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ABSTRACT

The problem presented deals with tubes bundles in Pressurized Water Reactors. The final ob-

jective is to identify a model of the external loads applied to theses tubes bundles through the

knowledge of dynamical responses. In complex dynamical systems, such an identification is

difficult due to the size of the computational model and due to the high number of parameters to

be identified. As a consequence, the computational model is simplified implying a loss of accu-

racy and of predictability due to model uncertainties induced by the simplification introduced.

We are first interested in the implementation (modelling and identification) of a probabilistic ap-

proach of uncertainties in the mean computational model using the non-parametric probabilistic

approach for data uncertainties and model uncertainties. In addition, a probabilistic model for

the stochastic loads is constructed to take into account model uncertainties in the probabilistic

model of the stochastic loads. Finally, the non-linear stochastic dynamical system submited to

the uncertain stochastic loads is used to identify the probability model of its uncertainties. In a

first part, the theory is presented. The second part is devoted to the validation of the theory in

presenting an application.

1. INTRODUCTION

The present research has been developed in the context of the dynamical analysis of the tubes

bundles in Pressurized Water Reactors. The tubes are excited by a turbulent flow which induces

a non-linear dynamical response of the dynamical system made up of a structure coupled with

the fluid. The final objective is to identify a mathematical model of the stochastic loads applied

to the tubes bundles and induced by the turbulent flow using both experimental responses of the
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real non-linear dynamical system and a simplified computational non-linear dynamical model.

The real system under consideration is made up of several hundreds of tubes and several grids.

The dynamical behaviour of any tube in a free-free configuration is linear. The non-linearities

are induced by the shocks between the tubes and the grids. In the frequency band of analysis

for which the stochastic loads have to be identified, there are between ten thousand and twenty

thousand elastic modes for the linearized dynamical system. In this condition a simplified

computational non-linear dynamical model has to be introduced for that the identification of the

stochastic loads can effectively be done. For the identification of the stochastic loads, the use of

a simplified computational model induces model uncertainties. A non-parametric probabilistic

approach is then used to take into account both data uncertainties and model uncertainties

The real dynamical system (real tubes bundles) is replaced by a reference non-linear dynam-

ical system made up of five tubes and three grids. This reference system is representative of

the real system and a computational model, defined as the reference computational model, is

developed. This reference computational model allows the responses of the reference system to

be simulated. In a first step, the probability model of uncertainties is identified in the simplified

computational model using the reference computational model and the maximum likelihood

method. We then deduce a stochastic simplified computational model which allows a robust

identification of stochastic loads to be carried out with respect to uncertainties in the dynamical

system.

The second step is devoted to the stochastic inverse problem consisting in identifying the

stochastic loads. The stochastic loads used in the simplified computational model are repre-

sented by a vector-valued centred stationary Gaussian stochastic process. Such a stochastic

process is then completely defined by a matrix-valued spectral density function. The use of a

rough spatial discretization of the random field in the simplified computational model introduces

uncertainties in the stochastic process which models the stochastic loads. These uncertainties

are then taken into account in introducing a probabilistic model for the matrix-valued spectral

density function which becomes a random quantity which has to be constructed and identified.

The identification of the stochastic loads then corresponds (1) to the identification of the mean

value of the random matrix-valued spectral density function in the frequency band of analysis

and (2) to the identification of the dispersion parameter introduced in the probability model of

uncertainties and allowing the level of uncertainties to be controlled.

2. REFERENCE COMPUTATIONAL MODEL

In this section, we introduce a reference computational model for which the responses will be

considered as the experimental responses and will be used to identify the stochastic simplified

computational model that will be introduced in the next session.

2.1 Transient dynamical response of the reference computational model

Let Ω be the domain of a three dimensional damped structure having a non-linear behaviour

(the non-linearities are not distributed but are localized). The structure is fixed on the part Γ0 of

the boundary Γ of Ω. Let uref(t) be the vector of the n degrees of freedom at time t. Let [Mref ],
[Dref ] and [Kref ] be respectively the mass, damping and stiffness matrices of the linear part

of the finite element model. Since there are no rigid body displacements, these three matrices

are positive definite. Let fref(t) be the vector of the external loads applied to the structure and

let fNL(uref(t), u̇ref(t)) be the vector of the non-linear forces induced by the localized non-

linearities. Let [Φ] be the (n×m) matrix whose columns are the m structural modes ϕ1, ..., ϕm
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of the linear structure without the non-linearities corresponding to the m eigenfrequencies 0 <
ω1 ≤ ... ≤ ωm. The non-linear dynamical equation is projected on the the basis represented by

