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Abstract. This paper deals with robust updating of dynamical systems using stochastic
computational models for which model and parameter uncertainties are taken into account
by a nonparametric probabilistic approach. Such a problem is formulated as an inverse
problem consisting in identifying the parameters of the mean computational model and the
parameters of the probabilistic model of uncertainties. This inverse problem leads us to solve an
optimization problem for which the objective function describes the capability of the uncertain
computational model to best-fit the experimental data. Two objective functions are proposed.
The methodology is applied in the context of the robust updating of a computational model of
composite sandwich panels in the low- and medium- frequency ranges for which experimental
results are available.

1. Introduction

In general, the updating of a computational model using experiments is performed with
deterministic computational models [1, 2, 3]. One of the main challenges consists in including
the effects of uncertainties in the updating process, that is called robust updating. This area
is of interest in many industrial applications in order to reduce the variability of manufactured
real systems. In the context of structural dynamics, the robust updating belongs to the class of
the stochastic optimization inverse problems (see for instance [4, 5, 6]). The robust updating
is formulated as an inverse problem consisting in identifying the updating parameters of the
probability model used for modelling the stochastic computational model using a multi-set
of experimental data. For clarity, the following terminology is introduced. Two types of
uncertainties are distinguished : the parameter uncertainties and the model uncertainties. The
parameter uncertainties are defined as the uncertainties on the parameters of the computational
model and are modelled by random variables or stochastic fields. The model uncertainties
are defined as the uncertainties which cannot be taken into account by the computational
model used for representing the real dynamical system. The errors introduced by the finite
element discretization and by the numerical schemes can be reduced as little as desired and can
be controlled by convergence analyses. Consequently, these errors must not be considered as
uncertainties. Until now, most of the published works concern robust updating with respect
to parameter uncertainties (which can be carried out by using a parametric probabilistic
approach) [7]. In the present paper, the stochastic computational model which has to be
updated is constructed with the nonparametric probabilistic approach [8, 9] for which both model
uncertainties and parameter uncertainties are taken into account. In this context, a methodology
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for robust updating with respect to model uncertainties and parameter uncertainties in the low-
and medium- frequency range is proposed. The stochastic inverse problem which is investigated
leads to solve a nonlinear constrained optimization problem with respect to the admissible set of
the updating mean parameters of the mean computational model and of the updating dispersion
parameters which allow the uncertainty level in the stochastic computational model to be
controlled. Two cost functions are proposed in order to formulate this stochastic inverse problem.
The cost functions are defined from the stochastic computational model using experimental data
and are a function of the updating parameters. This methodology is validated in the context of
the structural dynamics of composite sandwich panels in the low- and medium-frequency range
for which experimental results issued from a set of 8 manufactured sandwich panels are available
[10].

2. Mean reduced model

The dynamical system under consideration is assumed to be linear and slightly damped. A
mean computational model is constructed by discretizing the equations by using the finite
element method. The equations are written in the frequency domain for which w denotes the
angular frequency. The frequency band of analysis is denoted by B. It is assumed that the
dynamical system is free and has m rigid body modes and n DOF. Let r be the vector-valued
parameter of the mean computational model belonging to the admissible set K. The parameter r
represents the updating parameter of the mean computational model which has to be identified
with respect to the experimental data. The mean reduced matrix model of the dynamical
system is constructed by modal analysis. Since only the elastic motion of the dynamical system
is investigated, a nominal mean computational model corresponding to an initial value rq of
the updating parameter is considered. The (n x N) real matrix [®(ro)] whose columns are the
N < n elastic eigenmodes P, (ro) related to the N positive lowest eigenfrequencies w;(rp) is

calculated. The mean reduced matrix model is then written as w(r,w) = [T'(w)] [®(ro)] q(r,w)
in which w(r,w) is the C"**-vector of the nyps observations, where [T'(w)] is the (ngps X n)
observation matrix and where the C¥-vector of the generalized coordinates q(r,w) is solution

of the matrix equation
(=@ M) + iw D) + [Kr)] ) g(r,w) = Fr,w) . 1)

In Eq. (1), the CN-vector F(r,w) is the complex vector of the generalized loads and the
matrices [M(r)], [D(r)] and [KC(r)] are positive-definite symmetric (N x N) real matrices. Note
that observation matrix [T'(w)] has been chosen in order to analyze the acceleration frequency
response functions corresponding to the n,,s observation points.

