
HAL Id: hal-00691706
https://hal.science/hal-00691706v1

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controllability of the bilinear Schrödinger equation with
several controls and application to a 3D molecule

Ugo Boscain, Marco Caponigro, Mario Sigalotti

To cite this version:
Ugo Boscain, Marco Caponigro, Mario Sigalotti. Controllability of the bilinear Schrödinger equation
with several controls and application to a 3D molecule. 2012 IEEE 51st Annual Conference on Decision
and Control (CDC), Dec 2012, Maui, HI, United States. pp.3038-3043, �10.1109/CDC.2012.6426289�.
�hal-00691706�

https://hal.science/hal-00691706v1
https://hal.archives-ouvertes.fr


Controllability of the bilinear Schrödinger equation with several

controls and application to a 3D molecule∗

Ugo Boscain1, Marco Caponigro2, and Mario Sigalotti3

Abstract— We show the approximate rotational controllabil-
ity of a polar linear molecule by means of three nonresonant
linear polarized laser fields. The result is based on a general
approximate controllability result for the bilinear Schrödinger
equation, with wavefunction varying in the unit sphere of
an infinite-dimensional Hilbert space and with several control
potentials, under the assumption that the internal Hamiltonian
has discrete spectrum.

I. INTRODUCTION

Rotational molecular dynamics is one of the most im-

portant examples of quantum systems with an infinite-

dimensional Hilbert space and a discrete spectrum. Molec-

ular orientation and alignment are well-established topics

in the quantum control of molecular dynamics both from

the experimental and theoretical points of view (see [19],

[20] and references therein). For linear molecules driven by

linearly polarized laser fields in gas phase, alignment means

an increased probability direction along the polarization

axis whereas orientation requires in addition the same (or

opposite) direction as the polarization vector. Such controls

have a variety of applications extending from chemical reac-

tion dynamics to surface processing, catalysis and nanoscale

design. A large amount of numerical simulations have been

done in this domain but the mathematical part is not yet

fully understood. From this perspective, the controllability

problem is a necessary step towards comprehension.

We focus in this paper on the control by laser fields of

the rotation of a rigid linear molecule in R3. This con-

trol problem corresponds to the control of the Schrödinger

equation on the unit sphere S2. We show that the system

driven by three fields along the three axes is approximately

controllable for arbitrarily small controls. This means, in

particular, that there exist control strategies which bring

the initial state arbitrarily close to states maximizing the

molecular orientation [21].

∗ This research has been supported by the European Research Council,
ERC StG 2009 “GeCoMethods”, contract number 239748, by the ANR
project GCM, program “Blanche”, project number NT09-504490

1 Ugo Boscain is with Centre National de Recherche Scientifique
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A. The model

We consider a polar linear molecule in its ground vi-

bronic state subject to three nonresonant (with respect to

the vibronic frequencies) linearly polarized laser fields. The

control is given by the electric fields E = (u1, u2, u3)
depending on time and constant in space. We neglect in

this model the polarizability tensor term which corresponds

to the field-induced dipole moment. This approximation is

correct if the intensity of the laser field is sufficiently weak.

Despite its simplicity, this equation reproduces very well

the experimental data on the rotational dynamics of rigid

molecules (see [20]).

Up to normalization of physical constants (in particular, in

units such that ~ = 1), the dynamics is ruled by the equation

i
∂ψ(θ, ϕ, t)

∂t
=−∆ψ(θ, ϕ, t) + (u1(t) sin θ cosϕ

+ u2(t) sin θ sinϕ+ u3(t) cos θ)ψ(θ, ϕ, t)
(1)

where θ, ϕ are the spherical coordinates, which are related

to the Euclidean coordinates by the identities

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

while ∆ is the Laplace–Beltrami operator on the sphere

(called in this context the angular momentum operator), i.e.,

∆ =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2
.

The wavefunction ψ(·, ·, t) evolves in the unit sphere S of

H = L2(S2,C).

B. The main results

In the following we denote by ψ(T ;ψ0, u) the solution at

time T of equation (1), corresponding to control u and with

initial condition ψ(0;ψ0, u) = ψ0, belonging to S.

Our main result says that (1) is approximately controllable

with arbitrarily small controls.