[Φ]. Therefore, the displacement vector at time t is written as uref(t) = [Φ]qref(t) in which

qref(t) is the vector of the m generalized coordinates. Such a projection introduces the positive

definite matrices [Mref ] = [Φ]T [Mref ][Φ], [Dref ] = [Φ]T [Dref ][Φ] and [Kref ] = [Φ]T [Kref ][Φ].
The function t 7→ qref(t) is the solution of the following non-linear dynamical equation,

[Mref ]q̈ref(t) + [Dref ]q̇ref(t) + [Kref ]qref(t) + f̃
NL

(uref(t), u̇ref(t)) = f̃
ref

(t) , (1)

where f̃
NL

(uref(t), u̇ref(t)) = [Φ]T fNL(uref(t), u̇ref(t)) and f̃
ref

(t) = [Φ]T fref(t).

2.2 Decomposition in one linear subsystem and one non-linear subsystem

The domain Ω is decomposed in two subdomains, the subdomain ΩA
ref which corresponds to

a non-linear subsystem made up of one part of the structure containing the localized non-

linearities and the subdomain ΩB
ref which corresponds to a linear subsystem made up of the

second part of the structure and which has a linear behaviour. Each uncoupled subsystem

is considered as fixed and therefore does not have rigid body displacement. These two sub-

sytems are coupled on the coupling interface ΓC . The finite element model of the lin-

ear subsytem ΩB
ref is analyzed in the frequency band of analysis B = [−ωmax, ωmax]. Let

[AB,ref (ω)] = −ω2[MB,ref ] + iω[DB,ref ] + [KB,ref ] be the dynamic stiffness matrix of this lin-

ear subsystem with free coupling interface, where [MB,ref ], [DB,ref ] and [KB,ref ] are the mass,

damping and stiffness matrices which are positive definite. Introducing the vector uB,ref
p (ω)

of the np internal DOF and the vector uB,ref
c (ω) of the nc coupling DOF on the interface. A

reduction of the linear subsystem is performed using the Craig Bampton method [4]. The block

decomposition of the reduced dynamical stiffness matrix related to the generalized coordinates

yB(ω) and the coupling DOF uB
c (ω) is written as

[AB,ref (ω)] =

[

A
B,ref
yy (ω) A

B,ref
yc (ω)

A
B,ref
cy (ω) A

B,ref
cc (ω)

]

. (2)

In order to perform the identification of stochastic simplified computational model, for

the reference computational model, we introduce an observation related to [ZB,ref(ω)] =
[AB,ref

cc (ω)] − [AB
cy(ω)][AB,ref

yy (ω)]−1[AB,ref
yc (ω)] which corresponds to the condensed dynam-

ical stiffness matrix of the linear subsystem on the coupling interface of the reference computa-

tional model. For all ω fixed in the frequency band B, the matrix [ZB,ref(ω)] is invertible. The

observation is then the finite positive real number J ref defined by

Jref =

∫

B

‖[ZB,ref(ω)]−1‖
2

F dω . (3)

3. STOCHASTIC NON-LINEAR SIMPLIFIED COMPUTATIONAL MODEL, IN-

CLUDING SYSTEM UNCERTAINTIES, AND IDENTIFICATION

In this part, the mean model of the non-linear simplified computational model system is intro-

duced. Then, the probabilistic nonparametric approach will be used to take into account data

uncertainties and model uncertainties in the linear subsystem of the simplified computational

model. The dispersion parameters controlling the dispersion on the mass, damping and stiffness

matrices will be identified using the maximum likelihood method.
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3.1 Mean reduced linear subsystem of the simplified computational model

The simplified computational model is constructed from the reference computational model.

Indeed, the linear subsytem of the simplified model is derived from the linear part of the ref-

erence model. The non-linear subsystems of the two models are the same (see Fig. 1). And

consequently, the degrees of freedom on the coupling interface are the same.

Figure 1. Reference model (left) and simplified model (right).

