheme.

There are not many articles treating the stochastic problem of the drill-string dynamics, in special we might cite [START_REF] Kotsonis | Chaotic and random whirling motion of drillstrings[END_REF][START_REF] Soize | A nonparametric model of random uncertities for reduced matrix models in structural dynamics[END_REF]. In [START_REF] Kotsonis | Chaotic and random whirling motion of drillstrings[END_REF] the weight-on-bit is modeled as stochastic in a simple two degrees of freedom drill-string model, and in [START_REF] Spanos | Non linear stochastic drill-string vibrations[END_REF] lateral forces at the bit are modeled as stochastic.

The bit-rock interaction model chosen was the one developed in [START_REF] Tucker | Torsional vibration control and cosserat dynamics of a drill-rig assembly[END_REF] basically for two reasons:

(1) it is able to reproduce the main phenomena (as stick-slip oscillations); (2) it describes well the penetration of the bit into the rock (so we can analyze the rate-of-penetration-ROP). Usually the bit is considered fixed, [START_REF] Khulief | Vibration analysis of drillstrings with self excited stick-slip oscillations[END_REF], [START_REF] Piovan | On Linear Model for Coupled Axial/Torsional/flexural Vibrations of Drill-strings[END_REF]2007), or an average rate of penetration is assumed, [START_REF] Spanos | Modeling of roller cone bit lift-off dynamics in rotary drilling[END_REF], [START_REF] Christoforou | Fully vibrations of actively controlled drillstrings[END_REF].

The probability density function of the weight-on-hook is constructed by the means of the Maximum Entropy Principle [START_REF] Shannon | A mathematical theory of communication[END_REF]. To know more about model uncertainties in mechanical systems see [START_REF] Soize | A nonparametric model of random uncertities for reduced matrix models in structural dynamics[END_REF]Soize et al. ( , 2001Soize et al. ( , 2001bSoize et al. ( , 2005Soize et al. ( , 2005b[START_REF] Soize | Short course on Uncertainties and Stochastic Modeling[END_REF] 

Final discretized system

The final discretized system considering the prestressed state is written as [START_REF] Ritto | Drill-string dynamics coupled with the drilling fluid dynamics[END_REF]:

([M] + [M f ]) q + ([C] + [C f ]) q + ([K] + [K f ] + [K g (q S )]) q = f NL ( q, q, q) + f f , (1) 
where the response q is represented in a subspace V m ⊂ R m , where m equals the number of degrees of freedom of the system; q = qq S is the configuration about which the vibration takes place, where q

S = [K] -1 (f g + f c ); f g is the gravity force; f c is a concentrated reaction force at the bit; [M], [C],
and [K] are the classical mass, damping and stiffness matrices;

[M f ], [C f ], [K f ]
are the fluid mass, damping and stiffness matrices; f f is the fluid force vector; [K g (q)] is the geometric stiffness matrix; f NL ( q, q, q) is the nonlinear force vector that is decomposed in four parts:

f NL ( q, q, q) = f ke ( q, q, q) + f se ( q) + f sh ( q) + f br ( q) .

(2)

where f ke ( q, q, q) are the quadratic forces due to the kinetic energy; f se ( q) are the quadratic and higher order forces due to the strain energy; f sh ( q) are the forces due to the shocks and rubbing between the column and the borehole; and f br ( q) are the forces due to the bit-rock interactions.

A reduced-order matrix model is constructed from Eq. ( 1) using the modal analysis. The system is reduced and the time integration is done using an explicit Runge-Kutta algorithm with a time step controller to keep the error within a given precision.

Bit-rock interaction model

In this work, the model used is the one developed by [START_REF] Tucker | Torsional vibration control and cosserat dynamics of a drill-rig assembly[END_REF], which is rewritten as

f xbit = - ubit a 2 Z( θbit ) 2 + a 3 θbit a 2 Z( θbit ) - a 1 a 2 , t xbit = - ubit a 4 Z( θbit ) 2 θbit -a 5 Z( θbit ) (3)
in which f xbit is the axial force, where t xbit is the torque about the x-axis and where Z( θbit ) is the regularizing function.

In the above equation, a 1 , . . . , a 5 are positive constants that depend on the bit and rock characteristics as well as on the weight-on-bit (wob). This equation was derived for a stable operation with θbit ∼ 100 RPM and with wob ∼ 100 kN.

