N

N

Using the witness method to detect rigid subsystems of
geometric constraints in CAD
Dominique Michelucci, Simon Thierry, Pascal Schreck, Christoph Fiinfzig,

Jean-David Génevaux

» To cite this version:

Dominique Michelucci, Simon Thierry, Pascal Schreck, Christoph Fiinfzig, Jean-David Génevaux.
Using the witness method to detect rigid subsystems of geometric constraints in CAD. Symposium
on Solid and Physical Modeling, 2010, Haifa, Israel. pp.91-100, 10.1145/1839778.1839791 . hal-
00691703

HAL Id: hal-00691703
https://hal.science/hal-00691703

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00691703
https://hal.archives-ouvertes.fr

Using the witness method to detect rigid
subsystems of geometric constraints in CAD

Dominique Michelucci* Pascal Schreck'
Simon E.B. Thierryf Christoph Fiinfzig®

Jean-David Génevaux'

September 15t — 3™, 2010

Abstract

This paper deals with the resolution of geometric constraint systems
encountered in CAD-CAM. The main results are that the witness method
can be used to detect that a constraint system is over-constrained and
that the computation of the maximal rigid subsystems of a system leads
to a powerful decomposition method.

In a first step, we recall the theoretical framework of the witness
method in geometric constraint solving and extend this method to gen-
erate a witness. We show then that it can be used to incrementally de-
tect over-constrainedness. We give an algorithm to efficiently identify all
maximal rigid parts of a geometric constraint system. We introduce the
algorithm of W-decomposition to identify all rigid subsystems: it manages
to decompose systems which were not decomposable by classical combi-
natorial methods.

Keywords: Geometric Constraints Solving, witness configuration, Ja-
cobian matrix, rigidity theory, W-decomposition

1 Introduction

Geometric constraints solving in Computer-Aided Design (CAD) aims at yield-
ing a figure which meets some incidence and metric requirements (e.g. distances
between points or angles between lines), usually specified in graphical form. For-
mally, a geometric constraint system (GCS) consists in constraints (predicates),
unknowns (geometric entities) and parameters (metric values). Solutions are
returned as the coordinates of the geometric entities. The left of figure 1 shows
an example of a technical sketch, and the right shows a possible solution.

The literature describes a number of different approaches to solve geometric
constraint systems:

*LE2I, UMR CNRS 5158, Université de Bourgogne
TLSITT, UMR CNRS 7005, Université de Strasbourg

p1 D2

b3
De

b5 P4

Figure 1: A 2D technical sketch (left) and a possible solution (right).

e algebraic methods consist in translating the GCS into a set of equations
and working on the equation system, thus forgetting the geometrical back-
ground. Algebraic methods can be classified in numerical methods [22] (it-
erative computations converging to an approximate solution from initial
values given by the user) and symbolic methods [2, 11] (direct computa-
tions on the equations — these methods are seldom used because of their
complexity),

e geometric methods use the geometric knowledge to solve the system: graph-
based methods [6, 9, 22, 28, 29, 31| compile this knowledge into algorithms
which consider only combinatorial and connectivity criteria, rule-based
methods [3, 17] deduce constructions plans by an explicit use of geometric
rules,

e hybrid methods [4, 8, 18] alternate algebraic and geometric phases of com-
putations to use the power of both approaches.

For more details on geometric constraint solving, see [12]. A general trend,
both to reduce complexity and to enhance resolution power, is to decompose
the GCS into solvable subsystems and to assemble their solutions [4, 5, 9, 13,
15, 22, 28, 29, 31, 33]. For instance, on the 2D example of figure 1, it is easy to
separately solve each “triangle” (p1pape, pepsps and papsps) and then assemble
them. For a detailed survey of decomposition methods, see [16].

Notice that, on the example of figure 1, if one removes one of the triangles,
say pepsp4, and then tries to solve the remaining system, one needs to add in-
formation from the solved subsystem, otherwise the remaining system becomes
articulated. This piece of information is called the boundary [24]. Although sev-
eral methods exist to find the relevant information in specific resolution frame-
works [28], no general algorithm yet exists to compute the boundary without
adding too much information.

Indeed, it is important for resolution methods, especially for graph-based
methods, that the system does not have too few or too many constraints.
Loosely speaking, a system is called

e under-constrained if it has an infinite number of solutions because there
are not enough constraints to pin down every geometric entity,

e over-constrained if it has no solution because of constraint contradictions,
e well-constrained if it has a finite positive number of solutions.

Invariance of rigid systems by displacements is generally taken into account by
anchoring a point and a direction in 2D, a point and two directions in 3D.
The point and the direction are called a reference for the displacements. Other
transformation groups may be considered [30].

A lot of work has been done about the detection of over-constrainedness [14,
27] or under-constrainedness [19, 32, 37] and more generally about the charac-
terization of rigidity [21, 20, 30, 35]. Yet, methods described in the literature
may fail to consider the consequences of mathematical theorems that are not
explicitly taken into account in the construction of the resolution algorithm.
Since a theorem list cannot be exhaustive, it is impossible to develop a rule-
based or graph-based algorithm that detects geometric properties induced by
mathematical theorems.

In this article, we extend the witness method [25] to address several problems
cited above: how to determine the constrainedness level of a GCS without
being tricked by mathematical theorems (see for instance figure 6); how to
efficiently detect all maximal well-constrained subsystems of a given GCS; how
to decompose a well-constrained system into the set of all its minimal well-
constrained subsystems.

For conciseness reasons, in the rest of this paper, we consider 2D systems,
unless explicitly mentionned otherwise. Yet, all algoritms can be extended to 3D
systems with nearly no changes and, most of the time, the only modification to
be made for the text to be valid in 3D is to exchange mentions of three degrees
of freedom /parameters with mentions of six degrees of freedom/parameters.