Using the same reduction method as the one used for the linear subsystem of the reference

model, we obtain the following mean reduced dynamical stiffness matrix for the linear subsys-

tem of the simplified model [AB(ω)] = −ω2[MB] + iω[DB] + [KB], where [MB], [DB] and

[KB] are respectively the mean reduced positive definite mass, damping and stiffness matrices

of the linear subsystem of the mean reduced computational simplified model. Let yB(ω) be the

vector of the N mean generalized coordinates and uB
c (ω) is the vector of the nc mean coupling

DOFs. Then, the block decomposition of the reduced stiffness matrix related to the generealized

coordinates yB(ω) and the coupling DOFs uB
c (ω) is written as

[AB(ω)] =

[

A
B
yy(ω) A

B
yc(ω)

A
B
cy(ω) A

B
cc(ω)

]

. (4)

3.2 System uncertainties modeling using the non-parametric probabilistic approach

The non-parametric probabilistic approach is used to take into account both model uncertainties

and data uncertainties in the dynamical system. This approach has recently been introduced (see

[1], [2]) and consists in replacing the matrices of reduced mean model by random matrices for

which the probability distributions are constructed by using the maximum entropy principle

with constraints defined by the available information. Such an approach has been validated for

different cases. Therefore, the mean reduced dynamical stiffness matrix [AB(ω)] is replaced by

the complex random matrix [AB(ω)] written as

[AB(ω)] = −ω2[MB] + iω[DB] + [KB] , (5)

in which the matrices [MB], [DB] and [KB] of the reduced mean system are replaced by the

random matrices [MB], [DB] and [KB] defined on a probability space (Θ, T ,P) and whose

probability distributions depend respectively on the dispersion parameters δB
M , δB

D and δB
K .

3.3 Identification of the dispersion parameters

The dispersion parameters are identified using the reference computational model. The obser-

vation of the stochastic simplified computational model is defined similarly to the observation

defined by Eq. (3) for the reference computational model. We then introduce the condensed
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dynamical stiffness matrix [ZB(ω)] = [AB
cc(ω)]− [AB

cy(ω)][AB
yy(ω)]−1[AB

yc(ω)] of the linear sub-

system on the coupling interface. Taking into account the properties of the probabilistic model,

it can be shown that for all ω fixed in the frequency band B, the random matrix [ZB(ω)] is

invertible almost surely and that the random variable J(δ) defined by

J(δ) =

∫

B

‖[ZB(ω)]−1‖
2

F dω , (6)

exists and has a finite mean value. It should be noted that the random variable J depends on

δ because the probability distributions of the random matrices [MB], [DB] and [KB] depend on

δ. Let x 7→ pJ(x, δ) be the probabilty distribution of the random variable J(δ) with respect to

dx. For any x fixed in [0, +∞[ and for any value of the vector δ in the admissible space Cad of

the dispersion parameters, the value pJ(x, δ) of the probability density function is estimated by

using the above proabilistic model and the Monte Carlo simulation. Note that the corresponding

deterministic value of J(δ) for the reference computational model is denoted by J ref given

by Eq. (3). The method used to identify vector δ is the maximum likelihood method (see for

instance [3]) for the random observation J(δ). We then have to solve the following optimisation

problem

δ
opt = argmax

δ∈Cad

(pJ(Jref ; δ)) , (7)

in which δ
opt is the identified value of vector δ.

3.4 Random dynamical transient response of the stochastic non-linear simplified com-

putational model

For the stochastic system, the displacement vector of the stochastic linear subsystem ΩB
simpl is

denoted by (UB
p (t), UB

c )(t). The displacement vector of the stochastic non-linear subsystem ΩA

is denoted by (UA
p (t), UA

c (t)). Then, the random variable Q(t) = (YA(t), YB(t), Uc(t)) which is

composed of the random generalized coordinates YA(t) of the random non-linear subsystem, of

the random generalized coordinates YB(t) of the linear subsystem and of the random coupling

DOF Uc(t), is solution of the random non-linear dynamical system

[M̃]Q̈(t) + [D̃]Q̇(t) + [K̃]Q(t) + fNL(Q(t), Q̇(t)) = f̃(t) . (8)

4. PROBABILISTIC MODEL OF THE STOCHASTIC LOAD WITH MODEL UN-

CERTAINTIES

The vector of the non zero components of the transient load is denoted by f(t). This load is, for

instance, due to the turbulent flow which then induces a stochastic load. Consequently, such a

load is modelled by a stochastic process {F(t), t ∈ R}. Since the probabilistic model developed

below will only be a simple representation of the real stochastic load applied to the structure,

model uncertainties must be introduced in order to improve the efficiency of the representation

which will be used for the identification of this stochastic load. We then take into account these

uncertainties in introducing an additional probabilistic model of uncertainties for this stochastic

process {F(t), t ∈ R} which is then rewritten as {Func(t), t ∈ R}.
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4.1 Construction of the stochastic load F(t)