Theorem 1.1: For every ψ0, ψ1 belonging to S and

every ε, δ1, δ2, δ3 > 0, there exist T > 0 and u ∈
L∞([0, T ], [0, δ1] × [0, δ2] × [0, δ3]) such that ‖ψ1 −
ψ(T ;ψ0, u)‖ < ε.

The proof of the result is based on arguments inspired by

those developed in [11], [7]. There are two main difficulties

preventing us to apply those results to the case under consid-

eration: firstly, we deal here with several control parameters,

while those general results were specifically conceived for

the single-input case. Notice that, because of symmetry

obstructions, equation (1) is not controllable with only one



of the three controls u1, u2, u3. Secondly, the general theory

developed in [11], [7] is based on nonresonance conditions

on the spectrum of the drift Schrödinger operator (the inter-

nal Hamiltonian). The Laplace–Belatrami operator on S2,

however, has a severely degenerate spectrum. It is known,

indeed, that the ℓ-th eigenvalue −iℓ(ℓ + 1) has multiplicity

2ℓ + 1. In [11] we proposed a perturbation technique in

order to overcome resonance relations in the spectrum of

the drift. This technique was applied in [8] to the case of the

orientation of a molecule confined in a plane driven by one

control. The planar case is already technically challenging

and a generalization to the case of three controls in the space

will hardly provide an apophantic proof of the approximate

controllability result. We therefore provide a general multi-

input result which can be applied to the control problem

defined in (1), up to the computation of certain Lie algebras

associated with its Galerkin approximations.

The structure of the paper is the following: in the next sec-

tion we present the general multi-input abstract framework

and we recall some previously known controllability and

non-controllability results. In Section III we prove our main

sufficient condition for approximate controllability. Finally,

in Section IV we prove that the abstract result applies to

system (1).

II. ABSTRACT FRAMEWORK

Definition 2.1: Let H be an infinite-dimensional Hilbert

space with scalar product 〈·, ·〉 and A,B1, . . . , Bp be (pos-

sibly unbounded) linear operators on H, with domains

D(A), D(B1), . . . , D(Bp). Let U be a subset of Rp. Let us

introduce the controlled equation

dψ

dt
(t) = (A+u1(t)B1+· · ·+up(t)Bp)ψ(t), u(t) ∈ U ⊂ R

p.

(2)

We say that (A,B1, . . . , Bp, U,Φ) satisfies (A) if the fol-

lowing assumptions are verified:

(A1) Φ = (φk)k∈N is an Hilbert basis of H made of

eigenvectors of A associated with the family of

eigenvalues (iλk)k∈N;

(A2) φk ∈ D(Bj) for every k ∈ N, j = 1, . . . , p;

(A3) A+ u1B1 + · · ·+ upBp : span{φk | k ∈ N} → H
is essentially skew-adjoint for every u ∈ U ;

(A4) if j 6= k and λj = λk then 〈φj , Blφk〉 = 0 for

every l = 1, . . . , p.

If (A,B1, . . . , Bp, U,Φ) satisfies (A) then, for every

(u1, . . . , up) ∈ Rp, A + u1B1 + · · · + upBp generates a

unitary group et(A+u1B1+···+upBp). It is therefore possible

to define the propagator Υu
T at time T of system (1)

associated with a p-uple of piecewise constant controls

u(t) = (u1(t), . . . , up(t)) by concatenation. If, moreover,

the potentials B1, . . . , Bp are bounded operators then the

definition can be extended by continuity to every L∞ control

law.

Definition 2.2: Let (A,B,U,Φ) satisfy (A). We say that

(2) is approximately controllable if for every ψ0, ψ1 in the

unit sphere of H and every ε > 0 there exist a piecewise

constant control function u : [0, T ] → U such that ‖ψ1 −
Υu

T (ψ0)‖ < ε.
Definition 2.3: Let (A,B,U,Φ) satisfy (A) . We say that

(2) is approximately simultaneously controllable if for every

r in N, ψ1, . . . , ψr in H, Υ̂ in U(H), and ε > 0 there exists

a piecewise constant control u : [0, T ] → U such that
∥

∥

∥
Υ̂ψk −Υu

Tψk

∥

∥

∥
< ε, k = 1, . . . , r.