This article is organized as follows: section 2 recalls the principles of the wit-
ness method and gives a way to generate a witness; section 3 demonstrates that
an incremental version of the Gauss-Jordan elimination has the same compu-
tational cost than the original version but allows to detect overconstrainedness
in all cases; section 4 gives algorithms to efficiently identify the maximal rigid
subsystems of an articulated system; section 5 deduces from these algorithms
a method to further decompose a rigid system into rigid subsystems; finally,
section 7 concludes and gives perspectives to this work.

2 The witness method

2.1 Principle

The witness method comes from ideas of Structural Topology, or Rigidity The-
ory [10] where the question of rigidity is studied through the notion of frame-
works. A framework is a triple (V, E, p) where (V, E) is a graph and p: V — R?
a realization of the graph, which maps the vertices of V' to points of dimension
d. Thinking of graph edges as rigid bars and of vertices as articulation points,
the main goal of combinatorial rigidity is to answer “Is (V| E, p) rigid?”, i.e. it
admits only rigid motions as a whole, no deformations.

Infinitesimal flexion. In Rigidity Theory, an infinitesimal flexion is a map
q : V — R such that (p(i) — p(4)) - (¢(i) — q(j)) = 0, for each (i,j) € E. A
framework is called infinitesimally rigid, if the only infinitesimal flexions arise
from the direct isometries of R?, i.e. the translations and rotations.

Under mild assumptions concerning incidence relationships, if one frame-
work (V, E,po) is infinitesimally rigid then almost all frameworks (V, E, p) are
infinitesimally rigid. And the infinitesimal rigidity implies the rigidity of the
framework. Note that there are counter-examples for the converse, which con-
tain special incidences.

In other words, a framework in rigidity theory corresponds to the realization
of a geometric constraint system where all constraints are point-to-point distance
constraints: such a system is generically well-constrained up to direct isometries
if it is generically rigid. This was generalized by Michelucci et al. [25, 26] to
metric constraints over points, lines, etc. (distances and angles) and to incidence
constraints (colinearities in 2D and 3D, coplanarities in 3D).

In CAD when the designer draws a sketch, he/she has a solution X for a
system F (X, A.) = 0, with some parameter values A, read on the sketch. Then
the goal is a solution for the system F(X,A,) = 0, where A, are the values
given for the dimensioning.

Witness. Let F(X,A) = 0 be a constraint system, where X are the un-
knowns and A the parameters. We suppose that F'(X, A) is differentiable. A
witness is then a solution Xy of F(X, A) = 0 for some parameter values A,.

Using a Taylor expansion for a small perturbation around the solution X
of F(X,A.) =0, we have

F(Xo +ev, A.) = F(Xo, Ao) + eF'(Xo, Ae)v + O(e?)

where v can also be seen as the instant velocity of each object involved in the
system and ¢ is a small time step. Thus, if an infinitesimally small perturbation
is another solution of F/(X, A.), we must have

F/(Xo, Ae)’U =0

The space of the infinitesimal motions allowed by the constraints at the witness
is then given by ker(F’(Xo, Ae)). Note that

e the matrix F’(Xo, A.) is known as the Jacobian of system F(X,A.) =0
taken at point Xg;

e when all constraints are point-to-point distances, the Jacobian is the rigid-
ity matrix considered in Rigidity Theory;

e for other constraints with parameters the genericity conditions are more
complicated than in the combinatorial case: a parameter value A, and a
corresponding solution X are generic if the root is an implicit function of
the parameters in some open neighborhood of (X, A.); for instance, for a
triangle specified with three length parameters, this condition forbids that
one length is the sum of the others; more generally this condition implies
that the matrix

OF(X,A)/0X OF(X,A)/0A
0 1d
has the same rank in an open neighborhood of (Xy, A.) It remains that
the generic parameter values are dense in the set of parameter values
corresponding to a realization.

We give some examples for the formulation of generic constraints. For point,
line, plane incidences, we assume that the corresponding constraints are speci-
fied explicitly without parameters. This is to avoid expressing point-point inci-
dences by a distance constraint (P, — P2 ;)?+ (P1y — P2 y)? = d? with distance
parameter d = 0. For a distance constraint (P, — P ,)? + (P1,y — P2y)? = &2,
the parameter d = 0 is not generic, as the constraint is singular at the solu-
tion point. For an angle constraint angle(Py, Py, Ps) = 6, i.e. PiPy- P3Py =
Ip, p,lp,p, cOs B, the parameter values § = £+, § = £7/2, and § = 0 are not
generic. Similarly, point-line, line-plane incidences and line-line, plane-plane
parallelism /orthogonality constraints are not expressed by angle constraints be-
cause it would introduce non-generic angles.

Typicality. A witness is typical if it is representative for the searched solu-
tion, 4.e. it has the same combinatorial properties (coincidences, collinearities,
coplanarities, etc.). So a random solution (Xo, 4.), {(X,A4) : F(X,A) = 0}
with the specified combinatorial properties is typical with probability 1 for a
set of witness solutions. Note that systems exist with witness solutions, which
are different in combinatorial properties, and no continuous deformation exists
to transform one into the other. For an example of such a system see figure 14
in [16].

We can then study the degrees of freedom of the system by studying the
rank of the Jacobian F'(Xy, A.) on a typical witness Xy, and in the case of
under-constrainedness, the structure of the allowed infinitesimal motions can be
deduced from the study of the kernel of F'(Xj, A.).

In the rest of this paper, we consider that rows of the Jacobian matrix
represent constraints and columns represent, coordinates of the unknowns. We
classically denote by m the number of rows and by n the number of columns of
the matrix.