The stochastic load is modelled by a Rm-valued second order stationary Gaussian stochastic

process {F(t), t ∈ R} defined on a probability space (Θ′, T ′,P ′) different from the probability

space (Θ, T ,P), indexed by R, centred, mean square continous on R, physically realizable

(causal) and whose matrix-valued autocorrelation function [RF(τ)] is integrable on R. This

stochastic process is then completely defined by its matrix-valued spectral density function

[SF(ω)]. In addition, we will assume that for all ω in R, the matrix [SF(ω)] is with values in the

set M+
m(C) of all the positive definite (m × m) hermitian matrices.

In addition, for all ω in B ⊂ R, the matrix valued spectral density function being posi-

tive definite, the Hermitian matrix [SF(ω)] is invertible and its Cholesky decomposition yields

[SF(ω)] = [LF(ω)]
∗

[LF(ω)], in which [LF(ω)] is an upper triangular matrix in Mm(C).

4.2 Defining stochastic load Func(t) including a probabilistic model of uncertainties

Model uncertainties are introduced using the probabilistic parametric approach of data uncer-

tainties consisting in modelling the deterministic function [SF] = {[SF(ω)], ω ∈ R} by a random

function with values in M+
m(C) and denoted by [SF] = {[SF(ω)], ω ∈ R}, defined on a proba-

bility space (Θ”, T ”,P”). Consequently, the stochastic process {Func(t), t ∈ R} indexed by R

with values in Rm, defined on the probability space (Θ′, T ′,P ′) × (Θ′′, T ′′,P ′′), is such that,

for all θ′ ∈ Θ′ and θ” ∈ Θ”, Func(t, θ′, θ′′) = F(t, θ′; [SF](θ′′)).

4.3 Construction of the random function [SF]

The random function [SF] is constructed using the information theory using the maximum

entropy principle (Shannon 48). The available information concerning the random function

[SF(ω)], ω ∈ R is the following. For all ω in R, [SF(ω)] is a random matrix with values in

M+
m(C) and by construction, it is written that for all ω in R, E{[SF(ω)]} = [SF(ω)]. Con-

sequently, for all ω in R, the random matrix [SF(ω)] is invertible almost surely, which means

that for P”-almost θ” in Θ”, the matrix [SF(ω, θ”)]−1 exists. By construction we will im-

pose that the random matrix [SF(ω)]−1 is a second order random variable which means that

E{‖[SF(ω)]−1‖2} < +∞. For all ω in B, the random matrix [SF(ω)] is normalized as [SF(ω)] =
[LF(ω)]∗[Gm][LF(ω)], in which the random matrix [Gm] is defined on the probability space

(Θ′′, T ′′,P ′′) and belongs to the normalized positive-definite ensemble denoted by SG+ (see

[2]). This random matrix which is independent of ω is such that [Gm] ∈ M+
m(R), E{[Gm]} =

[Im] and E{‖[Gm]−1‖
2

F} < +∞.The dispersion of [SF] is independant of ω and is controlled by

the dispersion parameter δF which is such that δF = {(1/m)E{‖[Gm] − [Im]‖}2

F}
1/2. In addi-

tion, it can be proved that the stochastic process Func(t) is a second order stationary stochastic

process, centred, mean square continous on R, physically realizable whose matrix-valued spec-

tral density function [SFunc(ω)] is such that [SFunc(ω)] = [SF(ω)] for all ω ∈ R. Nevertheless, it

can be proved that the stochastic process Func(t) is not Gaussian.

5. IDENTIFICATION OF THE STOCHASTIC LOAD

This section is devoted to the identification of the stochastic load {Func(t), t ∈ R)} defined

and studied in Section 4. using the random responses of the stochastic simplified model of the

structure excited by this stochastic loads and defined in Section 3.. This identification consists

in identifying the mean value [SF(ω)] of the matrix-valued spectral density function and the
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parameter δF that controls the level of uncertainties. In practice, the parameter [SF] which has

to be identified is in fact a function ω 7→ [SF(ω)]. This identification will be performed in

introducing a parametric representation of this function which is written as [SF(ω)] = [S(ω, r)]
for all ω ∈ R. Let Cr ⊂ Rνr be the admissible set of the parameter r. The vector r and the

dispersion parameter δF are identified separetly using two different cost functions.