In this model, the bit exerts only an axial force ( f xbit ) and a torque (t xbit ) about the x-axis. These force and torque exerted by the rock at the bit depend on the axial speed ( ubit ) and the rotation speed ( θbit ) of the bit. Note that these forces at the bit couple axial and torsional vibrations.

STOCHASTIC MODEL OF THE WEIGHT-ON-HOOK

The weight-on-hook (woh) is modeled as a random variable, WOH. The Maximum Entropy Principle [START_REF] Shannon | A mathematical theory of communication[END_REF]Jaynes, 1957) is used to construct the probability density function. This principle consists on finding the probability density function that maximizes the entropy (see Eq.( 4)) given the available information. This is a way of being coherent with the physics of the problem [START_REF] Soize | Short course on Uncertainties and Stochastic Modeling[END_REF].

S = - R p(woh) ln p(woh)dwoh . (4) 
The available information we have is:

1. WOH can assume any value in the real line, ∴ support = R.

2. The mean value is known, ∴ E{WOH} = woh.

The variance (or dispersion

) is known, ∴ E{(WOH -woh) 2 } = σ 2 .
The distribution is then a Normal distribution with the probability density function:

p WOH (woh) = 1 R (woh) 1 σ √ 2π exp - (woh -woh) 2 2σ 2 . ( 5 
)
To measure the dispersion it will be used the variation coefficient: δ = σ woh . The woh can be calculated as:

woh = L 0 ρgAdx -wob = 1.06MN . ( 6 
)
NUMERICAL RESULTS The nonlinear forces f ke and f se are important to the dynamic response of the system (take a look at the radial displacement, Fig. 2 (c)), but the torsional and axial displacements are not very affected when f ke = f se = 0. In fact the simulations showed that f se is very significant while f ke is negligible for the case analyzed. We can see that the torsional and axial displacements are mainly dictated by the bit-rock interaction model. Moreover, the time to perform the numerical simulation is around: 70 minutes for case 1; and 80 seconds for case 2.

Data used in the simulations

As we want to investigate the influence of the probabilistic model of the weight-on-hook (axial force) we will use case 2 for the next simulations, knowing that it is an approximation of the problem analyzed.

Convergence of the stochastic solution

Let [U(t, s)] be the response of the stochastic dynamical system calculated for each realization s. The mean-square convergence analysis with respect to the number n s of independent realizations is carried out studying the function n s → conv(n s ) defined by Fig. 3 shows that 500 simulations are sufficient to reach the mean-square convergence.

conv(n s ) = 1 n s n s ∑ j=1 t f 0 ||U j (s,t)|| 2 dt . (7) 

RESPONSE OF THE STOCHASTIC SYSTEM

Fig. 4 shows the 95% envelope (that is to say the confidence region constructed with a probability level of 0.95) for the rate-of-penetration and the rotation speed of the bit for a standard deviation σ = 1000 N, which means δ = σ /woh ∼ 1 -3 . The envelopes (the upper and lower envelopes of the confidence region) are calculated using the method of quantiles [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF]. We are plotting two important variables: the rate-of-penetration (ROP) and the rotation speed at the bit (ω bit ). So we analyze the influence of the random weight-on-hook in the system response. Fig. 5 shows the stochastic response of the torque and force on the bit. It is noted that for σ = 1000 N, the response changes just a little, therefore σ will be increased in the next analysis. In our analysis we can not increase σ too much because the model used for the bit-rock interaction assumes a weight-on-bit wob ∼ 100 kN, so the standard deviation σ of the WOH is increased in a way that the wob has a maximum variation around 5%, that is to say that the σ max = 5000N and therefore δ max ∼ 0.005 (0.5% variation), which is a constraint to our analysis. But, as it will be seen, a small variation on the WOH may cause a big variation in the system response. Fig. 6 shows the system response for σ = 3000 N (δ ∼ 0.003). We want too see how a variation on the WOH affects the performance of the system, so, in Fig. 7 it is shown the evolution of the dispersion of the response for the: ROP, rotation speed of the bit, torque-on-bit, and force-on-bit. The dispersion of the response is calculated by taken the square root of the variance divided by the value of the mean response for each time instant. As expected, as δ increases the envelope of the response gets wider. Fig. 9 shows the dispersion of the response for δ ∼ 0.05 of the WOH. It is noted that, even for a small variation of the WOH (∼ 0.5%), there is a big dispersion in the response. See for instance the rate-of-penetration: the mean dispersion is 4.3%, which is more than eight times greater than the dispersion of the WOH. It gets worse if we take the maximum dispersion, which is 16%. It means that if the WOH has a dispersion of half percent, the variation in the ROP may achieve sixteen percent and the variation of the rotation speed of the bit may achieve twenty six percent!