2.2 Generation of a witness

The sketch is usually a witness but due to implied incidences this may not be the
case. In this case, we solve the under-determined system {(X, A) : F(X, A) = 0}
for a witness (X, A¢). In the subdivision solver presented in [7], the nonlinear
monomials z? and z;z; for i < j are replaced by additional variables z; ; and z; ;,
which are enclosed in a polytope Bp(xi, %, i j,i<;) > 0 with halfspaces given
by the non-negativity of relevant Bernstein polynomials (Bernstein polytope).
The quadratic constraint system becomes a polytope S(z;,xi:, ®iji<;) > 0
after rewriting into the additional variables x;; and z; ;. The subscript D of
Bp(xi, i, Tiji<j) > 0 indicates that this polytope depends on the domain D.
In this way, bounds for the solution domain of quadratic polynomials can be
expressed as two linear programs

min z; and max x;
S(i, i, Tijici) >0
Bp(xi, i, % ji<j) > 0

Domain bounds are computed by linear programming in order to reduce the
current, solution domain D. If the feasible set is empty, which is detected by
linear programming, then the current domain box contains no solution. Other-
wise, we can perform a sequence of reductions and bisections of domain boxes
until the domain box D = [x1,71] X ... X [Ty, Tp] is -small: (T7 — x;) < 0 for
all 7. These d-small boxes cover the solution set piecewise.

The subdivision solver requires a domain box to start the search. The in-
tervals for generic parameter values of constraints are easy to find: angle pa-
rameters cosf (cos 6 instead of 6 to avoid trigonometric functions in the solver)
are in [—1 4 €, —¢] or [e,1 — €] with a small, arbitrary e; intervals for distance
parameters d can be obtained from magnitude bounds of the point coordinates.
Finding a bound on the magnitude of any root [36], would be necessary to prove
that the system has no solution. For the problems here, a bound on the point
coordinates is known beforehand.

In order to enumerate all solutions of a system, we used mid-bisection of the
largest interval in [7], which minimizes the height of the exploration tree while
cycling through dimensions. For the case of determining a single solution as fast
as possible, the choice of the smallest interval (greater or equal §) is beneficial
as setting variables to values allowing solutions improves the effectiveness of the
domain reduction step.

We select the next domain box (of smallest minimum side length greater
than ¢) for reduction and bisection at random. In this way, we find a solution
box containing a random solution, and we take the box center projected onto
the solution set as a witness.

As examples, we show two systems of different difficulty. In figure 2, two
triangles with a common point pg are specified by six side lengths. In the
random solution, the side lengths are all different. In figure 3, four points and
five lines with 10 point-line incidences are specified by four angle parameters and
a distance parameter. The left part shows a solution with symmetric and nice

Figure 2: “The butterfly”: 2D system with 5 points and 6 distance parameters
d(p03p1)7 d(plap2)7 d(P%PO): d(p07p3)7 d(p3ap4)7 d(P47PO)-

Figure 3: 2D system of 4 points and 5 lines with 10 point-line incidences, 4 angle
parameter angle(gp, cp), angle(cp, rp), angle(rq, cq), angle(cq, pq) and 1 distance
parameter d(r,c). Symmetric solution (left) and random, typical witness solu-
tion (right).

shaped triangles, obtained by additional minimum distance constraints between
the triangle points. In the right part, a typical witness solution is shown, which
was found at random. It is used for further analysis.

3 Over-constrainedness

We already showed in section 1 that the detection of over-constrainedness is a
complicated yet essential problem in the field of geometric constraints solving.
In this section, we show that the use of the witness method leads to an
efficient and robust detection of redundancy in geometric constraints.
We also show the usefulness of the witness method to enhance robustness of
decomposition methods by an accurate computation of the boundary.

3.1 Incremental detection of redundancy

We showed in [25] that it is possible to interrogate a witness in order to detect
whether a set of constraints is dependent or not. Indeed, it is possible to compute
the rank of the Jacobian matrix at the witness and to compare it with the
number of constraints. However, finding a maximal independent subset of a
dependent set is not a trivial problem. Working on the witness, the naive idea
would be to try and remove constraints one by one and, at each step, compute
the rank again to determine if the constraint is redundant with the remaining
set. If the rank of S — ¢ equals the rank of S, then constraint ¢ is redundant
and can be removed. Performed this way, the removal of redundant constraints
is expensive. Yet, considering an incremental construction of the geometric
constraint system allows to identify the set of redundant constraints with no
additional costs in comparison to the basic detection of redundancy.

Indeed, consider a geometric constraint system S with no redundancy be-
tween the constraints. Applying the Gauss-Jordan elimination method on the
Jacobian matrix at the witness leads to a matrix J' = (IP) with I a m x m
diagonal matrix and P a m X f matrix, f = n — m being the number of ac-
tual degrees of freedom of the system. This method has a known complexity
of O(min(n, m)nm). Let us now consider a system S’ with & C &’. In order
to know if S’ is over-constrained, one only needs to incrementally add the ge-
ometric entities and the constraints (bearing in mind that a constraint can be
inserted only when the geometric entities it concerns are all in the system) of
S’ — 8 to S and applying Gauss-Jordan again. Since the leftmost part of the
matrix is the diagonal, the number of operations is at most 2min(m,n)f: for
each row of I, each non-zero element of P must be multiplied and added to the
new row. The number of operations is in fact far smaller, since the number of
zero elements in the new row of the matrix is high.

Proceeding incrementally does not raise the number of operations: it only
changes the order of the operations. Indeed, the classical Gauss-Jordan elimina-
tion method consists in column-by-column operations: for each column ¢, divide
row ¢ by J. ., then substract J;.. times this new row from row r for every r, so

Figure 4: “The kite”: over-constrained 2D system with 4 points and 6 distances.
Without the dotted constraint, the system is rigid.

Table 1: The Jacobian matrix of table 2 at a witness. The Gauss-Jordan elim-
ination method was used on the first five rows. The sixth row is redundant

(ro =15 —74)

L1 | Y1 | X2 | Y2 | 3 | Y3 L4 Ya
i1]ofofo]o —% -1 gl
sl 00| 1|00 -5 | ! 3
|l o Jojo]1]0]-%]0 —%
il 0o Jojo]jo| 1| 2 |-1]-£
re|]-1]1]0]0]JO] O] 1]|-1

that column c¢ is a null vector except for the c-th value. With the incremental
calculus of the reduced row echelon form, one proceeds row by row: for each row
r, substract J. . times row c for each ¢ < r, then divide row r by J,., so that
the r — 1 first elements of row r are zero and the r-th element is 1. Thus, the
overall complexity of the incremental computation of the reduced row echelon
form of J is also of O(min(n, m)nm).