3. Stochastic computational model

It is assumed that the mean computational model of the dynamical system contains model
uncertainties and parameter uncertainties. The probabilistic model used for modelling the
uncertainties in the computational model is the nonparametric probabilistic approach for which
the complete developments can be found in [8, 11, 9]. Applying the nonparametric probabilistic
approach yields the random matrix equation

(=@M, 800)] + iw [D(r,dp)] + [K(r,0x)] ) Q(r,8,0) = F(r,w) (2)

in which & = (0yr, dp, dk) is the R3-vector of the updating dispersion parameter defined on the
admissible set A, which allows the amount of uncertainty in the stochastic computational model
to be controlled. In Eq. 2, the random matrices [M(r, dpr)], [D(r,dp)] and [IC(r, 0k )] are (N, N)
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random matrices for which the probability distribution is known and such that E{[M(r, )]} =
M(r)], E{[D(r,ép)]} = [D(r)] and E{[I(r,dk)]} = [K(r)] in which & is the mathematical
expectation. Note that all the details concerning the construction of the probability model of
the matrices can be found in [8, 11, 9]. The C"***-valued random vector of the n,s observations

is denoted by W(r,8,w) and is written as W(r,8,w) = [T'(w)] [@(ro)] Q(r,d,w).

4. Formulation of the robust updating

It is assumed that experimental data related to a set of 1.y, dynamical systems manufactured
from a given design are available. The experimental data are constituted of n.,s frequency
response functions corresponding to a given point load and measured at m.,s observation
points. The observation corresponding to the experimental frequency response function related
to manufactured dynamical system number k& and measured at observation point number
j at a given frequency w of frequency band B is denoted as Wjemp (w,0). Let us recall
that these manufactured dynamical systems are uncertain and are modeled by the stochastic
computational model introduced in the previous Section. The robust updating problem consists
in the calibration of the parameters of the stochastic computational model with respect to
the experiments. These parameters are constituted of the updating parameter r of the mean
computational model and the dispersion parameter 8 allowing the amount of uncertainty in
the stochastic computational model to be controlled. The robust updating problem is solved
by optimizing a cost function constructed from the stochastic computational model and using
the experimental data with respect to the admissible set of updating parameters R x A. Two
formulations corresponding to two different cost functions are investigated.

4.1. Formulation of the first robust updating problem

The first cost function proposed is denoted as ji(r,d) and is a multi-objective function defined
as the sum of (1) the bias between the mean value of the stochastic computational model
and the mean value of the experiment and (2) the variance of the stochastic computational

model [12]. The mean value of the experiment is denoted by the C"***-vector mg,*(w) =
Nen
1 exp

(Mg 7 (W), -+ s Maingy, (w)) such that mo%(w) = - W™ (w, 0x) where W™ (w,0) =
EXTD k=1

2010g10(|Wjemp(w,9k)|). Let w;(r,w) = 20logio(Jw;(r,w)[). Cost function ji(r,8) is then
written as

Ji(r,8) = y[jmy,(r,8,-) — mgP|[g + (1-)[[[W(r,8,) — my(r,8,)]|* | (3)

in which my(r,8,w) = EW(r,d,w)} € C", where W(r,d,w) = (Wi(r,8,w),...,

Wh,,. (1,8,w)) with W;(r,8,w) = 20l0g10(|W;(r,8,w)|) and where ||g|[Z = [g|lg8w)|]*dw
with ||g(w)|| the Hermitian norm of g(w). In Eq. (3), the norm [||X]|| is defined by |||X[||? =
E{||X||%}, where {X(w),w € B} is a stochastic process indexed by B. The scalar v is a weighting
factor that controls the weight of the bias term relative to the variance term in the optimization
process. Any value v belonging to ]0,0.5] means that more importance is attributed to the
minimization of the variance term which characterizes the width of the confidence region related
to the stochastic computational model. The value v = 0.5 corresponds to the usual case for
which each term is equally considered. Any value 7 belonging to ]0.5,1] means that more
importance is attributed to the minimization of the bias term. Consequently, large confidence
regions can be obtained which is inconsistent with the present context of robust updating because
it is expected that the experimental data are included in the smallest possible confidence region.
Consequently, the value of scalar v has to belong to |0, 0.5[. The robust updating problem leads
to a non-linear constrained optimization problem which consists in minimizing the cost function
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with respect to the admissible set R x A. The solution (r{” t , 07 t) of the robust updating
problem is written as
(r? 89" = arg min n(r,d) . (4)
.8 G{RX.A}

