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Using the witness method to dete
t rigidsubsystems of geometri
 
onstraints in CADDominique Mi
helu

i∗ Pas
al S
hre
k†Simon E.B. Thierry† Christoph Fünfzig*Jean-David Génevaux†September 1st � 3rd, 2010Abstra
tThis paper deals with the resolution of geometri
 
onstraint systemsen
ountered in CAD-CAM. The main results are that the witness method
an be used to dete
t that a 
onstraint system is over-
onstrained andthat the 
omputation of the maximal rigid subsystems of a system leadsto a powerful de
omposition method.In a �rst step, we re
all the theoreti
al framework of the witnessmethod in geometri
 
onstraint solving and extend this method to gen-erate a witness. We show then that it 
an be used to in
rementally de-te
t over-
onstrainedness. We give an algorithm to e�
iently identify allmaximal rigid parts of a geometri
 
onstraint system. We introdu
e thealgorithm of W-de
omposition to identify all rigid subsystems: it managesto de
ompose systems whi
h were not de
omposable by 
lassi
al 
ombi-natorial methods.Keywords: Geometri
 Constraints Solving, witness 
on�guration, Ja-
obian matrix, rigidity theory, W-de
omposition1 Introdu
tionGeometri
 
onstraints solving in Computer-Aided Design (CAD) aims at yield-ing a �gure whi
h meets some in
iden
e and metri
 requirements (e.g. distan
esbetween points or angles between lines), usually spe
i�ed in graphi
al form. For-mally, a geometri
 
onstraint system (GCS) 
onsists in 
onstraints (predi
ates),unknowns (geometri
 entities) and parameters (metri
 values). Solutions arereturned as the 
oordinates of the geometri
 entities. The left of �gure 1 showsan example of a te
hni
al sket
h, and the right shows a possible solution.The literature des
ribes a number of di�erent approa
hes to solve geometri

onstraint systems:
∗LE2I, UMR CNRS 5158, Université de Bourgogne
†LSIIT, UMR CNRS 7005, Université de Strasbourg1
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Figure 1: A 2D te
hni
al sket
h (left) and a possible solution (right).
• algebrai
 methods 
onsist in translating the GCS into a set of equationsand working on the equation system, thus forgetting the geometri
al ba
k-ground. Algebrai
 methods 
an be 
lassi�ed in numeri
al methods [22℄ (it-erative 
omputations 
onverging to an approximate solution from initialvalues given by the user) and symboli
 methods [2, 11℄ (dire
t 
omputa-tions on the equations � these methods are seldom used be
ause of their
omplexity),
• geometri
 methods use the geometri
 knowledge to solve the system: graph-based methods [6, 9, 22, 28, 29, 31℄ 
ompile this knowledge into algorithmswhi
h 
onsider only 
ombinatorial and 
onne
tivity 
riteria, rule-basedmethods [3, 17℄ dedu
e 
onstru
tions plans by an expli
it use of geometri
rules,
• hybrid methods [4, 8, 18℄ alternate algebrai
 and geometri
 phases of 
om-putations to use the power of both approa
hes.For more details on geometri
 
onstraint solving, see [12℄. A general trend,both to redu
e 
omplexity and to enhan
e resolution power, is to de
omposethe GCS into solvable subsystems and to assemble their solutions [4, 5, 9, 13,15, 22, 28, 29, 31, 33℄. For instan
e, on the 2D example of �gure 1, it is easy toseparately solve ea
h �triangle� (p1p2p6, p2p3p4 and p4p5p6) and then assemblethem. For a detailed survey of de
omposition methods, see [16℄.Noti
e that, on the example of �gure 1, if one removes one of the triangles,say p2p3p4, and then tries to solve the remaining system, one needs to add in-formation from the solved subsystem, otherwise the remaining system be
omesarti
ulated. This pie
e of information is 
alled the boundary [24℄. Although sev-eral methods exist to �nd the relevant information in spe
i�
 resolution frame-works [28℄, no general algorithm yet exists to 
ompute the boundary withoutadding too mu
h information.Indeed, it is important for resolution methods, espe
ially for graph-basedmethods, that the system does not have too few or too many 
onstraints.Loosely speaking, a system is 
alled 2