A. Short review of controllability results

The controllability of system (2) is a well-established topic

when the state space H is finite-dimensional (see for instance

[12] and reference therein), thanks to general controllability

methods for left-invariant control systems on compact Lie

groups ([10], [14]).

When H is infinite-dimensional, it is known that the bilin-

ear Schrödinger equation is not controllable (see [2], [22]).

Hence, one has to look for weaker controllability properties

as, for instance, approximate controllability or controllability

between eigenstates of the Schödinger operator (which are

the most relevant physical states). In certain cases where

the dimension of the domain where the controlled PDE is

defined is equal to one a description of the reachable set

has been provided [3], [4], [5]. For dimension larger than

one or for more general situations, the exact description

of the reachable set appears to be more difficult and at

the moment only approximate controllability results are

available. Most of them are for the single-input case (see,

in particular, [6], [7], [11], [15], [16], [18], [17]), except for

some approximate controllability result for specific systems

([13]) and some general approximate controllability result

between eigenfunctions based on adiabatic methods [9].

B. Notation

Set b
(l)
jk = 〈φj , Blφk〉, l = 1, . . . , p. For every n in N,

define the orthogonal projection

πn : H ∋ ψ 7→
∑

j≤n

〈φj , ψ〉φj ∈ H.

Given a linear operator Q on H we identify the linear

operator πnQπn preserving span{φ1, . . . , φn} with its n×
n complex matrix representation with respect to the basis

(φ1, . . . , φn).

III. MAIN ABSTRACT CONTROLLABILITY RESULT IN THE

MULTI-INPUT CASE

Let us introduce the set ΣN of spectral gaps associated

with the N -dimensional Galerkin approximation as

ΣN = {|λj − λk| | j, k = 1, . . . , N, λj 6= λk}.

For every σ ∈ ΣN , let

B(N)
σ (v1, . . . , vp)j,k = (v1B

(N)
1 +. . .+vpB

(N)
p )j,kδσ,|λj−λk|.

The N × N matrix B
(N)
σ (v1, . . . , vp) corresponds to the

choice of the controls v1, . . . , vp and to the “activation” of

the spectral gap σ. Define

MN = {B(N)
σ (v1, . . . , vp) | σ ∈ ΣN , v1, . . . , vp ∈ [0, 1]}



and

Mn
0 =

{

A(n) −
tr(A(n))

n
In

}

∪

{

M ∈ su(n) | ∀N ≥ n ∃Q ∈ MN s.t. Q =

(

M 0
0 ∗

)}

.

The set Mn
0 represents “compatible dynamics” for the n-

dimensional Galerkin approximation (compatible, that is,

with higher dimensional Galerkin approximations).

Theorem 3.1 (Abstract multi-input controllability result):

Let U = [0, δ]p for some δ > 0. If for every n0 ∈ N there

exist n > n0 such that

LieMn
0 = su(n), (3)

then the system

ẋ = (A+ u1B1 + · · ·+ upBp)x, u ∈ U,

is approximately simultaneously controllable.

A. Preliminaries

The following technical result, which we shall use in the

proof of Theorem 3.1, has been proved in [7].

Lemma 3.2: Let κ be a positive integer and γ1, . . . , γκ ∈
R \ {0} be such that |γ1| 6= |γj | for j = 2, . . . , κ. Let

ϕ(t) = (eitγ1 , . . . , eitγκ).

Then, for every τ0 ∈ R, we have

convϕ([τ0,∞)) ⊇ νS1 × {(0, . . . , 0)} ,

where ν =
∏∞

k=2 cos
(

π
2k

)

> 0. Moreover, for every R >
0 and ξ ∈ S1 there exists a sequence (tk)k∈N such that

tk+1 − tk > R and

lim
h→∞

1

h

h
∑

k=1

ϕ(tk) = (νξ, 0, . . . , 0) .

