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ABSTRACT

In order to take into account the effect of insulation layers in complex dynamical systems for

low- and medium-frequency ranges such as car booming noise analysis, one introduces a sim-

plified stochastic model of insulation layers based on the use of the fuzzy structure theory and

of a probabilistic approach of model uncertainties and data uncertainties. Such a stochastic

model improves the numerical prediction robustness of the vehicle models without increasing

the number of generalized degrees of freedom in the stochastic reduced computational model.

An experimental validation of the proposed theory using the above simplified stochastic model

is presented for an uncertain structure (plate connected to an elastic framework on its edges)

coupled with an insulation layer.

1. INTRODUCTION

This paper deals with complex dynamical master systems coupled with an insulation layer in

low- ([15, 200] Hz) and medium-frequency ([200, 450] Hz) ranges. A usual approach consists

of a finite element model for both the master system and the insulation layer (see [1, 2]) yield-

ing a high number of physical and generalized degrees of freedom (DOF). For example, a car

booming noise analysis ([30, 250] Hz) model involves about two millions physical DOF and

one thousand elastic modes. A finite element model for the insulation layer would add up to

five millions physical DOF and twenty thousand elastic modes would appear in the frequency

band of analysis. Other kinds of insulation layer modelling have been proposed in the litterature
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(see [3–7]). These models are based on analytical representations and mixed methods and do not

increase systematically the number of DOF. In this paper, the insulation layers considered have

a rather simple dynamic behaviour in the frequency band of analysis and do not require an ad-

vanced material modelling like the Biot equations. Due to the actual variability of thicknesses,

curvature and material properties, the insulation layer is considered complex and therefore, a

statistical description of its internal DOF is proposed. We are naturally inclined to use the fuzzy

structure theory (introduced in [8]) which fits this framework and has already been validated

(see [8–12]). The representation of the insulation layer using the fuzzy structure theory is sim-

ply characterized by a few physical parameters (see [13, 14]): the participating mass, the modal

density and the internal damping rate. In the original construction of the fuzzy structure the-

ory, a parametric probabilistic model of uncertainties was used to take into account the data

uncertainties. Today, it is well understood that such an approach cannot address model uncer-

tainties. Recently, a non-parametric probabilistic approach has been introduced (see [15–17]),

encompassing both data and model uncertainties. The use of such a non-parametric probabilis-

tic approach allows to take into account both data and model uncertainties in the insulation layer

simplified model. That constitutes a new extension of the fuzzy structure theory with respect to

the model uncertainties problems.

This paper is divided as follows. Section 2. deals with the construction of the mean computa-

tional model of the structure including the mean simplified model of the insulation layer. Some

details of the construction of the simplified model using the fuzzy structure theory are reminded

in this section. In Section 3., the construction of the stochastic computational model including

the model of uncertainties is presented. Section 4. is devoted to the experimental identification

of the dispersion parameters of the stochastic computational model.

2. REDUCED MEAN COMPUTATIONAL MODEL WITH THE SIMPLIFIED MEAN

MODEL OF INSULATION LAYER

2.1 Mean finite element model with fuzzy structure modelling

The finite element method [5, 18] is used to solve numerically the classical equations of a struc-

tural boundary value problem. The structure of the car is denoted by the superscript s. The

insulation layer is modelled using the fuzzy structure theory (see [13, 14]). We remind here

the steps of such a construction. The insulation layer is assumed to be equivalent to a sur-

facic distribution of single-DOF oscillators on the interface Γs shared by the structure and the

insulation layer. These DOF move in the normal direction to the interface. We perform a statis-

tical average of the eigenfrequency of these DOF that allows the construction of the fuzzy co-

efficient as(ω; n(ω), µ(ω), ξ(ω)) = −ω2as
R(ω; n(ω), µ(ω), ξ(ω)) + iωas

I(ω; n(ω), µ(ω), ξ(ω)),
where n(ω) is the mean modal density, µ(ω) the mean participating mass and ξ(ω) is the mean

damping rate of the insulation layer. The dependency in n(ω), µ(ω), ξ(ω) of coefficients as, as
R

and as
I will be skipped from now on for the sake of brevity. The coefficients as