5.1 Identification of the parameter r

Such an identification is performed using the stochastic equation deduced from Eqs. (8) in

which the deterministic load f(t) is replaced by the stochastic load F(t; [SF]). We then extract

the Rµ-valued random variable Zs(t) = (Zs,1(t), ..., Zs,µ(t)) which represents the observations

of the simplified stochastic model. Therefore, for all θ ∈ Θ, the matrix-valued spectral density

function {[SZs
(ω, θ)], ω ∈ R} of the stationary stochastic process {Zs(t, θ), t ∈ R} can be

estimated. Generating νθ independent realizations of the random matrices [M̃], [D̃] and [K̃],
the matrix-valued spectral density function [SZs

] is estimated by the Monte Carlo simulation

method, i.e., for all ω ∈ R, one has

[SZs
(ω)] =

1

νθ

νθ
∑

i=1

[SZs
(ω, θi)] . (9)

Let {Zexp
s (t) = (Zexp

s,1 (t), ..., Zexp
s,µ (t)), t ∈ R} be the Rµ-valued stationary stochastic process

which is measured for the manufactured real system and corresponding to the observation

stochastic process {Zs(t), t ∈ R}. The matrix-valued spectral density function {[SZ
exp
s

(ω)], ω ∈
R} of this stochastic process is estimated using the periodogram method. The parameter r

is then estimated minimizing the distance D(r) =
∫

B
‖[SZs

(ω, r)] − [SZ
exp
s

(ω)]‖2
F dω between

the matrix-valued spectral density function calculated with the stochastic simplified model and

the experimental matrix-valued spectral density function. We then have to solve the following

optimization problem

ropt = argmin
r∈Cr

D(r) , (10)

in which ropt is the identified value of the vector r.

5.2 Identification of the dispersion parameter δF

This identification is performed using the stochastic equation deduced from Eqs. (8) in which

the deterministic load f(t) is replaced by the stochastic load Func(t) = F(t; [SF]) (including

uncertainties). We then extract the Rµ-valued random variable Z′

s(t) = (Z ′
s,1(t), ..., Z

′
s,µ(t)).

For all (θ, θ′′) ∈ Θ × Θ′′, the matrix-valued spectral density function {[SZ′

s
(ω, θ, θ′′)], ω ∈ R}

of the stationary stochastic process {Z′

s(t, θ, θ
′′), t ∈ R} is estimated. One then define the

random variable Js such that Js(θ, θ
′′) =

∫

B
‖[SZ′

s
(ω, θ, θ′′)]‖2

F
dω. Generating νθ independent

realizations of the random matrices [M̃], [D̃] and [K̃] and νθ′′ independent realizations of the

random function {[SF(ω)], ω ∈ R}, the probabilty distribution x 7→ pJs
(x) of the random

variable Js with respect to dx is estimated by the Monte Carlo simulation method.From the

matrix-valued spectral density function {[SZ
exp
s

(ω)], ω ∈ R}, the variable J exp
s is calculated

such that J exp
s =

∫

B
‖[SZ

exp
s

(ω)]‖2

F
dω. Then, dispersion parameter δF is estimated using the

maximum likelihood method on the random varaiable Js, i.e,

δopt
F = arg max

δF∈CδF

(pJs
(Jexp

s , δF )) , (11)
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in which δopt
F is the identified value of the variable δF and CδF

is the admissible set for the

dispersion parameter δF .

6. APPLICATION

6.1 Data for the reference computational model

The reference computational model is made up of one linear subsystem and one non-linear

subsystem. The linear subsystem is made up of four parallel Euler beams fixed at their ends.

The non-linear subsytem is made up of a beam fixed at its ends, parallel to the other beams

and with one transverse symmetric elastic stop (two identical tranverse stops). The five beams

are linked by three transversal grids, each grid being modelled by four transverval springs (see

Fig. 2). Therefore, the coupling interface between the two subsytems is composed of three

points located in the neutral fiber of the beam of the non-linear subsystem. Each beam has

a constant circular section with radius 0.5 m, thickness 0.2 m, length 16 m, mass density

250 kg/m3, Young’s modulus 450 N/mm2 and dampding rate 0.02. The Young’s modu-

lus of the beam of the non-linear subsystem is 750 N/mm2.The elastic stops are localized

at 6 m from the left fixed end, the gap of each stop is 1.5.10−6 m and the shock stiffness is