B. Time reparametrization

For every piecewise constant function z(t) =
∑K

k=1 zkχ[sk−1,sk)(t) such that zk > 0, for every

k = 1, . . . ,K , and vj(t) =
∑K

k=1 v
(j)
k χ[sk−1,sk)(t)

with j = 1, . . . , p, we consider the system

dψ

dt
(t) = (z(t)A+ v1(t)B1 + · · ·+ vp(t)Bp)ψ(t). (4)

System (4) can be seen as a time-reparametrisation of

system (2). Let ψ(t) be the solution of (2) with initial condi-

tion ψ0 ∈ H associated with the piecewise constant control

u(·) with components uj(·) =
∑K

k=1 u
(j)
k χ[tk−1,tk)(·), j =

1, . . . , p. If sk = tk−tk−1

zk
+ sk−1, s0 = 0, v

(j)
k = u

(j)
k zk for

every k = 1, . . . ,K , j = 1, . . . , p, then the solution ψ̃(t)
of (4) with the initial condition ψ0 ∈ H associated with the

controls z(t), v1(t), . . . , vp(t) satisfies

ψ̃

(

∫ t

0

K
∑

k=1

1

zk
χ[tk−1,tk)(s)ds

)

= ψ(t) .

Controllability issues for system (2) and (4) are equivalent.

Indeed, consider piecewise constant controls z : [0, Tv] →
[1/δ,∞), z(t) =

∑K
k=1 zkχ[sk−1,sk)(t) and vj : [0, Tv] →

[0, 1], vj(t) =
∑K

k=1 v
(j)
k χ[sk−1,sk)(t) with j = 1, . . . , p,

achieving controllability (steering system (4) from ψj to

Υ̂ψj , j = 1, . . . , r in a time Tv) . Then the controls uj(t) =
∑K

k=1 u
(j)
k χ[tk−1,tk), j = 1, . . . , p defined by u

(j)
k = v

(j)
k /zk

and t0 = 0, tk = (sk−sk−1)zk+tk−1, steer system (2) from

ψj to Υ̂ψj , j = 1, . . . , r in a time Tu.

C. Interaction framework

Let ω(t) =
∫ t

0
z(s)ds, and wj(t) =

∫ t

0
vj(s)ds for j =

1, . . . , p. Let ψ(t) be the solution of (4) with initial condition

ψ0 ∈ H associated with the controls z(t), v1(t), . . . , vp(t)
and set

y(t) = e−ω(t)Aψ(t).

For ω, v1, . . . , vp ∈ R set Θ(ω, v1, . . . , vp) = e−ωA(v1B1 +
· · ·+ vp(t)Bp)e

ωA, then y(t) satisfies

ẏ(t) = Θ(ω(t), v1(t), . . . , vp(t))y(t). (5)

Note that

Θ(ω, v1, . . . , vp)jk = 〈φk,Θ(ω, v1, . . . , vp)φj〉

= ei(λk−λj)ω
(

v1b
(1)
jk + · · ·+ vpb

(p)
jk

)

.

Notice that |y(t)| = |ψ(t)|, for every t ∈ [0, Tv] and

for every (p + 1)-uple of piecewise constant controls z :
[0, Tv] → [1/δ,+∞), v1, . . . , vp : [0, Tv] → [0, 1].

D. Galerkin approximation

Definition 3.3: Let N ∈ N. The Galerkin approximation

of (5) of order N is the system in H

ẋ = Θ(N)(ω, v1, . . . , vp)x (6)

where Θ(N)(ω, v1, . . . , vp) = πNΘ(ω, v1, . . . , vp)πN =

(Θ(ω, v1, . . . , vp)jk)
N

j,k=1.

E. First step: choice of the order of the Galerkin approxi-

mation

In order to prove approximate simultaneous controllability,

we should take r in N, ψ1, . . . , ψr in H, Υ̂ in U(H), and

ε > 0 and prove the existence of a piecewise constant control

u : [0, T ] → U such that

∥

∥

∥
Υ̂ψk −Υu

Tψk

∥

∥

∥
< ε, k = 1, . . . , r.

Notice that for n0 large enough there exists U ∈ SU(n0)
such that

|〈φj , Υ̂ψk〉 − 〈πn0φj , Uπn0ψk〉| < ε

for every 1 ≤ k ≤ r and j ∈ N. This simple fact suggest to

prove approximate simultaneous controllability by studying

the controllability of (6) in the Lie group SU(n0).