The incremental version of the Gauss-Jordan elimination has the same com-
plexity as the one-step version, but has a major advantage in our case: at each
step, when a constraint is inserted, one may compare the new rank with the
previous one and thus detect a redundant constraint. With exactly the same
number of operations as in the case of the classical Gauss-Jordan elimination,
one obtains the reduced row echelon form of the Jacobian matrix together with
the list of redundant constraints.

Let us consider the 2D example of figure 4. The Jacobian matrix of this
system is shown in table 2. Consider the following witness: p1 = (2,7), p2 =
(5,6), ps = (1,1) and ps = (6,3). The Jacobian at this witness is shown in
table 1, with a partial Gauss-Jordan elimination, since the sixth row has not

Table 2: The Jacobian matrix for the system of figure 4.

€1 Y1 T2 Y2 T3 Y3 T4 Yq
ri: dist(pr, p2) || 21— 22 | Y1 —Y2 | T2 — 21 | Y2 — Y1 0 0 0 0
ro: dist(p1, p3) || 1 — 23 | y1 —y3 0 0 T3 — X1 | Yz — Y1 0 0
r3: dist(pa, pa) 0 0 To— Ty | Y2 — Y4 0 0 Ty — X | Ya — Yo
rq: dist(ps, pa) 0 0 0 0 T3 — X4 | Y3 — Y4 | Ta — X3 | Y4 — Y3
r5: dist(p2, p3) 0 0 To— T3 | Yo—Ys | T3 —T2 | Y3 — Y2 0 0
re: dist(p1, pa) || 1 — 4 | Y1 —ya 0 0 0 0 Ty—T1 | Ya—

Figure 5: “The double-banana” famous counter-example to the extension of
Laman’s characterization of rigidity in 3D. Each segment represents a distance
constraint.

been modified. That is, table 1 shows the matrix obtained by performing the
incremental version of the Gauss-Jordan elimination, after inserting the sixth
constraint but before performing Gauss pivoting on it. It is easy to see that the
sixth row is redundant, since it can be obtained by substracting the first row
from the second one. Thus, we detected the over-constrainedness.

For a more complex and famous example, consider the double-banana (see
figure 5): adding the last constraint of the double-banana leads to a zero-filled
row in the Jacobian matrix at the witness. If one considers an example with
higher connectivity [23], our method still succeeds to efficiently detect over-
constrainedness.

Moreover, the witness method correctly handles redundancy in under-constrained

cases, where graph-based methods are helpless because they do not consider
geometric theorems. For instance, consider the 2D example of figure 6. It is un-
likely that a graph-based method can ever detect the fact that point y is fixed,

10

Figure 6: In 2D, given three aligned points a, b and x and for any point p and
line [traversing x, y is unchanged: p; = (ap)Nli, p2 = (bp) N, p’ = (ap2) N (bp1),
y = (ab) N (pp").-

no matter what coordinates are given to point p and line /. Hence, a graph-based
method would see this system as a system with 8 remaining degrees of freedom
(5 for the three aligned points a, b and z, 1 for line [traversing = and 2 for point
p) and would consider that adding a constraint distance between points a and
y removes a degree of freedom. The witness method, however, detects that this
new distance constraint is redundant and that the unknown y is determined by
the system though [and p can be chosen at random.

3.2 Computation of well-constrained boundary systems

This easy and efficient way to compute a maximal independent subset of the
constraints is also useful in decomposition to make sure that the boundary of a
subsystem is not over-constrained.

Recall that the boundary of a system &’ according to a system S is the set
of all information computable in &’ about geometric entities which are both in
S and &'. For instance, if &’ is a rigid system which shares three points with
system S, then the boundary of &’ contains the following displacement-invariant
constraints:

e the three point-point distances,
e the three angles between the sides of the triangle.

It is easy to see that if the boundary of a subsystem is not added after
removal of the subsystem from a rigid GCS, then the remaining GCS becomes
under-constrained because information is lost. For instance, consider the GCS
of figure 4 without the constraint shown with dotted lines. The triangle p;pop3
is rigid and trivially solved. If it is removed from the system, the remaining
GCS is a 2-bars system containing two distance constraints: p3 — py and ps —
p4. This remaining system has solutions which are not subfigures of the global
GCS, since the angle between both bars may vary.

To get rid of this problem, one may add the boundary of the solved sub-
system to the remaining system [24]. In the example above, the boundary of
triangle p1pops consists of the distance between points po and ps. With a bigger
boundary, a new problem arises. Consider, for instance, a rigid subsystem which
shares three points with the remaining system. One can compute the values of
the three point-point distances, but also the values of the three angles. Thus,

11

the boundary is an over-constrained GCS with three points and six constraints.
Although, formally, the system is not over-constrained since the metrics are con-
sistent, it is structurally over-constrained, which means that any combinatorial
method will fail to continue the solving process.

Using our incremental Gauss-Jordan elimination method, one can compute a
well-constrained subset of the boundary system which contains all the informa-
tion to generate the rest of the boundary system. One adds all the constraints
of the boundary one by one to an empty system. If the last inserted constraint
is redundant with the previous ones, one removes it.

Note that all maximal independent subsets of the constraints are geometri-
cally equivalent, i.e. the computed boundary will depend on the order in which
constraints are considered, but whatever this order is, the result will be correct.

4 Detection of maximal rigid subsystems in ar-
ticulated systems

In this section, we show how the witness method can be used to efficiently detect
all maximal rigid subsystems (MRS) of a geometric constraint system, even with
systems for which graph-based methods would fail to detect rigidity. We give a
basic algorithm based on a series of Gauss-Jordan eliminations then show two
ways to enhance computation speed.