108 N/m. The stiffness of each spring of the tranversal grid is 4.107 N/m. Each beam is

modelled by eight beam Euler finite elements of equal lengths and nine nodes. The DOF of

the two nodes at the ends of the beam are locked. The twelve springs in the three tranver-

sal grids are modelled by twelve spring elements. We are only interested in the transversal

displacements in direction y for the plane xy of the beam of the non-linear subsystem (see

Fig. 2). Consequently, each beam has 14 DOF of y translation and z rotation. The beam of

Figure 2: (a) Reference model:3D view.(b) Transversal view.(c) Tranversal view in the plane of
one grid:the 6 diagonal lines represent the 12 springs.

the nonlinear subsystem is exited by 7 transversal forces applied following the y direction. The

vector of these 7 forces are denoted by fref . Then {fref(t), t ∈ R} is modeled by a second-

order centred stationary Gaussian stochastic process for which its matrix-valued spectral den-

sity function [Sf ref (ω)] is such that (1) for all i in {1, . . . , 7}, [Sf ref (ω)]ii is a constant equal to

1.3N2/Hz on the frequency band of analysis B = [−100, 100] Hz and (2) for all i and j in

{1, . . . , 7}, |[Sfref (ω)]ij|
2 = γij(ω)[Sfref (ω)]ii[Sfref (ω)]jj where γij(ω) = exp(−|xi − xj|/λ) in

which |xi−xj | is the distance between the two excited points and λ = 4 m is a reference lenght

related to the correlation lengh. In the frequency band of analysis B, there are 21 eigenfrequen-

cies for the linear system made up of the two coupled subsystems without the stops. The first

three eigenfrequencies are 5.78 Hz , 15.9 Hz and 31.1 Hz and correspond to the eigenmodes for
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which all the transversal displacements of the five beams are in phase.

6.2 Data for the simplified computational model

This part is devoted to the construction of a simplified computational model that will be used

to identify the stochastic loads. The simplified computational model consists in replacing the

linear substem composed of 4 beams by a linear subsystem composed of an equivalent Euler

beam (see Fig. 3). The non-linear subsystem is the same for the 2 models. The section of the

Figure 3. Simplified model.

equivalent beam is arbitrarily defined and is chosen as a constant circular section with radius

0.5 m, thickness 0.2 m, length 16 m. Its Young’s modulus and its the mass density are identified

so that the three first eigenfrequency of the simplified computational model are the same as

the three first eigenfrequency of the reference computational model. It should be noted that

this choice of simplified model as an equivalent beam does not allow several eigenfrequencies

to be correctly fitted. After identification, the equivalent beam has a mass density 4 ∗ 250 =
1000 kg/m3 and a Young’s modulus 4∗450 = 1800 N/mm2. In the frequency band of analysis

B, there are 10 eigenfrequencies for the linear system made up of the two coupled subsystems

without the stops. The first three eigenfrequencies of the mean simplified computational model

are 5.74 Hz , 15.3 Hz and 30.8 Hz which are to compare to 5.78 Hz , 15.9 Hz and 31.1 Hz of

the reference computational model.

6.3 Comparison between the dynamical response of the reference computational model

and the dynamical response of the mean simplified computational model.

For the two models, the stationary stochastic response is calculated in the time interval [0, 220] s
using an explicit Euler integration scheme for which the time step is 3 ms. Let Pobs be the im-

pact point of the non-linear subsystem. The power spectral density function of the stochastic

transversal displacement and the stochastic rotation responses in point Pobs (see Fig. 4) is esti-

mated using the periodogram method. It can be seen that the prevision given by the mean sim-

plified computational model is good in the frequency band [0, 35] Hz. Nevertheless, there are

significant differences in the frequency band [35, 100] Hz induced by model uncertainties. This

is the reason why the model uncertainties are taken into account in order to extend the domain

of validity of the mean simplified computational model in the frequency band [35, 100] Hz.

6.4 System uncertainties modelling and dispersion parameter identification.

The non-parametric probabilistic model of model uncertainites introduced in Section 3.2 is

used for stiffness part of the linear subsystem of the mean simplified computational model. We

then have to identify the dispersion parameter δ = (δB
K). The estimation of each probability
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Figure 4: Power spectral density function (PSD) for the transversal displacement (left figure)
and the rotation (right figure) responses. Comparison between the reference computational
model in point Pobs (thin line) and the response given by the mean simplified computational
model (thick line).

density function in Eq. (7) is carried out with 200 realizations for the Monte Carlo simulation in

order to solve stochastic simplified computational model. Fig. 5 shows the likelihood function

calculated using Eq. (7) with Cad = [0,
√

23/27]. The maximum is reached for δ
opt = 0.45.