• under-
onstrained if it has an in�nite number of solutions be
ause thereare not enough 
onstraints to pin down every geometri
 entity,
• over-
onstrained if it has no solution be
ause of 
onstraint 
ontradi
tions,
• well-
onstrained if it has a �nite positive number of solutions.Invarian
e of rigid systems by displa
ements is generally taken into a

ount byan
horing a point and a dire
tion in 2D, a point and two dire
tions in 3D.The point and the dire
tion are 
alled a referen
e for the displa
ements. Othertransformation groups may be 
onsidered [30℄.A lot of work has been done about the dete
tion of over-
onstrainedness [14,27℄ or under-
onstrainedness [19, 32, 37℄ and more generally about the 
hara
-terization of rigidity [21, 20, 30, 35℄. Yet, methods des
ribed in the literaturemay fail to 
onsider the 
onsequen
es of mathemati
al theorems that are notexpli
itly taken into a

ount in the 
onstru
tion of the resolution algorithm.Sin
e a theorem list 
annot be exhaustive, it is impossible to develop a rule-based or graph-based algorithm that dete
ts geometri
 properties indu
ed bymathemati
al theorems.In this arti
le, we extend the witness method [25℄ to address several problems
ited above: how to determine the 
onstrainedness level of a GCS withoutbeing tri
ked by mathemati
al theorems (see for instan
e �gure 6); how toe�
iently dete
t all maximal well-
onstrained subsystems of a given GCS; howto de
ompose a well-
onstrained system into the set of all its minimal well-
onstrained subsystems.For 
on
iseness reasons, in the rest of this paper, we 
onsider 2D systems,unless expli
itly mentionned otherwise. Yet, all algoritms 
an be extended to 3Dsystems with nearly no 
hanges and, most of the time, the only modi�
ation tobe made for the text to be valid in 3D is to ex
hange mentions of three degreesof freedom/parameters with mentions of six degrees of freedom/parameters.This arti
le is organized as follows: se
tion 2 re
alls the prin
iples of the wit-ness method and gives a way to generate a witness; se
tion 3 demonstrates thatan in
remental version of the Gauss-Jordan elimination has the same 
ompu-tational 
ost than the original version but allows to dete
t over
onstrainednessin all 
ases; se
tion 4 gives algorithms to e�
iently identify the maximal rigidsubsystems of an arti
ulated system; se
tion 5 dedu
es from these algorithmsa method to further de
ompose a rigid system into rigid subsystems; �nally,se
tion 7 
on
ludes and gives perspe
tives to this work.

3



2 The witness method2.1 Prin
ipleThe witness method 
omes from ideas of Stru
tural Topology, or Rigidity The-ory [10℄ where the question of rigidity is studied through the notion of frame-works. A framework is a triple (V, E, p) where (V, E) is a graph and p : V → R
da realization of the graph, whi
h maps the verti
es of V to points of dimension

d. Thinking of graph edges as rigid bars and of verti
es as arti
ulation points,the main goal of 
ombinatorial rigidity is to answer �Is (V, E, p) rigid?�, i.e. itadmits only rigid motions as a whole, no deformations.In�nitesimal �exion. In Rigidity Theory, an in�nitesimal �exion is a map
q : V → R

