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Introduction

A biomechanical system such as the human cortical bone is often very complex to model in regard to the microstructure of the materials made up of live tissues. Simplifications concerning the geometry and the constitutive equations are used to construct a simplified mechanical model (see for instance [START_REF] Macocco | Elastoacoustic model with uncertain mechanical properties for ultrasonic wave velocity prediction: Application to cortical bone evaluation[END_REF][START_REF] Desceliers | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[END_REF][START_REF] Desceliers | Identification of an anisotropic elasticity tensor for an elastic layer using transient wave propagation in a fluid-solid multilayer -Model with uncertainties and Experiments[END_REF]) which allows the response of the biomechanical system to be predicted. Nevertheless, this simplified model is a rough approximation of the real biomechanical system and the main source of uncertainties is related to the constitutive equations. In order to improve the simplified model, these uncertainties have to be taken into account. In this paper, the biomechanical system under consideration is the human cortical bone, with the skin and the marrow. The simplified mechanical model presented in [START_REF] Desceliers | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[END_REF][START_REF] Desceliers | Identification of an anisotropic elasticity tensor for an elastic layer using transient wave propagation in a fluid-solid multilayer -Model with uncertainties and Experiments[END_REF] is used to predict the transient response of the cortical bone in the ultrasonic range. The skin, the muscle, the cortical bone and the marrow are modeled as a fluid-solid semi-infinite multilayers system. In addition, the mean model of the constitutive equation of the solid is represented by an effective elasticity tensor that corresponds to a homogeneous transverse isotropic solid medium. In order to validate this simplified mechanical model, an experimental database has been constructed using the axial transmission technique [START_REF] Bossy | Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: A 2D simulation study[END_REF][START_REF] Bossy | Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models[END_REF][START_REF] Camus | Analysis of the axial transmission technique for the assessment of skeletal status[END_REF]. The biomechanical system is submitted to an acoustical impulse in the ultrasonic range and the velocity of the first arriving signal is experimentally measured. Each element of the experimental database is a realization of a random tensor whose probabilistic model is presented in this paper. Then a stochastic simplified model is developped by modeling the effective elasticity tensor with a random tensor whose probabilistic model is presented in [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]. The stochastic simplified model parameters that have to be identified are the mechanical properties of the solid layer i.e, the mass density, the coefficients of the transverse isotropic tensor (the lateral and transversal Young moduli, the lateral and transversal Poisson coefficients and the lateral and transversal shear moduli) and a dispersion coefficient describing the uncertainties level of the tensor. This identification is carried out by solving a stochastic inverse problem. A computational optimization problem is then introduced, consisting in minimizing a cost function with respect to the stochastic simplified model parameters. This cost function is defined by taking into account the type of experimental observations obtained by using the axial transmission technique. The simplex algorithm is used to solve the optimization problem. At each iteration of the simplex algorithm, the value of this cost function is calculated using a stochastic solver based on the Monte Carlo method. Thus, for each realization of the random effective elastic tensor, it is necessary to predict a transient elastic wave response of a fluid-solid semi-infinite multilayer system submitted to an acoustical impulse. Nevertheless, the numerical cost for constructing such a transient elastic wave can be prohibitive for the sotchastic inverse problem if usual computational methods are used. Consequently, in order to decrease the computational cost of the optimization problem, a new fast, hybrid numerical method developped in [START_REF] Desceliers | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[END_REF] is used. This mechanical solver is based on a time-domain formulation associated with a space Fourier transform for the infinite dimensions and a finite element approximation for the finite dimension. A complete numerical application concerning the human cortical bone is presented. The ultrasonic axial transmission technique is used to construct an experimental database. For this, a device has been designed and is made up of several receivers and transmitters. A coupling gel is applied at the interface between the device and the skin of a patient. Each transmitter generates an acoustical impulse in the ultrasonic range that propagates in the coupling gel, the skin, the muscle, the cortical bone and the marrow. Each receivers records the signal at different positions allowing the velocity of the first arriving signal to be experimentally obtained (see Fig. 2). Such experiments are applied to a given set of patient yielding an experimental database that consists of 2747 measurements of the velocity of the first arriving signal on 168 human radii. For each specimen, the velocity of the first arriving signal is a realization of a random variable V exp . Thus, the database is made up of N = 2747 statistical independent realizations V exp ( θ1 ), . . . , V exp ( θN ) of random variable V exp . Let V exp be the 