R(ω) and as
I(ω)

are defined by

as
R(ω) = µ(ω)n(ω)

[
1

n(ω)
− ω λ(ω) Θ

R
(ω)

]
, (1)

as
I(ω) = µ(ω)n(ω) ω2λ(ω) Θ

I
(ω) , (2)

where the functions Θ
R

, Θ
I

and λ are defined in Appendix B. One then considers a finite

element mesh of the structure Ωs. Let us be the complex vector of the ms DOF of the structure
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corresponding to the finite element discretization of the displacement field u. The mean value

of a variable M is denoted by M . The mean computational model for the master structure

coupled with the insulation layer can be written as,

[ [As(ω)]+as(ω)[Bs]] × us(ω) = f s(ω) , (3)

where [As(ω)] is a complex (ms × ms) matrix such that [As(ω)] = −ω2[Ms] + iω[Ds(ω)] +
[Ks(ω)] in which [Ms], [Ds(ω)] and [Ks(ω)] are the mass, damping and stiffness matrices of the

structure in vacuo. The matrix as(ω)[Bs] is the matrix associated with the model of insulation

layer using the fuzzy structure theory where (ms ×ms) real matrix [Bs] is the matrix associated

to the bilinear form bs(us, δus) =
∫
Γs

(ns(x).us(x)) (ns(x).δus(x)) ds(x) where us and

δus belong to the admissible space of the displacement field of the structure.

2.2 Reduction of the mean computational model

Using ns structural elastic modes in vacuo, the reduced mean computational model of the dy-

namical system is written as

us(ω) = [Φs]qs(ω) , (4)

f s(ω) = [Φs]T f s(ω) , (5)

[ [As(ω)] + as(ω)[Bs] ] × qs(ω) = f s(ω) (6)

in which [Φs] is the (ms × ns) real matrix of the elastic modes of the structure. The complex

(ns×ns) matrix [As(ω)] is such that [As(ω)] = −ω2[M s]+iω[Ds(ω)]+[Ks(ω)] in which [M s],
[Ds(ω)] and [Ks(ω)] are the generalized mass, damping and stiffness matrices of the structure.

3. STOCHASTIC COMPUTATIONAL MODEL WITH A NON-PARAMETRIC

MODEL OF UNCERTAINTIES

As explained above, the quality of the predictions of the mean computational model can be

improved in implementing a non-parametric probabilistic model of uncertainties encompassing

both data and model uncertainties. Therefore, the mean generalized matrices [M s], [Ds(ω)] and

[Ks(ω)] are replaced by the random matrices [Ms], [Ds(ω)], [Ks(ω)] respectively. It should

be noted that the random matrix associated with as(ω)[Bs] is as(ω)[Bs] in which [Bs] is the

random matrix associated with [Bs]. The level of uncertainties of these random matrices is

controlled by the dispersion parameters δMs , δDs , δKs and δBs which are independent of the

matrix dimension and of the frequency. The development of the construction of the probability

model of all these random matrices will not be detailed here. Such an approach is presented

in [15, 16] and its application to a car booming noise analysis without insulation layer can be

found in [19]. In this section, we simply remind some properties of these matrices. They are

independent second-order random variables. For all ω in  , the random matrices [Ms], [Ds(ω)]
and [Ks(ω)] are with values in !+

ns
("); the random matrix [Bs] is with values in !+0

ns
("). The

mean values are such that

E{[Ms]} = [M s] ,

E{[Ks(ω)]} = [Ks(ω)] ,

E{[Ds(ω)]} = [Ds(ω)] , (7)

E{as(ω)[Bs]} = as(ω)[Bs] ,
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where E is the mathematical expectancy. Moreover those matrices have the required mathemat-

ical properties (see. [17]). For example, we give below the detail of the construction for the

random matrix [Ks(ω)]. The matrix [Ks(ω)] can be written as [Ks(ω)] = [LKs(ω)]T [LKs(ω)]
corresponding to the Choleski decomposition of the positive-definite matrix [Ks(ω)]. We then

introduce the random matrix [Ks(ω)] = [LKs(ω)]T [GKs ][LKs(ω)] where the random matrix