The basic idea of our MRS detection algorithm is to study which geometric
entities are fixed when one anchors a reference for the displacements (see [24] or
[30] for a formal definition of references). In the witness framework, anchoring
a reference for the displacements consists in switching columns in the Jacobian
matrix so as to put the three columns of the reference in the right-most positions.
Indeed, performing a Gauss-Jordan elimination diagonalizes the matrix from
the left and thus consists in expressing the different coordinates as functions
of the right-most columns (the ones that do not belong to the identity part
of the matrix). For instance, table 1 shows the reduced row echelon form of
the Jacobian matrix at the witness for the GCS of figure 4. Since this GCS is
rigid (with the redundant constraint removed), three columns do not belong to
the identity part of the matrix: they correspond to coordinates x4, y4 and ys,
which form a reference for the system. All other coordinates can be expressed
in function of these three coordinates. For instance, the first line of the matrix
must be interpreted as x1 — %yg — T4+ §y4 =0,ie 11 = %yg + x4 — %y4.

When the GCS is not rigid, three parameters are not enough to anchor all
entities. There are then more than three columns at the right of the identity.
Table 3 shows the reduced row echelon form of the Jacobian matrix at a witness
for the GCS of figure 7. Notice that columns ys and y4 were moved to the right,
since it would have been impossible to find a pivot and finish the Gauss-Jordan
elimination otherwise. All coordinates can be expressed as functions of ys, y4,
¥, 7 and y7. Indeed, a reference for this GCS can consist in point p7, direction
p7-pe, direction ps-ps and direction ps-ps.

12

P3 P4

P1

pr
D2

Figure 7: 2D articulated chain made of three rigid triangles. Distance con-
straints are implicitly represented by the segments.

An important result to identify MRSs comes from the zeros in columns yo
and y4. Rows 7, 8 and 9 of table 3 can be interpreted as the fact that the
values of x5, y5 and x¢ depend only on those of yg, 7 and y7. Put differently, if
one anchors a reference for the displacements by pinning down p7 and direction
p7-pe, then points pg and ps are fixed, i.e. pspgpr is a rigid subsystem.

A naive algorithm immediately arises, based on anchoring a reference for the
displacements, i.e. switching columns to have the corresponding columns on
the right of the Jacobian matrix and identifying the parts of the GCS which are
fixed. The pseudo-code is shown as algorithm 1. In this algorithm, anchoring
a reference for the displacements means switching columns so as to have the
columns corresponding to the reference at the right of the Jacobian matrix. In
order to not identify the same MRS twice, we anchor references only on untagged
parts of the GCS, that means that at least one of the columns cannot be tagged.

Algorithm 1 Naive MRS identification algorithm

1: 10

2: repeat

3: anchor a reference for the displacements on an untagged part of the GCS

4: perform a Gauss-Jordan elimination

5: tag with label ¢ the columns of the GCS which correspond to coordinates
depending only on the reference

1—1+1

7: until all the columns are tagged

@

13

Table 3: Reduced row echelon form of the Jacobian matrix at a witness for the
GCS of figure 7

Z1 Y1 €2 €3 Y3 L4 X5 Ys £6 Y2 Y4 Yo Z7 Y7
rmlft]olofojolo[ofo]o]| 3 %1 }% -1 -
|0 1jofjo|l0olo]O0O]O0O]|O]|-% —go 7. | O 12—%
mllolol1]o0o]0]O0O|0|O0O]O0O] 4 Qg 75; I -
mllolojo|1]0|0O|0O|O]|]O]| O 2 —? -1 | -3
rsffojojojo|l1|O0[O0O]O]O] O s | . 0| —22
sfolojo]oflOo|1][O0]O0O]O] O 3 -5 1 -4
rhfolojo]o|lO|O|[1]O]O] O 0 -3 -1
sffojojo]oflOo|O|O]|1]O0O] O 0 3 0| —
mlflojojo]o|lo|Oo|O]O] 1] O 0 -]-1

The cost of this algorithm depends on the number k& of MRSs: for each of
them, it performs a Gauss-Jordan elimination only once, so that the total cost
is O(k min(n, m)nm).

This cost can be reduced to O((k+min(n, m))nm) by not starting the Gauss-
Jordan elimination from scratch for each MRS. At the end of line 6 in the
algorithm, the Jacobian matrix at the witness is in reduced row echelon form.
By switching the columns in an appropriate way, one needs only perform the
Gauss-Jordan pivot operation on two to three columns. Indeed, by looking at
the constraint graph, it is possible to select a new reference for the GCS (i.e. a
set of f columns, f being the number of degrees of freedom of the GCS) which
satisfies the following conditions:

e it includes a reference for the displacements which is not totally tagged,
e cach identified MRS is fixed, i.e.

— the reference includes three coordinates in the MRS,

— the MRS shares a geometric entity with a fixed MRS and the reference
includes a coordinate in the MRS.

To select this reference, one only needs to consider a geometric entity which is
in an already identified MRS and which is linked by a constraint to an untagged
entity. More cases occur with systems for which the constraint graph has several
connected components or with systems with implicit points (e.g. similarity-
invariant systems with only lines and angles), but the principle remains the
same. Thus, in most cases, one only needs to switch two columns, so as to
change the point in the reference. Three switches happen with disconnected
graphs. Algorithm 2 shows how to perform MRS identification. For the sake of
simplicity, the algorithm is described for articulated GCS made of several MRSs
connected by points, but it is easily extended to systems with other kinds of
geometric entities.

In the case of open chains, i.e. GCS where all cycles in the constraint
graph are included in rigid subsystems, an even less costly algorithm exists, by

14

Algorithm 2 MRS identification algorithm for an articulated system

1: anchor a reference for the displacements and identify and tag a first MRS

2: repeat

3: select a tagged point linked by a constraint to an untagged element

4: switch the columns of this point with the columns of the point in the last
reference

5: perform Gauss-Jordan elimination on the two latter in order to identify a
new MRS

6: tag the new MRS

7: until all the columns are tagged

using both the constraint graph and the Jacobian matrix. After performing
the Gauss-Jordan elimination, a first MRS is identified by considering all the
coordinates which depend only on the reference. From there, one can consider all
the coordinates which depend on the reference and on one additional parameter.
In the matrix of table 3, with the additional parameter y4, x3, y3 and x4 are
fixed. Taking a look at the constraint graph, we notice that the previously
identified MRS (pspsp7) shares only one point with the rest of the system and
thus cannot “transfer” more than two degrees of displacement.