Experimental database

V exp = 1 N N j=1 V exp ( θk ) .
Let δ exp be the experimental coefficient of variation such that

δ exp = N k=1 (V exp ( θk ) -V exp ) 2 √ N V exp .
We then construct the random variable V exp such that E{V exp } = V exp and such that the coefficient of variation δ exp of V exp is δ exp = δ exp and where E{•} is the mathematical expectation.

Simplified model

A simplified model of the biomechanical system made up of the coupling gel, the skin, the cortical bone and the marrow has been developped in [START_REF] Desceliers | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[END_REF][START_REF] Desceliers | Identification of an anisotropic elasticity tensor for an elastic layer using transient wave propagation in a fluid-solid multilayer -Model with uncertainties and Experiments[END_REF]. This simplifed model is composed of an elastic solid semi-infinite layer between two acoustic fluid semi-infinite layers (see Fig. 3). Let 5(O, H 1 , H 2 , H 3 ) be the reference Cartesian frame where O is the origin of the space and
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. Geometry of the multilayer system (H 1 , H 2 , H 3 ) is an orthonormal basis for this space. The coordinate of the generic point [ in Ê 3 is (x 1 , x 2 , x 3 ). The thicknesses of the layers are denoted by h 1 , h and h 2 . The first acoustic fluid layer occupies the open unbounded domain Ω 1 , the second acoustic fluid layer occupies the open unbounded domain Ω 2 and the elastic solid layer occupies the open unbounded domain Ω. 3) be respectively the boundaries of Ω 1 , Ω and Ω 2 in which Γ 1 , Σ 1 , Σ 2 and Γ 2 are the planes defined by

Let ∂Ω 1 = Γ 1 ∪ Σ 1 , ∂Ω = Σ 1 ∪ Σ 2 and ∂Ω 2 = Σ 2 ∪ Γ 2 (see Fig.
Γ 1 = {x 1 ∈ Ê , x 2 ∈ Ê , x 3 = z 1 } Σ 1 = {x 1 ∈ Ê , x 2 ∈ Ê , x 3 = 0} Σ 2 = {x 1 ∈ Ê , x 2 ∈ Ê , x 3 = z} Γ 2 = {x 1 ∈ Ê , x 2 ∈ Ê , x 3 = z 2 } in which z 1 = h 1 , z = -h and z 2 = -(h + h 2 )
. Therefore, the domains Ω 1 , Ω and Ω 2 are unbounded along the transversal directions H 1 and H 2 whereas they are bounded along the vertical direction H 3 . Let X be the displacement field of the solid elastic and, for k = 1, 2, let p k be the pressure field in the fluid occupying the domain Ω k . We then have (see for instance [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF][START_REF] Pierce | Acoustics: An Introduction to its Physical Principles and Applications[END_REF])

ρ ∂ 2 X ∂t 2 -div = 0 , [ ∈ Ω , t > 0 , (1) 
1 c 2 k ∂ 2 p k ∂t 2 -∆p k = ∂Q k ∂t , [ ∈ Ω k , t > 0 , (2) 
where ρ and are the mass density and the Cauchy stress tensor field of the solid; div is the divergence operator with respect to [; c k is the wave velocity of the fluid occupying domain Ω k ; ∆ is the Laplacian operator with respect to [; Q k is the source density applied in domain Ω k such that

∂Q 1 ∂t ([, t) = ρ 1 F (t)δ 0 (x 1 -x S 1 )δ 0 (x 3 -x S 3 ) , (3) 
Q 2 ([, t) = 0 , (4) 
in which F (t) = F 1 sin(2πf c t)e -4(t fc-1) 2 where f c = 1 MHz is the center frequency and F 1 = 100 N; ρ k is the mass density of domain Ω k ; δ 0 is the Dirac function at the origin and x S 1 and x S 3 are the coordinates of a line source modeling the acoustical impulse. The boundary conditions at time t > 0 are written as