[GKs ] belongs to the SG+ ensemble defined in [16] and is independent of the frequency. The

dispersion parameter δKs of this random matrix [Ks(ω)] is independent of the dimension and of

the frequency and is defined by δKs = (E
{
||[G

Ks ] − [G
Ks

]||2
F

}
/||[G

Ks
]||2

F
)1/2 in which ||K||

F

is the Frobenius norm defined by ||K||2
F

= tr(KT K). For all ω ∈  , let Qs(ω) be the random

vector in !ns of the generalized DOF of the structure. In the same way, one introduces the

generalized stiffness random matrices written,

[As(ω)] = −ω2 [Ms] + iω [Ds(ω)] + [Ks(ω)] , (8)

where [As(ω)] is a random matrix in MS
ns

(!) for all ω ∈  . Equations. (6) and (8) allow the

stochastic reduced computational model to be written as,

[ [As(ω)] + as(ω)[Bs] ] × Qs(ω) = f s(ω) , (9)

where the vector of the random structural displacement Us(ω) is written as, for all ω ∈  ,

Us(ω) = [Φs]Qs(ω) . (10)

4. STOCHASTIC SOLVER AND IDENTIFICATION OF THE DISPERSION PARA-

METERS - EXPERIMENTAL VALIDATION

4.1 Experiments

Experiments have been made in PSA Peugeot Citroën noise and vibration laboratory. The

experimental configuration is made up of homogeneous, isotropic and slightly damped thin

plate (steel plate with a constant thickness) connected to an elastic framework on its edges.

The connection between the plate and the framework is uncertain. This dynamical system is

hung by four springs in order to avoid the rigid body modes. The highest eigenfrequency of

suspension is 9 Hz while the lowest eigenfrequency of the elastic modes is 43 Hz. The exci-

tation is a point force applied to the framework and excites the dynamical system mainly in

bending mode in the frequency band of analysis  =]0, 300] Hz. The number of sampling

frequencies is Nf = 300. The frequency resolution is ∆f = 1 Hz. Only one experiment is

performed for this structure. The frequency response functions ω 7→ γexp
i (ω) are identified

on frequency band  for nobs = 60 normal accelerations in the plate. The following experi-

mental frequency response function ω 7→ rexp(ω) = 10 log10 (
∑nobs

i=1 |γexp
i (ω)|2) is then con-

structed. The mean computational model is a finite element model having Ndofs = 57, 768
structural dofs. The reduced mean computational model is constructed with ns = 240 structural

modes. The mean computational model has been updated with respect to the Young modu-

lus, the mass density and the damping coefficient of the plate and of the framework using the

experimental values of the two first elastic modes and the ninth elastic mode (first elastic tor-

sion mode of the structure). The updated mean computational model will simply be called

below the mean computational model. The following experimental frequency response func-

tion ω 7→ rs(ω) = 10 log10 (
∑nobs

i=1 |γi(ω)|2)is then constructed. The stochastic solver used is

based on a Monte Carlo simulation. The methodology used is the following:

E96



(1) The realizations of random variables Us(ω; θℓ) are constructed for all ℓ ∈ [1, nr]. For

each realization Us(ω; θℓ), the observation Rs(ω; θl) = 10 log10 (
∑nobs

k=1 |ω
2Us

k(ω; θl)|
2) is cal-

culated.

(2) The mathematical statistics are used to construct the estimations and a convergence anal-

ysis is performed with respect to the number of realizations and to the number of modes.

(3) An innovative method [20] in order to identify the parameters of dispersion of the non-

parametric model of uncertainties is used. This method is based on the maximum likelihood

coupled with a statistical reduction of information.