This enables us to remove the MRS and exchange the three parameters ys,
x7 and y7; with parameters x5 and ys in the Jacobian matrix. The numerical
values are not important in this process: we consider that all the values of both
columns are non-zero. With this new matrix, one notices that parameters xs,
ys and y4 form a reference for the displacements and that by anchoring this
reference, z3, y3 and x4 are fixed, i.e. p3psps is a rigid system. We continue
this algorithm by noticing that this system shares only one point with the rest
of the system, removing it and replacing it with non-zero-filled columns x3 and
ys and thus identifying the last MRS pi1paps.

When the last identified MRS shares more than one point with the rest
of the system, two cases occur: either the removal of the MRS leads to two
disconnected graphs (i.e. the MRS is in the middle of the articulated system)
and one thus continues the algorithm separately on each part of the graph; or
the MRS belongs to a non-rigid closed chain.

When one uses this algorithm on a GCS containing non-rigid closed chains, it
leads to cases where one cannot detect the MRSs of the closed chains, because of
the inter-dependance of the rigid subsystems of the chain. After identifying the
first MRS of the closed chain, the algorithm is stuck because it is not possible to
identify another system which depends only on three parameters. In this case,
we get back to algorithm 2 to identify the different MRSs of the closed chain.

Notice that this section is about identification of maximal rigid subsystems
but that since it is based on the anchoring of references, one may adapt the al-
gorithms to identify maximal subsystems well-constrained modulo other trans-
formation groups than the displacements.

15

5 W-decomposition of a rigid GCS

The previous section gives algorithms to identify all MRSs of a GCS. Having
such an algorithm leads to a natural method to decompose a rigid geometric
constraint system. We call this method W-decomposition and a system which
can be decomposed by this method is said to be W-decomposable. In this
section, we explain the principles of W-decomposition and give examples.

Algorithm 2 identifies maximal rigid subsystems, i.e. if a MRS can be de-
composed in several rigid subsystems, this will not be detected. The basic idea
of W-decomposition is to remove constraints from the constraint graph and see
if it breaks the MRS in non-trivial MRSs, i.e. MRSs which are not limited to
their boundary (e.g. a system limited to a point-point distance). If it does,
then we use W-decomposition on each non-trivial MRS. Algorithm 3 gives the
pseudo-code of the algorithm.

Algorithm 3 W-decomposition
Input: a rigid GCS S with
its constraint graph G = (V, E) and
a witness W of S
Output: a list of rigid subsystems
1: repeat
2 Select a constraint e
3 Identify MRSs of (V, E/{e}) with alg. 2
4: while each MRS is equivalent to its boundary do
5
6

Choose another constraint e and identify MRSs of (V, E/{e})
: until all constraints are tested or there is a MRS which is not equivalent to
its boundary

7: if no MRS bigger than its boundary is found then

8: return list [G] //G is W-indecomposable

9: else
10: remove all the constraints included in non-trivial MRSs
11: insert the boundary of all non-trivial MRSs in the system //cf. section 3.2
12: reintroduce constraint e in the system //this gives a rigid constraint system
13: recursively W-decompose the resulting system
14: recursively W-decompose all previously identified MRSs
15: return the concatenation of the lists obtained in the last two lines

Let us illustrate this algorithm on the example of figure 8a, which represents
the constraint graph of a rigid GCS. The graph is 3-connected and has two K3 3
subgraphs, connected by three “middle” edges. Algorithm 2 detects the rigidity
of the whole system. Let us consider the removal of two constraints at line 2 of
algorithm 3: dotted edges e; and es.

If we remove edge e, the use of algorithm 2 at line 3 identifies four MRSs:
the rigid K3 3 subsystems, and each edge between them. The latter are equiv-
alent to their boundary. Replacing the rigid hexagons by their boundaries and
reintroducing edge e leads to the graph of figure 8b (note that edge e; must be

16

b

Figure 8: 2D systems where edges represent point-point distances; a: 3-
connected constraint graph made of two K33 graphs connected with 3 con-
straints; b and c¢: graphs obtained by replacing MRSs identified by algorithm 3
by their boundary with respectively edges e; and e; removed.

taken into account for the computation of the boundaries). The recursive use
of W-decomposition (line 14) on each non-trivial MRS leads to the knowledge
that they are not W-decomposable, as does the recursive use on the system of
figure 8b (line 13).

If we do not remove edge e; but ey instead, the left K33 subsystem of
figure 8a is no longer rigid. The identification of non-trivial MRS thus only
identifies the hexagon on the right of figure 8a. Once it is replaced by its
boundary, we obtain the system shown on figure 8c. The recursive use of W-
decomposition will then lead, after removal of one of the three “middle” edges,
to the identification of the second rigid hexagon and thus to the system shown
on figure 8b.

Execution time depends on the choice of the removed constraint. In the
worst case, all constraints are tested: n times the algorithm 2 is used, thus the
complexity is O(n®m).

Our algorithm is more powerful than algorithms found in the literature, for
several reasons:

e first of all, it is independent of the connectivity of the constraint graph.

17

Figure 9: 2D examples for the W-decomposition: each vertex is a point and
each edge represents a distance constraint. a: W-decomposable 4-connected
GCS (the blue subsystem is rigid); b: W-indecomposable system; c: there are
W-indecomposable systems with an arbitrary number of points.