Q 1 = -p 1 Q 1 in Σ 1 , Q 2 = -p 2 Q 2 in Σ 2 , p k = 0 in Γ k and ∇ p k • Q k = -ρ k Ẍ • Q k in Σ k with Q 1 =
(0, 0, 1) and Q 2 = (0, 0, -1). The initial conditions at time t = 0 are written as X = 0 and Ẋ in Ω ∪ Σ 1 ∪ Σ 2 for the displacement field and p k = 0 and ṗk in Ω k ∪ Γ k ∪ Σ k for the pressure fields. The constitutive equation of the solid elastic medium is written as

([, t) = 3 i,j,k,h=1 c ijkh ε kh ([, t) H i ⊗ H j ( 5 
)
in which 3 i,j,k,h=1 c ijkh H i ⊗ H j ⊗ H k ⊗ H h is the effective elasticity tensor of the medium and ε kh = 1 2 ( ∂u k ∂x h + ∂u h ∂x k ) are the components of the linearized strain tensor on basis (H 

         . (6) 
For a transverse isotropic homogeneous medium, all the components [C] ij are zeros except the following Poisson coefficients such that g T = e T /2(1 + ν T ). For a given effective elasticity matrix [C], the displacement field X and the pressure fields p 1 and p 2 are calculated using the solver presented in [START_REF] Desceliers | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[END_REF]. Then, the velocity v velo of the first arriving signal is deduced. Consequently, there exists a mapping g velo such that exists almost surely and is assumed to be a second-order random variable. Thus, random matrix [&] belongs to the set SE + (see [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]) and is written as

[C] 11 = e 2 L (1 -ν T ) (e L -e L ν T -2e T ν 2 L ) , [C] 22 = e T (e L -e T ν 2 L ) (1 + ν T )(e L -e L ν T -2e T ν 2 L ) , (7) 
[C] 12 = e T e L ν L (e L -e L ν T -2e T ν 2 L ) , [C] 23 = e T (e L ν T + e T ν 2 L ) (1 + ν T )(e L -e L ν T -2e T ν 2 L ) , (8) 
[C] 44 = g T , [C] 55 = g L , (9) 
v mod = g velo ([C]) . (10 
[&] = [L] T [*][L] , (11) 
in which the (6 × 6) upper triangular matrix [L] corresponds to the Cholesky factorization of the elasticity matrix [C] and where random matrix [*] belongs to the set SG + introduced in [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]. Moreover, it is shown in [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] that probabilistic model of random matrix [*] only depends on a dispersion coefficient denoted by δ. The probabilistic model of random matrix [&] is completely defined with matrix [C] (that depends on e L , ν L , g L , e T and ν T ) and δ. The velocity of the first arriving signal constructed using this stochastic simplified model is a random variable denoted by V mod that corresponds to the random experimental velocity V exp introduced in Section 2 and we have (see Eq. ( 10) )

V mod = g velo ([&]) . (12) 

Optimization problem for the identification

The stochastic simplified model parameters that have to be identified are the coefficients e L , ν L , g L , e T and ν T relative to [C], the mass density ρ and the coefficient δ. Let D be the vector such that D = (ρ, e L ν L , g L , e T , ν T ). The identifiction problem consists in finding vector D and coefficient δ such that the stochastic model can represent the experimental database in a statistical sense (see for instance [START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF][START_REF] Desceliers | Identification of chaos representations of elastic properties of random media using experimental vibration tests[END_REF]). The optimal values (D opt , δ opt ) for (D, δ) is given by solving the following optimization problem

(D opt , δ opt ) = arg min (D,δ) F cost (D, δ) , (13) 
WK ,QWHUQDWLRQDO &RQIHUHQFH RQ ,QYHUVH 3UREOHPV LQ (QJLQHHULQJ 7KHRU\ DQG 3UDFWLFH

in which F cost (D, δ) is a cost function which has to be defined. The cost fuction F cost adapted to the optimization problem is written as