F. Second step: control in SU(n)

Let n ≥ n0 satisfy hypothesis (3). It follows from standard

controllability results on compact Lie groups (see [14]) that

for every U ∈ SU(n) there exists a path M : [0, Tv] → Mn
0

such that
−→
exp

∫ Tv

0

M(s) ds = U,

where the chronological notation
−→
exp

∫ t

0 Vs ds is used for the

flow from time 0 to t of the time-varying equation q̇ = Vs(q)
(see [1]). More precisely, there exists a finite partition in

intervals (Ik)k of [0, Tv] such that for every t ∈ Ik either

there exist v1, . . . , vp ∈ [0, 1] and σ ∈ ΣN such that

M(t) = πnB
(N)
σ (v1, . . . , vp)πn,

or

M(t) = A(n) −
tr(A(n))

n
In.

In particular,

M(t)j,k = 0, for every t ∈ [0, Tv], j ≤ n, k > n. (7)

G. Third step: control of MN

Lemma 3.4: For every N ∈ N, δ > 0, and for ev-

ery piecewise constant v1, . . . , vp : [0, Tv] → [0, 1] and

σ : [0, Tv] → ΣN there exists a sequence (zh(·))h∈N of

piecewise constant functions from [0, Tv] to [1/δ,∞), such

that
∥

∥

∥

∥

∫ t

0

Θ(N)(zh(s), v1, . . . , vp)ds

−

∫ t

0

B
(N)
σ(s)(v1(s), . . . , vp(s))ds

∥

∥

∥

∥

→ 0

uniformly with respect to t ∈ [0, Tv] as h tends to infinity.

In other words, every piecewise constant path in MN can

be approximately tracked by system (6).

Proof. Fix N ∈ N. We are going to construct the control

zh by applying recursively Lemma 3.2. Consider an interval

[tk, tk+1) in which vj(t), j = 1, . . . , p, and σ(t) are

constantly equal to vj ∈ [0, 1], j = 1, . . . , p, and σ ∈ ΣN

respectively. Apply Lemma 3.2 with γ1 = σ, {γ2, . . . , γκ} =
ΣN \{σ}, R = T and τ0 = τ0(k) to be fixed later depending

on k. Then, for every η > 0, there exist h = h(k) > 1/η and

a sequence (wk
α)

h
α=1 such that wk

1 ≥ t0, wk
α − wk

α−1 > R,

and such that
∣

∣

∣

∣

∣

1

h

h
∑

α=1

ei(λl−λm)wk
α

−ν
(v1B1

(N)
+ . . .+ vpBp

(N)
)l,m

|(v1B
(N)
1 + . . .+ vpB

(N)
p )l,m|

δσ,|λl−λm|

∣

∣

∣

∣

∣

< η,

Set τkα = tk + (tk+1 − tk)α/h, α = 0, . . . , h, and define

the piecewise constant function

ωh(t) =
∑

k≥0

h(k)
∑

α=1

wk
αχ[τk

α−1,τ
k
α)(t) . (8)

Note that by choosing τ0(k) = wk−1
h(k−1) + R for k ≥ 1 and

τ0(0) = R we have that ωh(t) is non-decreasing.

Following the smoothing procedure of [7, Proposition 5.5]

one can construct the desired sequence of control zh. The

idea is to approximate ωh(t) by suitable piecewise linear

functions with slope greater than 1/δ. Then zh can be

constructed from the derivatives of these functions. �

As a consequence of last proposition by [1, Lemma 8.2]

we have that
∥

∥

∥

∥

−→
exp

∫ t

0

Θ(N)(zh(s), v1(s), . . . , vp(s) ds

−
−→
exp

∫ t

0

B
(N)
σ(s)(v1(s), . . . , vp(s)) ds

∥

∥

∥

∥

→ 0

uniformly with respect to t ∈ [0, Tv] as h tends to infinity.

H. Fourth step: control of the infinite-dimensional system

Next proposition states that, roughly speaking, we can

pass to the limit as N tends to infinity without losing

the controllability property proved for the finite-dimensional

case. Its proof can be found in [7, Proposition 5.6]. It is

based on the particular form (7) of the operators involved,

since the fact that the operator has several zero elements

guarantees that the difference between the dynamics of the

infinite-dimensional system and the dynamics of the Galerkin

approximations is small.

Proposition 3.5: For every ε > 0, for every δ > 0, and for

every trajectory U ∈ SU(n) there exist piecewise constant

controls uj : [0, Tu] → [0, δ], j = 1, . . . , p such that the

associated propagator Υu of (2) satisfies

∣

∣|〈πnφj , Uπnφ〉| − |〈φj ,Υ
u
Tu
φ〉|
∣

∣ < ε

for every φ ∈ span{φ1, . . . , φn} with ‖φ‖ = 1 and for every

j in N.