CONCLUDING REMARKS

In this paper a stochastic model of the drill-string dynamics was analyzed. The main efforts that the column is subjected to are considered: rotation at the top; hanging force at the top; bit-rock interaction; fluid-structure interaction that takes into account the drilling fluid that flows downwards the column then goes upwards in the annulus; shock and rubbing between the column and the borehole; and the own weight of the column.

The weight-on-hook was modeled as a random variable with a normal probability density function. This distribution was constructed by means of the Maximum Entropy Principle. As the bit-rock interaction model used was derived for a weight-on-bit ∼ 100 kN, the dispersion of the weight-on-hook was constrained to σ max = 5000 N, which represents 0.5 percent of variation for the WOH. What is interesting is that a small variation of the WOH (half percent) induces a considerable variation on the system response, for example: 6% on the force-on-bit, 12% on the torque-on-bit, 16% on the ROP, and 26% on the ω bit (these are the maximum dispersions observed).

There are many sources of uncertainties in this problem, so more stochastic analysis should be done to identify the uncertainties that affect the most the performance of the system, but the results of this paper showed that the system response is very sensible to a dispersion of the weight-on-hook.
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  = area of the transversal section, [m 2 ] [C] = damping matrix conv = convergence function D = diameter, [m] E = Young Modulus, [Pa] f = force vector G = shear coefficient, [Pa] h = head loss, [m] I = inertia moment of the transversal section, [m 4 ] [K] = stiffness matrix L = length, [m] M = mass per unit length, [kg/m] [M] = mass matrix N = shape functions p = pressure, [Pa] q = displacement vector S = Shannon entropy measure t = time, [s] T = kinetic energy, [N.m] U = potential energy of deformation, [N.m]; or fluid velocity, [m/s] u = displacement in x-direction, [m] v = displacement in y-direction, [m] w = displacement in z-direction, [m] W = work done by the external forces and work not considered in U or T , [N.m] Z = regularizing function Greek Symbols 1 B (x) = assumes value 1 if x belong to B and 0 otherwise δ = dispersion parameter ε and γ = deformation ω = angular velocity vector, [rad/s] ρ = density, [kg/m 3 ] Ω x = rotation speed at x = 0, [rad/s] [Φ] = modal basis Π = total potential of the system, [N.m.t] σ = standard deviation θ x = rotation about x-axis θ y = rotation about y-axis θ z = rotation about z-axis ξ = damping factor Subscripts br = bit-rock ch = channel (or borehole) r = reduced e = element f = fluid g = geometric (for [K]) and gravity (for f) i = inside ke = kinetic energy o = outside p = polar se = strain energy NL = nonlinear
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  Fig.2shows the comparison of the complete dynamics (case 1) and the dynamics with f ke = f se = 0 (case 2).

Figure 2 -

 2 Figure 2 -Case 1 × case 2. (a) axial speed at x = L, or rate of penetration (ROP); (b) rotation speed at x = L (ω bit ); (c) radial displacement at x = 1560 m; and (d) torque at the bit.

Figure 3 -

 3 Figure 3 -Mean square convergence for δ = 0.01 (left) and δ = 0.05 (right).

Figure 4 -

 4 Figure 4 -95% envelope for σ = 1000 N. Left: rate-of-penetration, ROP. Right: rotation speed of the bit.

Figure 5 -

 5 Figure 5 -95% envelope for δ ∼ 0.01. Left: torque-on-bit. Right: force-on-bit.

Figure 6 -

 6 Figure 6 -95% envelope for δ ∼ 0.03. (a) rate-of-penetration, ROP; (b) rotation speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

Figure 7 -

 7 Figure 7 -Dispersion of the response for σ = 3000 N. (a) rate-of-penetration, ROP; (b) rotation speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

Fig. 8 Figure 8 -

 88 Fig.8shows the system response for σ = 5000 N (δ ∼ 0.005).

Figure 9 -

 9 Figure 9 -Dispersion of the response for σ = 5000 N. (a) rate-of-penetration, ROP; (b) rotation speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

  

ACKNOWLEDGEMENTS

The authors acknowledge the financial support of CNPQ, CAPES, and FAPERJ.

RESPONSIBILITY NOTES

The authors are the only responsible for the printed material included in this paper.