For instance, figure 9a gives an example of a 4-connected constraint graph
which is W-decomposable, no matter what is inside the inner blue part as
long as it is rigid,

e second, it is also not based on a cluster formation. Since the graph of
figure 9b is not decomposable by current graph decomposition methods,
the system of figure 9a, with the inner part replaced by figure 9b, will
also lead to a decomposition failure for these methods, whereas it is W-
decomposable.

Ultimate decomposition consists in yielding a triangular equation system.
For algebraic systems, Wu-Ritt decomposition or Grobner basis with lexical
order lead to such decompositions, but unfortunately, they are untractable in
the CAD domain. On the other hand, W-decomposition is not as powerful as
these algebraic methods since it is possible to construct an infinite family of
W-indecomposable constraint systems like the one depicted in figure 9c: there
is no constraint in this system such that its removal produces a system with a
MRS bigger than a point-point distance. But, on the positive side, it is easy to
see that

e all Owen-decomposable systems are W-decomposable (that is, articulation

18

pairs are detected by the choice of the deleted constraint)

e all constraint systems which are decomposable by cluster formation meth-
ods or on the search of minimal rigid parts, are also W-decomposable.

We think that the ratio of efficiency to power of decomposition is good enough
to give good results in CAD even in the 3D case.

6 Robustness issue

Our method assumes it is possible to compute the rank of a set of vectors, given
by their coordinates. It is a basic problem in computerized linear algebra with
well-known methods. Only at first glance, it looks like an easy problem.

Since the rank is not a continuous function, it is not computable in the sense
of Computable Analysis [34]. In short, Computable Analysis uses interval arith-
metic with interval bounds represented using a long float arithmetic. However,
the interval width is never zero. In this arithmetic, it is impossible to detect
that a number (a Gauss pivot, or a determinant) is zero. On the contrary, it
is possible to detect that a number is non-zero: compute a sufficiently precise
interval, not containing zero.

If a rational witness is available, an exact rational arithmetic can be used.
The rank of rational vectors is computable, and this apprach is practical. It
is explored in [25] with a number of examples. If a rational witness is not
available, like for a regular pentagon, one may theoretically resort to an exact
algebraic arithmetic, for instance an algebraic arithmetic based on gap theorems
[1]. Unfortunately, the large time complexity of this method makes it impractical
for general systems.

We use rational arithmetic when rational witnesses are available. When no
rational witness is available, and the solver is used, it provides interval approx-
imations of witnesses. We use an epsilon-heuristic like the dynamic geometry
softwares (Cabri Géomeétre, Cinderella, GeoGebra, etc.): we decide by an ep-
silon threshold in the Gauss-Jordan algorithm whether vectors are dependent
or not. Because all our applications of the Gauss-Jordan elimination algorithm
do not depend on a special ordering of constraint rows (section 3), we can use
all pivoting techniques available for it.

In practice, all geometric constraint systems met in CAD / CAM seem to
have a rational witness. Systems without rational witnesses exist like for exam-
ple a regular pentagon but they appear to us as artificial instances.

7 Conclusion
After proposing a way to generate a witness, we showed in this paper how the

witness method could be used to detect over-constrained systems without any
additional computational cost by an incremental Gauss-Jordan elimination of

19

the Jacobian matrix at the witness. This allows the computation of a well-
constrained boundary inside the decomposition method.

We gave algorithms to identify all maximal well-constrained subsystems of
a GCS, i.e. the system itself if it is well-constrained, or its rigid parts if it is ar-
ticulated. From this algorithm, we deduced a method, called W-decomposition,
to decompose a rigid GCS into the set of all its non-trivial rigid subsystems,
based on the removal of a constraint and the computation of the new maximal
rigid subsystems.

The method to detect over-constrainedness is efficient (the computation of
the reduced row echelon form of the Jacobian matrix is performed in O(min(n, m)nm))
and is not tricked by mathematical theorems, even when these theorems are un-
known to the developer. The MRS identification is also efficient (O(n?m) with
algorithm 2) and works as well with other transformation groups than the dis-
placements. W-decomposition is performed in O(n3m) in the worst case.

For conciseness reasons, the algorithms we described work on 2D systems,
but they can be easily extended to 3D systems. Complexity of the algorithms
is independent of the dimension.

Further research needs to be done in order to find heuristics for the opti-
mization of W-decomposition. The example of figure 8 shows that some edges
are better than others for the removal (line 2 of algorithm 3). We think that a
promising track is the computation of a minimum chain covering and the search
for constraints which appear in only a few chains.

References

[1] J. F. Canny. The Complezity of Robot Motion Planning. MIT Press, Cam-
bridge, 1988.

[2] S.-C. Chou and X.-S. Gao. Ritt-wu’s decomposition algorithm and geome-
try theorem proving. In CADE ’90: Proceedings of the 10th International
Conference on Automated Deduction, pages 207220, Kaiserslautern, Ger-
many, 1990. Springer.

[3] J.-F. Dufourd, P. Mathis, and P. Schreck. Geometric construction by as-
sembling solved subfigures. Artificial Intelligence, 99(1):73-119, 1998.

[4] A. Fabre and P. Schreck. Combining symbolic and numerical solvers to
simplify indecomposable systems solving. In SAC ’08: Proceedings of the
28rd ACM Symposium on Applied Computing, pages 1838—1842, Fortaleza,
Brazil, 2008. ACM.

[5] S. Foufou, D. Michelucci, and J.-P. Jurzak. Numerical decomposition of ge-
ometric constraints. In SPM ’05: Proceedings of the 10th ACM Symposium
on Solid and physical modeling, pages 143—151, Cambridge, Massachusetts,
USA, 2005. ACM.

20

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

I. Fudos and C. M. Hoffmann. A graph-constructive approach to solv-
ing systems of geometric constraints. ACM Transactions on Graphics,
16(2):179-216, 1997.

C. Fuenfzig, D. Michelucci, and S. Foufou. Nonlinear systems solver in
floating point arithmetic using LP reduction. In SPM ’09: Proceedings
of the SIAM/ACM joint conference on Geometric and Physical Modeling,
pages 123-134, San Francisco, California, USA, 2009.