We recall now a controllability result for the phases

(see [7, Proposition 6.1 and Remark 6.3]). This property,

stated in the proposition below, together with the controlla-

bility up to phases proved in the previous section, is sufficient

to conclude the proof of Theorem 3.1.

Proposition 3.6: Assume that, for every Υ̂ ∈ U(H), m
in N, δ > 0, and ε > 0, there exist Tu > 0 and piecewise

constant controls uj : [0, Tu] → [0, δ], j = 1, . . . , p such that

the associated propagator Υu of equation (2) satisfies

∣

∣|〈φj , Υ̂φ〉| − |〈φj ,Υ
u
Tu
φ〉|
∣

∣ < ε,

for every j ∈ N and φ ∈ span{φ1, . . . , φm} with ‖φ‖ = 1.

Then (2) is simultaneously approximately controllable.

IV. 3D MOLECULE

Let us go back to the system presented in the introduction

for the orientation of a linear molecule,

i~ψ̇ = −∆ψ + (u1 cos θ + u2 cosϕ sin θ + u3 sinϕ sin θ)ψ,
(9)

where ψ(t) ∈ H = L2(S2,C).



A basis of eigenvectors of the Laplace–Beltrami operator

∆ is given by the spherical harmonics Y m
ℓ (θ, ϕ), which

sastisfy

∆Y m
ℓ (θ, ϕ) = −ℓ(ℓ+ 1)Y m

ℓ (θ, ϕ).

We are first going to prove that for every ℓ ∈ N the system

projected on the (4ℓ+ 4)-dimensional linear space

L := span{Y −ℓ
ℓ , . . . , Y ℓ

ℓ , Y
−ℓ−1
ℓ+1 , . . . , Y ℓ+1

ℓ+1 }

is controllable. More precisely, chosen a reordering (φk)k∈N

of the spherical harmonics in such a way that

{φk | k = 1, . . . , 4ℓ+4} = {Y −ℓ
ℓ , . . . , Y ℓ

ℓ , Y
−ℓ−1
ℓ+1 , . . . , Y ℓ+1

ℓ+1 },

we are going to prove that

LieM4ℓ+4
0 = su(4ℓ+ 4).

A. Matrix representations

Denote by Jℓ the set of integer pairs {(j, k) | j = ℓ, ℓ +
1, k = −j, . . . , j}. Consider an ordering ω : {1, . . . , 4ℓ +
4} → Jℓ. Let ej,k be the (4ℓ+4)-square matrix whose entries

are all zero, but the one at line j and column k which is equal

to 1. Define

Ej,k = ej,k−ek,j , Fj,k = iej,k+iek,j, Dj,k = iej,j−iek,k.

By a slight abuse of language, also set eω(j),ω(k) =
ej,k. The analogous identification can be used to define

Eω(j),ω(k), Fω(j),ω(k), Dω(j),ω(k).

Thanks to this notation we can conveniently represent

the matrices corresponding to the controlled vector field

(projected on L). A computation shows that the control

potential in the z direction, −i cos θ, projected on L, has

a matrix representation with respect to the chosen basis

B3 =

ℓ
∑

m=−ℓ

pℓ,mF(ℓ,m),(ℓ+1,m)

with

pℓ,m = −

√

(ℓ + 1)2 −m2

(2ℓ+ 1)(2ℓ+ 3)
.

Similarly, we associate with the control potentials in the

x and y directions, −i cosϕ sin θ and −i sinϕ sin θ respec-

tively, the matrix representations

B1 =

ℓ
∑

m=−ℓ

(−qℓ,mF(ℓ,m),(ℓ+1,m−1) + qℓ,−mF(ℓ,m),(ℓ+1,m+1))

B2 =

ℓ
∑

m=−ℓ

(qℓ,mE(ℓ,m),(ℓ+1,m−1) + qℓ,−mE(ℓ,m),(ℓ+1,m+1)),

where

qℓ,m =

√

(ℓ−m+ 2)(ℓ−m+ 1)

4(2ℓ+ 1)(2ℓ+ 3)
.