F cost (D, δ) = (V exp -V mod ) 2 (V exp ) 2 + (δ exp -δ mod ) 2 (δ exp ) 2 ,
in which

δ mod = E{(V mod -V mod ) 2 } V mod .
The optimization problem defined by Eq. ( 13) is solved by the simplex algorithm. For each iteration of the simplex algorithm, the cost function has to be calculated which requires to solve the stochastic equations with an appropriate method such as the Monte Carlo method. presented in Section 2 and is made up of N = 2747 mesurements V exp ( θ1 ), . . . , V exp ( θN ) plotted in Fig. 4. The probability density function v → p V exp (v) of the random variable V exp estimated with the N = 2747 experimental realizations V exp ( θ1 ), . . . , V exp ( θN ) is shown in Fig. 5. The identification of the vector D = (ρ, e L , ν L , g L , e T , ν T ) and the coefficient δ is carried out using the method presented in Section 5 with h 1 = 10 -2 m, h = 4 × 10 -3 m, h 2 = 10 -2 m, ρ 1 = ρ 2 = 1000 kg.m -3 and c 1 = c 2 = 1500 m.s -1 The solution D opt = ρ opt , e opt L , ν opt L , g opt L , e opt T , ν opt T and δ opt are such that ρ opt = 1598.8 kg.m -3 , e opt L = 17.717 GPa, ν opt L = 0.3816, g opt L = 4.7950 GPa, e opt T = 9.8254 GPa, ν opt T = 0.4495 and δ opt = 0.1029. For D = D opt and δ = δ opt , the realizations V mod (θ 1 ), . . . , V mod (θ N ) of random velocity V mod are constructed with the stochastic simplified model and then, the probability density function v → p V mod (v) of V mod is estimated. Figure 6 shows the graphs of v → p V mod (v). Figure 7 compares the graphs of v → p V mod (v) and 

Conclusions

A simplified elastoacoustic model has been developped to simulate the ultrasonic wave propagation in a complex biomechanical system made up of multilayer media. In order to improve the simplified model, the uncertainties related to the solid layer have been taken into account using a probabilistic approach. A method has been presented to identify the parameters of the stochastic simplified model. The capability of the proposed stochastic simplified model to predict the velocity of the first arriving signal in the statistical sense has been demonstrated using a large experimental in vivo database.
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Figure 1 .

 1 Figure 1. Experimental configuration

Figure 2 .

 2 Figure 2. First arriving signal

  with [C] 22 = [C] 33 , [C] 12 = [C] 13 = [C] 21 = [C] 31 , [C] 23 = [C] 32 and [C] 55 = [C] 66 and where (1) e L and e T are the longitudinal and transversal Young moduli, (2) g L and g T are the longitudinal and transversal shear moduli and (3) ν L and ν T are the longitudinal and transversal

) 4 .

 4 Stochastic simplified model It is assumed that uncertainties are only related to the components c ijkh of the effective elasticity tensor. The stochastic simplified model is constructed by substituting matrix [C] in Eq. (10) by a random matrix [&] for which a probabilistic model is constructed using the information theory. The available information on [&] is defined as follows: (1) the mean value of random matrix [&] is the effective elasticity matrix [C]; (2) random matrix [&] is a second-order random variable with values in the set of all the (6 × 6) real symmetric positive-definite matrices; (3) the inverse matrix of [&]

Figure 4 .

 4 Figure 4. Graph of the realizations V exp ( θ1 ), . . . V exp ( θN )

Figure 5 .

 5 Figure 5. Graph of the probability density function v → p V exp (v)

Figure 6 .

 6 Figure 6. Graph of the density probability density functions v → p V mod (v; D opt , δ opt ) with D = D opt and δ = δ opt

Figure 7 .

 7 Figure 7. Graphs of v → log(p V exp (v)) and v → log(p V exp (v; D opt , δ opt )).

  6. Experimental validation of the stochastic simplified modelThis section is devoted to the experimental validation of the stochastic simplified model. The stochastic simplified model must be able to simulate the experimental database in a statistical sense. The experimental validation is performed with the in vivo experimental database
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