4.2. Formulation of the second robust updating problem

The second cost function is based on the criterion that the experimental observations have
to belong to the confidence region of the stochastic computational model [12, 13] and that
the confidence region has to be the smallest as possible. Let y;xp (W) (resp. ijp " (w)) be
defined as the extreme values statistics over the n.z), Samples of the manufactured dynamical
system defined as wj P (W) = maxy W. P(w,0;) and w P (w) = ming W?mp(w,Ok). For a
given observation point number j, for a glven frequency w € B and for a given value of the
updating parameter (r,8) € {R x A}, if experimental observations ijp "~ (w) belong to the
confidence region of the stochastic computational model defined for a given probability level P,,
no contribution is added in the cost function. In the opposite case, a local contribution related to

the distance between wjxp ’i( ) and the upper/lower envelope of the confidence region is added

in the cost function. Let w; T(r,8,w) (resp. w; (r,8,w)) be the upper (resp. lower) envelope of

the confidence region of observatlon W;(r,8,w) obtained with a given probability level P, [14].
The cost function ja(r,8) is then defined as

jQ(I‘,S) - |‘A+(r767)|‘928 + HA_(I',G,)H% ’ (5)

in which A™(r,8,w) and A~ (r,8,w) are the C™**-vector whose component j is defined as

A;(l‘,ﬁ,w) = {yj(r,ﬁ,w) - emp—i-(w)}{l - (7 ( ,6,0.}) - ngp,+(w))} ’ (6)

—J

Aj(r,8w) = {w;(rd,w) — Wi (WHH(w; (r,8,w) — wi™ (W)} . (7)

In Eq. (6) and (7),  — H(z) is the Heaviside function. The solution (r°?*, §") of the robust
updating problem is written as

rot GOpt = ar min r,d) . 8
(ry ) g e{RxA} J2(r,9) (8)

4.3. Numerical aspects

4.3.1. Optimization with the first formulation The first formulation uses a differentiable cost
function. Consequently, a sequential quadratic optimization algorithm [15, 16] coupled with
the Monte Carlo numerical simulation is used in order to solve the robust updating problem. It
should be noted that the cost function is not convex and that such an algorithm yields in general
in a local optimum. The strategy used consists (1) in solving a deterministic updating problem
with updating dispersion parameter set to the value 8§ = 0 (The optimal value of parameter r
is then denoted as r%), (2) in identifying the updated dispersion parameter by solving Eq. (4)
with updating parameter r set to r® (the optimal value of parameter 8§ is then denoted as 80),
(3) in solving Eq. (4) around the point (r°,8").

4.8.2. Optimization with the second formulation The second formulation uses a cost function
which is not a differentiable cost function. Consequently, a genetic algorithm [17] is used in
order to solve the robust updating formulation defined by Egs. (5) and (8).

For the two formulations, once the optimal parameters are calculated, it should be noted that
the calculations are made a second time with these optimal parameters using a large number of
numerical simulations in order to analyze the results.
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5. Numerical Validation

The numerical validation concerns the updating of a stochastic computational model of a
composite sandwich panel. Experimental data related to a set of n.,, = 8 multilayered
sandwich panels manufactured from a designed composite sandwich panel are used. The
frequency response functions corresponding to a given out-plane point load and measured at
Nobs = 24 observation points in the frequency band of analysis B = [100, 4500] Hz are
available. The detailed description of the designed sandwich panel and of its corresponding
experimental protocol can be found in [10]. The mean computational model of the sandwich
panel is constructed by the finite element method with 12 288 DOF's. It is assumed that this mean
computational model has already been updated with respect to the conservative parameters and
is taken as an initial mean computational model. The mean reduced matrix model has N = 120
modes (a convergence analysis has been carried out) and is constructed with a constant damping
rate & = 0.01. Let w™(w) be the C"***-vector of the predictions corresponding to this initial
mean computational model. Let v = w/(27). Figure 1 compares the graph of v — w¥%(v) and
v — wi%(v) with the graphs v — W5 (1, 0;) and v — W{7P (v, 0)) with k = {1,...,8}. Note that
these two observation points are respectively located far and near from the excitation point. It
is seen that the quality of the initial mean computational model with respect to the experiments
is acceptable in the low-frequency range By, = [100, 1500] Hz but has to be improved in the
medium-frequency range By, = [1500, 4500] Hz. Consequently, one proposes to update the
computational model with respect to the damping parameters of the mean computational model
and to the dispersion parameters of the stochastic computational model. In this case, the modal
matrix, the mean reduced mass and stiffness matrices do not depend on the updating mean
parameters. The model used for the mean reduced damping matrix [D(r)] is introduced such
that [D(r)]r = QHj W, gj(r) d;i in which I is the modal mass, w; is the eigenfrequency and
gj(r) is the mean modal damping rate related to eigenmode P defined as §j(r) = f(w;,r). Let