X.-S. Gao, C. M. Hoffmann, and W.-Q. Yang. Solving spatial basic geo-
metric constraint configurations with locus intersection. Computer-Aided
Design, 36(2):111-122, 2004.

X.-S. Gao, Q. Lin, and G.-F. Zhang. A C-tree decomposition algorithm for
2D and 3D geometric constraint solving. Computer-Aided Design, 38(1):1-
13, 2006.

J. E. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Grad-
uate Studies in Mathematics. American Mathematical Society, 1993.

C. M. Hoffmann and R. Joan-Arinyo. Symbolic constraints in construc-
tive geometric constraint solving. Journal of Symbolic Computation, 23(2-
3):287-299, 1997.

C. M. Hoffmann and R. Joan-Arinyo. A brief on constraint solving.
Computer-Aided Design and Applications, 2(5):655-663, 2005.

C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Finding solvable subsets
of constraint graphs. In CP 1997: Proceedings of the 3rd International
Conference on Principles and Practice of Constraint Programming, pages
463-477, Hagenberg Castle, Austria, 1997.

C. M. Hoffmann, M. Sitharam, and B. Yuan. Making constraint solvers
more usable: overconstraint problems. Computer-Aided Design, 36(4):377—
399, 2004.

C. Jermann, B. Neveu, and G. Trombettoni. Algorithms for identifying
rigid subsystems in geometric constraint systems. In IJCAI ’03: Proceed-
ings of the 18th International Joint Conference on Aritificial Intelligence,
pages 233—-238, Acapulco, Mexico, 2003. Morgan Kaufmann.

C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Decomposition of
geometric constraint systems: a survey. International Journal of Compu-
tational Geometry and Applications, 16(5,6):379-414, 2006.

R. Joan-Arinyo and A. Soto-Riera. A correct rule-based geometric con-
straint solver. Computer and Graphics, 5(21):599-609, 1997.

R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational
geometric constraint-solving techniques. ACM Transactions on Graphics,
18(1):35-55, 1999.

21

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana-Pasto. Re-
visiting decomposition analysis of geometric constraint graphs. Computer-
Aided Design, 36(2):123-140, 2004.

P. Jorg, M. Sitharam, Y. Zhou, and J. Fan. Elimination in generically rigid
3D geometric constraint systems. In Algebraic Geometry and Geometric
Modeling, Mathematics and Visualization, pages 205-216, Nice, France,
2004. Springer-Verlag.

G. Laman. On graphs and rigidity of plane skeletal structures. Journal of
Engineering Mathematics, 4(4):331-340, 1970.

R. S. Latham and A. E. Middleditch. Connectivity analysis: a tool for
processing geometric constraints. Computer-Aided Design, 28(11):917-928,
1996.

A. Mantler and J. Snoeyink. Banana spiders: a study of connectivity in
3D combinatorial rigidity. In CCCG ’04: Proceedings of the 16th Canadian
Conference on Computational Geometry, pages 44-47, Montréal, Québec,
Canada, 2004.

P. Mathis and S. E. B. Thierry. A formalization of geometric constraint
systems and their decomposition. Formal Aspects of Computing, 22(2):129—
151, 2010.

D. Michelucci and S. Foufou. Interrogating witnesses for geometric con-
straint solving. In SPM ’09: Proceedings of the SIAM/ACM joint confer-
ence on Geometric and Physical Modeling, pages 343-348, San Francisco,
California, USA, 2009. ACM.

D. Michelucci, S. Foufou, L. Lamarque, and D. Ménegaux. Another
paradigm for geometric constraints solving. In CCCG ’06: Proceedings of
the 18th Annual Canadian Conference on Computational Geometry, pages
169-172, Queen’s University, Ontario, Canada, 2006.

A. Noort, M. Dohmen, and W. F. Bronsvoort. Solving over- and under-
constrained geometric models. In B. Briiderlin and D. Roller, editors, Ge-
ometric Constraint Solving and Applications, chapter 2, pages 107-127.
Springer, 1998.

J.-J. Oung, M. Sitharam, B. Moro, and A. Arbree. FRONTIER: fully
enabling geometric constraints for feature-based modeling and assembly.
In SMA ’01: Proceedings of the 6th ACM symposium on Solid Modeling
and Applications, pages 307-308, Ann Arbor, Michigan, USA, 2001. ACM.

J. C. Owen. Algebraic solution for geometry from dimensional constraints.
In SMA ’°91: Proceedings of the first ACM symposium on Solid modeling
foundations and CAD/CAM applications, pages 397-407, Austin, Texas,
United States, 1991. ACM.

22

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

P. Schreck and P. Mathis. Geometrical constraint system decomposition: a
multi-group approach. International Journal of Computational Geometry
and Applications, 16(5,6):431-442, 2006.

M. Sitharam. Well-formed systems of point incidences for resolving col-
lections of rigid bodies. International Journal of Computational Geometry
and Applications, 16(5,6):591-615, 2006.

G. Trombettoni and M. Wilczkowiak. GPDOF': a fast algorithm to decom-
pose under-constrained geometric constraints: Application to 3D modeling.
International Journal of Computational Geometry and Applications, 16(5-
6):479-511, 2006.

H. A. van der Meiden and W. F. Bronsvoort. A non-rigid cluster rewriting
approach to solve systems of 3D geometric constraints. Computer-Aided
Design, 42(1):36-49, 2010.

K. Weihrauch. Computable analysis: an introduction. Springer-Verlag New
York, Inc., 2000.

L. Yang. Solving geometric constraints with distance-based global coordi-
nate system. In International Workshop on Geometric Constraint Solving,
Beijing, 2003.

C. Yap. Fundamental problems in algorithmic algebra. Oxford University
Press, 2000.

G.-F. Zhang and X.-S. Gao. Well-constrained completion and decompo-
sition for under-constrained geometric constraint problems. International
Journal of Computational Geometry and Applications, 16(5,6):18-35, 2006.

23