4.2 Convergence analysis

The convergence analysis with respect to nr and ns is carried out in studying the convergence

of the estimated second-order moment of Qs(ω) for a fixed δ and is defined by |||Qs(ω)|||2
 

=∫
 

E{||Qs(ω)||2}. An estimation is provided by the following function,

(nr, ns) 7→ Convs(nr, ns) =
1

nr

nr∑

j=1

∫

 

||Qs(ω, θj)||
2dω. (11)

Graph of function (nr, ns) 7→ Convs(nr, ns) is shown at FIG. 1 where one can see the conver-

gence with respect to the number of structural modes taken and to the number of realizations.

One can see that the solver is converged for ns = 103 modes and nr = 800 realizations. A high

value of the parameter of dispersion δ = 0.8 is used (generally, such a high level of uncertainties

is not reached for real applications). The convergence for lower values of delta is then ensured.

The convergence with respect to the number of modes is valid in the case of the model of the

plate without insulation layer as well as in the case of the model of the plate with the insulation

layer.
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Figure 1. Graph of (nr, ns) 7→ Convs(nr, ns)

4.3 Estimation of the mean value and of the confidence region

For all ω in  , let w 7→ FRs(ω)(w) be the distribution function (continuous from the right) of

random variable Rs(ω) defined in Section 4.1, such that FRs(ω)(w) = P (Rs(ω) ≤ w). For
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0 < p < 1, the pth quantile or fractile of FRs(ω) is defined as (see [21]),

ζ(p) = inf
FRs(ω)≥p

{w} . (12)

The upper envelope w+(ω) and the lower envelope w−(ω) of the confidence region are defined

by

w+(ω) = ζ

(
1 + Pc

2

)
, w−(ω) = ζ

(
1 − Pc

2

)
, (13)

and the probability Pc can be calculated using the following equation,

P(w−(ω) < Rs(ω) ≤ w+(ω)) = Pc . (14)

The estimation of w+(ω) and w−(ω) is performed by using the sample quantiles (see [21]).

Let w1 = Rs(ω; θ1), . . . , wnr
= Rs(ω; θnr

) be the nr independent realizations of the ran-

dom variable Rs(ω). Let w̃1(ω) < . . . < w̃nr
(ω) be the order statistics associated with

w1(ω), . . . , wnr
(ω). Therefore, one has the following estimation

w+(ω) ≃ w̃j+(ω) , j+ = fix (nr(1 + Pc)/2) , (15)

w−(ω) ≃ w̃j−(ω) , j− = fix (nr(1 − Pc)/2) , (16)

where fix(z) is the integer part of the real number z.

4.4 Identification of the dispersion parameters δMs
, δDs

and δKs

This section deals with the identification of the dispersion parameters of the master structure

δMs
, δDs

and δKs
. The value of the damping dispersion parameter δDs

is fixed a priori to

δDs
= 0.3 according to the conclusion of [19]. In order to verify that the random response is not

really sensitive (see [19]) to the value of the parameter of dispersion δDs
, we have performed

a sensitivity analysis with respect to δDs
varying in the interval [0.2, 0.4] where δMs

and δKs

are fixed to the value 0.1 (small value of the dispersion parameter for the structural mass and

stiffness matrices). With this sensitivity analysis, we have effectively verified that the influence

of this dispersion parameter is negligible. Moreover, it is assumed that δMs
= δKs

(see [19]) in

the identification procedure using the maximum likelihood method coupled with a statistical re-

duction of information (see [20]). For this step, Eq. (9) is then replaced by the random equation

[As(ω)]Qs(ω) = f s(ω) relative to the uncertain structure without insulation layer. Figure 2

displays the graph of ω 7→ Rs(ω) for the identified parameters δMs
= δKs

= 0.3 and δDs
= 0.3.