The matrix representation of the Schrödinger operator i∆
is the diagonal matrix

Ã =
∑

(j,k)∈Jℓ

α̃(j,k)e(j,k),(j,k)

where

α̃(j,k) = −ij(j + 1), for (j, k) ∈ Jℓ.

Now consider A = Ã − tr(Ã)
4(ℓ+1)I , in such a way that

tr(A) = 0. Hence, A =
∑

(j,k)∈Jℓ
α(j,k)e(j,k),(j,k) where

α(ℓ,k) = i
2ℓ+ 3

2
, for k = −ℓ, . . . , ℓ,

and

α(ℓ,k) = −i
2ℓ+ 1

2
, for k = −ℓ− 1, . . . , ℓ+ 1.

B. Useful bracket relations

From the identity

[ej,k, en,m] = δknej,m − δjmen,k (10)

we get the relations [Ej,k, Ek,n] = Ej,n, [Fj,k, Fk,n] =
−Ej,n, and [Ej,k, Fk,n] = Fj,n and

[Ej,k, Fj,k] = 2Dj,k. (11)

The relations above can be interpreted following a “triangle

rule”: the bracket between an operator coupling the states

Y m
ℓ and Y n

k and an operator coupling the states Y m
ℓ and

Y n′

k′ couples the states Y n
k and Y n′

k′ . On the other hand, the

bracket is zero if two operators couple no common states.

Moreover,

[A,E(ℓ,k),(ℓ+1,h)] = 2(ℓ+ 1)F(ℓ,k),(ℓ+1,h), (12a)

[A,F(ℓ,k),(ℓ+1,h)] = −2(ℓ+ 1)E(ℓ,k),(ℓ+1,h). (12b)

From (10) we find also that

[E(ℓ,m),(ℓ+1,m), E(ℓ,m′),(ℓ+1,m′−1)] 6= 0

if and only if m′ = m or m′ = m+ 1, with

[E(ℓ,m),(ℓ+1,m), E(ℓ,m),(ℓ+1,m−1)] = E(ℓ+1,m−1),(ℓ+1,m)

and

[E(ℓ,m),(ℓ+1,m), E(ℓ,m+1),(ℓ+1,m)] = E(ℓ,m),(ℓ,m+1).

C. Controllability result

We prove the following result, which allows us to apply

the abstract controllability criterium obtained in the previsous

section. We obtain then Theorem 1.1 as a corollary of

Theorem 3.1. Notice that the conclusions of Theorem 3.1

allow us to claim more than the required approximately

controllability, since simultaneous controllability is obtained

as well.

Proposition 4.1: The Lie algebra L generated by

A,B1, B2, B3 is the whole algebra su(4ℓ+ 4).
Thanks to the matrix relations obtained in Section IV-B,

the proof of the proposition can be easily reduced to the

proof of the following lemma.

Lemma 4.2: The Lie algebra L contains the elementary

matrices

E(ℓ,k),(ℓ+1,k+j) for k = −ℓ, . . . , ℓ, j = −1, 0, 1.



Proof of Lemma 4.2. First, we want to prove that

{E(ℓ,−j),(ℓ+1,−j) + E(ℓ,j),(ℓ+1,j) | j = 0, . . . , ℓ} ⊂ L. (13)

We use the fact that

ad2j+1
B3

A = (−1)j(ℓ + 1)22j+1
ℓ
∑

m=−ℓ

p2j+1
ℓ,m E(ℓ,m),(ℓ+1,m).

Indeed, for j = 0

[B3, A] =

m
∑

ℓ=−m

pℓ,m[F(ℓ,m),(ℓ+1,m), A]

= 2(ℓ+ 1)

m
∑

ℓ=−m

pℓ,mE(ℓ,m),(ℓ+1,m) ,

and, by induction, for j ≥ 1,

ad2j+1
B3

A = [B3, [B3, ad
2j−1
B3

A]]

= (−1)j−1(ℓ+ 1)22j−1

ℓ
∑

m=−ℓ

p2j−1
ℓ,m [B3, [B3, E(ℓ,m),(ℓ+1,m)]]

= (−1)j−1(ℓ+ 1)22j−1
ℓ
∑

m=−ℓ

p2j−1
ℓ,m

[B3, [

ℓ
∑

h=−ℓ

pℓ,hF(ℓ,h),(ℓ+1,h), E(ℓ,m),(ℓ+1,m)]]