Using Eq. (8) the confidence region associated with a probability level Pc = 0.95 of the reponse
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Figure 5. Graph of function δ 7→ pJ(Jref ; δ).

of the stochastic simplified computational model can then be estimated. The calculations are

carried out with 100 simulations. The comparison between the reference solution with the

response constructed with the stochastic simplified computational model is given in Fig. 6. This

figure displays the confidence region of the power spectral density function of the stochastic

transversal displacement and the stochastic rotation in point Pobs.

6.5 Probabilistic model of the stochastic load F(t).

We recall that the real model of the stochastic load used to construct the experimental responses

in Section 6.4 is now assumed unknown and has to be identified using the stochastic simplified

computational model. Consequently, we then have to define a model as simple as possible

for the stochastic load F(t) introduced in Section 4.1. We have then chosen to model F(t) as
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Figure 6: Power spectral density function (PSD) for the stochastic transversal displacement (left
figure) and stochastic rotation (right figure) in point Pobs: confidence region calculated with
the simplified model (thin line) and reference model (thick line).

{F(t) = (T (t), M(t)), t ∈ R} in which T (t) is a tranversal force and M(t) a moment applied

to the middle of the nonlinear beam (see Fig. 7). This force and this moment are second order

Figure 7. Definition of the stochastic load.

centred stationary Gaussian independent stochastic processes. So, they are both completely

defined by their power spectral density functions ST(ω) and SM(ω). The matrix-valued spectral

density function of the stochastic process {F(t), t ∈ R} is then defined by

[SF(ω)] =

[

ST(ω) 0
0 SM(ω)

]

, ω ∈ R . (12)

It is assumed that the function ω 7→ [SF(ω)] is constant in the frequency band of analysis B.

As explained in Section 4.2, the stochastic process {Func(t), t ∈ R} including the probabilistic

model of uncertainties is contructed from the stochastic process {F(t), t ∈ R} .

6.6 Identification of the stochastic load Func(t).

The function ω 7→ [SF(ω)] which is a constant diagonal hermitian matrix over the frequency

band of analysis B can then be rewritten as

[SF(ω)] = [S(ω, r)] =

[

r1 0
0 r2

]

, ω ∈ B , r ∈ Cr , (13)

in which the admissible space Cr = {r = (r1, r2); r1 > 0, r2 > 0}. This vector r is iden-

tified using the trial method, consisting in calculating the cost function D(r) for 100 val-

ues of the vector r. Then, the optimal value ropt defined by Eq. (10) is such that ropt =
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(18 N2/Hz, 20 (N/m)2/Hz). The dispersion paramater δF is identified using Eq. (11) with

CδF
=]0,

√

3/7[. The maximum of the likelihood function δF 7→ pJs
(Jexp

s ; δF ) is reached for

δopt
F = 0.04.

7. CONCLUSIONS

The problem under consideration is the identification of a stochastic load applied to a struc-

ture through the knowledge of dynamical responses of the structure which has a non-linear

behaviour. This identification is performed using a computational non-linear dynamical model

of the structure. Since there are both data uncertainties and model uncertainties in the compu-

tational model used to perform the identification, the first step of the development consists in

introducing a probabilistic model of uncertainties in the structure. In addition, the identification

of the stochastic load is carried out using a parametric representation of the stochastic process

in order that the optimization problem relative to this inverse problem be feasible. The intro-

duction of such a parametric representation induces again model uncertainties on the stochastic

loads. The second step of the development then consists in introducing a probabilistic model of

uncertainties concerning the stochastic loads. We have then presented a complete methodology

to identify the stochastic load taking into account uncertainites in the computational model and

in the stochastic loads representation. With respect to the state of the art, this work proposes a

new way to perform the experimental identification of a stochastic load with a robust method.

The robustness is introduced in taking into account (1) uncertainties in the simplified compu-

tational non-linear dynamical model used to carry out this identification and (2) uncertainties

in the mathematical representation of the stochastic process which models the loads to be iden-

tified. The application presented is representative of a real industrial system and validates the

methodology proposed.
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