4.5 Comments on the results of the model without the insulation

Figure 2 shows the stochastic response which encompasses 95% of the measurement. The pre-

diction of the mean model is improved by the stochastic model. Indeed, in the graph displayed

in Fig. 2, the wider the gray regions are, the less robust to the uncertainties the mean model is.
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Figure 2: Graph of ω 7→ Rs(ω) for the structure without insulation layer: measurements (thick
black line) ; stochastic confidence zone (gray region) ; mean stochastic response (thick dark
gray line)
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Figure 3: Graph of ω 7→ Rs(ω) for the structure with insulation layer: measurements (thick
black line) ; stochastic confidence zone (gray region) ; mean stochastic response (thick dark
gray line)
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4.6 Identification of the dispersion parameter δBs

This section is devoted to the identification of the dispersion parameter δBs
relative to the

stochastic simplified model of the insulation layer. Numerical simulations have shown that

the sensitivity of the response of the structure coupled with the insulation layer is smaller than

the sensitivity of the response induced by the dispersion parameters of the structure. Conse-

quently, the identification of δBs
cannot be carried out with the uncertain structure. Parameter

δBs
must thus be identified with a “reference structure” for which there is no uncertainty (note

that the insulation layer cannot be analyzed alone and has to be coupled with a structure). The

methodology proposed consists

(1) in defining a “reference structure” and analyzing the response of this “reference structure”

coupled with the insulation layer. This reference coupling system is analyzed by the finite el-

ement method using a fine mesh for the insulation layer and the “reference structure”. This

deterministic computational model allows the responses to be computed. These responses are

defined below as the “numerical experiments”. Note that this computational model does not

represent the experimental configuration, but this choice is completely coherent because the

stochastic simplified model of the insulation layer is independent of the choice of the structure.

This model is constituted of a thin plate similar to the plate of the experimental configuration

presented in Section 4.1;

(2) in constructing a stochastic computational model constituted of the computational model

above for the “reference structure” and of the stochastic simplified model for the insulation layer

which depends on δBs
. The insulation layer model is similar to the one presented in Section 4.1

For this second step, Eq. (9) is then replaced by the random equation [As
ref(ω) + as(ω)[Bs]]

Qs(ω) = f s(ω). The identification of parameter δBs
is performed following the above method-

ology. For this identified value of δBs
, Fig. 3 displays the graph of ω 7→ Rs(ω) for the uncertain

master structure coupled with the uncertain insulation layer with the following identified dis-

persion parameters δMs
= δKs

= 0.3, δDs
= 0.3 and δBs

= 0.3. Figure 3 shows that the

comparison of the stochastic model predictions with the measurements is good in the frequency

band of analysis.

5. CONCLUSION

In this paper, a method has been presented to model insulation layers with a fuzzy structure

approach combined with a non-parametric probabilistic model of uncertainties. This extension

of the fuzzy structure theory (1) allows the dynamics of the insulation layer to be taken into

account without increasing the number of degrees of freedom, (2) allows a representation of the

insulation layer in terms of its physical parameters such as the modal density, the participating

mass and the internal damping rate and (3) gives a robust prediction regarding both parameters

and model uncertainties. An experimental comparison validated the theory proposed.
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A TABLE OF NOTATIONS

a : mean value of scalar a
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u : mean value of vector u

[M] : mean finite element matrix in physical coordinates

[M ] : mean finite element matrix in generalized coordinates

[M] : random matrix

U : random vector

E : mathematical expectation

B FUNCTIONS OF THE FUZZY COEFFICIENTS

For all ω ∈  ,

Θ
R
(ω) =

1

4
√

1−ξ(ω)2
ln

{
N

+
(̃b(ω), ξ(ω)) N

−

(ã(ω), ξ(ω))

N−(̃b(ω), ξ(ω)) N+(ã(ω), ξ(ω))

}
, (17)

Θ
I
(ω) =

1

2
√

1 − ξ(ω)2

[
Λ(̃b(ω), ξ(ω)) − Λ(ã(ω), ξ(ω))

]
, (18)

N±(u, ξ) = u2 ± 2 u
√

1 − ξ2 + 1 , Λ(u, ξ) = arctan

{
u2 + 2ξ2 − 1

2ξ
√

1 − ξ2

}
, (19)

ã(ω) = sup

{
0, 1 −

1

2ωn(ω)

}
, b̃(ω) = 1 +

1

2ωn(ω)
, (20)

ℓ̃(ω) =
1

b̃(ω) − ã(ω)
, λ(ω) =

ℓ̃(ω)

ωn(ω)
. (21)
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