r = {&,&1,q, (3} be the C*-vector of the updating mean parameters belonging to the admissible
set R defined as R = {{ﬁo,ﬁl,a,ﬁ},fl >&>0a>1;8> 0}. For r fixed in R, the function
b— f(b,r) is defined from RT into R* by

bOé

flo,r) =& + (& — fo)m

(9)
Note that the chosen function is a usual function (see for instance [18]). In the present context,
this function is used in order to model the damping as an increasing function of the frequency.

The admissible set R of the updating mean parameter is defined by the following constraints
0.0095 < & < 0.0105, 0.05 < & < 015, 5 < a < 20 and 30 < B < 50 and the
admissible set A of the updating dispersion parameter is defined by A = [0.05, 0.5]3.
First, the optimization is carried out by using the differentiable cost function defined by
Eq. (3) with parameter v = 0.25. The optimization is carried out with respect to
admissible set R x A by using the sequential quadratic optimization algorithm around
(ro,ﬁo) = {(0.0099, 0.08495, 10.5867, 46.6657), (0.30,0.019,0.09)} [12] for which the value of
cost function is normalized such that j;(r?,8°) = 1. The optimization of cost function
J1(r,8) with respect to the admissible set R x A yields optimal updating parameters
r” = (0.01,0.0850,10.7144,46.1018) and 87" = (0.31,0.20,0.14) which corresponds to
J(rPL 8% = 0.8248.  Secondly, the optimization is carried out by using the non-
differentiable cost function defined by Eq. (5) and yields optimal updating parameters ry” b=
(0.01,0.081,10.9,47) and 8" = (0.23,0.07,0.24). Note that the two optimization methods
yield different values of the dispersion parameter. This can be explained by the fact that a
computational model can be few sensitive to the damping dispersion parameter (see [19] ).
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Figure 1. Comparison of the 8 experimental measurements (8 thin solid lines) for observation
points number 3 (left figure) and number 17 (right figure) with the initial mean computational
model.

Furthermore, the global dispersion level for the mass and stiffness term defined by 4/ (5%4 + 5%{)

are quite similar for both formulations. Figure 2 compares the updated damping models obtained
with the two cost functions.

0 1000 2000 3000 4000 5000 6000

Figure 2. Damping model. Graphs of b +— f(b,r?) (thick solid line), b — f(b, rfl)pt) (thin solid
line), of b — f(b,ry") (thin dashed line).

Figure 3 compares the experimental frequency response functions W5 (v, 0;) and W{7" (v, 6;)
with the deterministic responses w4"(v) and wi%(v) of the initial mean computational
model, with the deterministic responses ws(rf",v) and w;(r?",v) of the updated mean
computational model and with the confidence region of the random response W3(r{", 87, v)
and Wq7(r}? t, &7 t, v) of the updated stochastic computational model obtained with a probability
level P. = 0.96 and corresponding to the updating method related to the differentiable cost
function. Figure 4 displays similar quantities related to the updating method related to the

non-differentiable cost function. It can be seen that both methods increase the quality of the
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computational model in the medium-frequency band Bj;. Furthermore, it is seen that the use
of the non-differentiable cost function for the optimization improves the updating relative to the
use of the differentiable cost function.

70

60

o
=)
T

Response level (dB)

201

IS
=)
T

w
=3
T

I
1000

I
1500

. .
2000 2500
Frequency v (Hz)

I
3000

I
3500

I
4000

4500

70

60

o
=)
T

Response level (dB)

201

IS
=)
T

w
=]
T

I I I I I
2000 2500 3000 3500 4000

Frequency v (Hz)

I 1 I
500 1000 1500
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the initial mean computational model (dotted line), (2) the optimal mean computational model
(thick solid line), (3) the confidence region of the optimal stochastic computational model (grey
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6. Conclusions

Two updating formulations have been proposed for the robust updating problem in the context
of structural dynamics for which parameter uncertainties and model uncertainties are taken into
account by the nonparametric probabilistic approach. These two formulations are used in order
to perform the robust updating of a composite sandwich panel for which experimental results
issued from a set of 8 manufactured composite sandwich panels are available. It can be seen
that both methods increase the quality of the computational model. Furthermore, it is seen that
the use of the non-differentiable cost function defined from the confidence region particularly
improves the updating in both low- and medium-frequency ranges.
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