= (−1)j−1(ℓ+ 1)22j−1

ℓ
∑

m=−ℓ

p2j−1
ℓ,m [B3,−2pℓ,mD(ℓ,m),(ℓ+1,m)]

= (−1)j(ℓ+ 1)22j

ℓ
∑

m=−ℓ

p2jℓ,m[

ℓ
∑

h=−ℓ

pℓ,hF(ℓ,h),(ℓ+1,h), D(ℓ,m),(ℓ+1,m)]

= (−1)j(ℓ+ 1)22j+1
ℓ
∑

m=−ℓ

p2j+1
ℓ,m E(ℓ,m),(ℓ+1,m).

Then (13) follows from the fact that pℓ,m 6= pℓ,n for every

n 6= m,−m.

Now note that

B2 − [A,B1]/(2(ℓ+ 1)) = 2

ℓ
∑

m=−ℓ

qℓ,−mE(ℓ,m),(ℓ+1,m+1)

and

B2 + [A,B1]/(2(ℓ+ 1)) = 2

ℓ
∑

m=−ℓ

qℓ,mE(ℓ,m),(ℓ+1,m−1).

Moreover

[[

ℓ
∑

m=−ℓ

qℓ,mE(ℓ,m),(ℓ+1,m−1), E(ℓ,0),(ℓ+1,0)], E(ℓ,0),(ℓ+1,0)] =

= −qℓ,1[E(ℓ,0),(ℓ,1), E(ℓ,0),(ℓ+1,0)]

− qℓ,0[E(ℓ+1,−1),(ℓ+1,0), E(ℓ,0),(ℓ+1,0)]

= qℓ,1E(ℓ,1),(ℓ+1,0) + qℓ,0E(ℓ,0),(ℓ+1,−1).

and, for 0 < k ≤ ℓ,

[[

ℓ
∑

j=k

qℓ,−jE(ℓ,−ℓ),(ℓ+1,−ℓ−1)+

. . .+ qℓ,−k+1E(ℓ,−k+1),(ℓ+1,−k) + qℓ,kE(ℓ,k),(ℓ+1,k−1)+

+ . . .+ qℓ,ℓE(ℓ,ℓ),(ℓ+1,ℓ−1), E(ℓ,−k),(ℓ+1,−k)+

E(ℓ,k),(ℓ+1,k)], E(ℓ,−k),(ℓ+1,−k) + E(ℓ,k),(ℓ+1,k)]

= −qℓ,−k+1[E(ℓ,−k),(ℓ,−k+1), E(ℓ,−k),(ℓ+1,−k)]

− qℓ,k[E(ℓ+1,k−1),(ℓ+1,k), E(ℓ,k),(ℓ+1,k)]

= qℓ,−k+1E(ℓ,−k+1),(ℓ+1,−k) + qℓ,kE(ℓ,k),(ℓ+1,k−1).

Then we get E(ℓ,−ℓ),(ℓ+1,−ℓ−1), E(ℓ,−ℓ+1),(ℓ+1,−ℓ) +
E(ℓ,ℓ),(ℓ+1,ℓ−1), . . . , E(ℓ,0),(ℓ+1,−1) + E(ℓ,1),(ℓ+1,0) ∈ L.

Similarly we can prove that the Lie algebra L contains

E(ℓ,ℓ),(ℓ+1,ℓ+1).

Now, since E(ℓ,m),(ℓ+1,m−1) ∈ L and using the relation

ad2E(ℓ,m),(ℓ+1,m−1)
E(ℓ,m),(ℓ+1,m) + E(ℓ,−m),(ℓ+1,−m) =

[E(ℓ+1,m−1),(ℓ+1,m), E(ℓ,m),(ℓ+1,m−1)] = −E(ℓ,m),(ℓ+1,m)

we obtain that E(ℓ,m),(ℓ+1,m) and E(ℓ,−m),(ℓ+1,−m) belong

to L for every m = −ℓ, . . . ,−1
Similarly, E(ℓ,m),(ℓ+1,m) ∈ L implies that

E(ℓ,m+1),(ℓ+1,m) and E(ℓ,−m),(ℓ+1,−m−1) belong to L
for every m = −ℓ, . . . ,−1 �
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