d su
h that (p(i) − p(j)) · (q(i) − q(j)) = 0, for ea
h (i, j) ∈ E. Aframework is 
alled in�nitesimally rigid, if the only in�nitesimal �exions arisefrom the dire
t isometries of R
d, i.e. the translations and rotations.Under mild assumptions 
on
erning in
iden
e relationships, if one frame-work (V, E, p0) is in�nitesimally rigid then almost all frameworks (V, E, p) arein�nitesimally rigid. And the in�nitesimal rigidity implies the rigidity of theframework. Note that there are 
ounter-examples for the 
onverse, whi
h 
on-tain spe
ial in
iden
es.In other words, a framework in rigidity theory 
orresponds to the realizationof a geometri
 
onstraint system where all 
onstraints are point-to-point distan
e
onstraints: su
h a system is generi
ally well-
onstrained up to dire
t isometriesif it is generi
ally rigid. This was generalized by Mi
helu

i et al. [25, 26℄ tometri
 
onstraints over points, lines, et
. (distan
es and angles) and to in
iden
e
onstraints (
olinearities in 2D and 3D, 
oplanarities in 3D).In CAD when the designer draws a sket
h, he/she has a solution X0 for asystem F (X, Ae) = 0, with some parameter values Ae read on the sket
h. Thenthe goal is a solution for the system F (X, Aa) = 0, where Aa are the valuesgiven for the dimensioning.Witness. Let F (X, A) = 0 be a 
onstraint system, where X are the un-knowns and A the parameters. We suppose that F (X, A) is di�erentiable. Awitness is then a solution X0 of F (X, A) = 0 for some parameter values Ae.Using a Taylor expansion for a small perturbation around the solution X0of F (X, Ae) = 0, we have

F (X0 + εv, Ae) = F (X0, Ae) + εF ′(X0, Ae)v + O(ε2)where v 
an also be seen as the instant velo
ity of ea
h obje
t involved in thesystem and ε is a small time step. Thus, if an in�nitesimally small perturbationis another solution of F (X, Ae), we must have
F ′(X0, Ae)v = 0The spa
e of the in�nitesimal motions allowed by the 
onstraints at the witnessis then given by ker(F ′(X0, Ae)). Note that

• the matrix F ′(X0, Ae) is known as the Ja
obian of system F (X, Ae) = 0taken at point X0; 4



• when all 
onstraints are point-to-point distan
es, the Ja
obian is the rigid-ity matrix 
onsidered in Rigidity Theory;
• for other 
onstraints with parameters the generi
ity 
onditions are more
ompli
ated than in the 
ombinatorial 
ase: a parameter value Ae and a
orresponding solution X0 are generi
 if the root is an impli
it fun
tion ofthe parameters in some open neighborhood of (X0, Ae); for instan
e, for atriangle spe
i�ed with three length parameters, this 
ondition forbids thatone length is the sum of the others; more generally this 
ondition impliesthat the matrix

(

∂F (X, A)/∂X ∂F (X, A)/∂A
0 Id

)has the same rank in an open neighborhood of (X0, Ae) It remains thatthe generi
 parameter values are dense in the set of parameter values
orresponding to a realization.We give some examples for the formulation of generi
 
onstraints. For point,line, plane in
iden
es, we assume that the 
orresponding 
onstraints are spe
i-�ed expli
itly without parameters. This is to avoid expressing point-point in
i-den
es by a distan
e 
onstraint (P1,x−P2,x)2 +(P1,y−P2,y)2 = d2 with distan
eparameter d = 0. For a distan
e 
onstraint (P1,x−P2,x)2 + (P1,y −P2,y)2 = d2,the parameter d = 0 is not generi
, as the 
onstraint is singular at the solu-tion point. For an angle 
onstraint angle(P1, P2, P3) = θ, i.e. P1P2 · P3P2 =
lP1P2

lP3P2
cos θ, the parameter values θ = ±π, θ = ±π/2, and θ = 0 are notgeneri
. Similarly, point-line, line-plane in
iden
es and line-line, plane-planeparallelism/orthogonality 
onstraints are not expressed by angle 
onstraints be-
ause it would introdu
e non-generi
 angles.Typi
ality. A witness is typi
al if it is representative for the sear
hed solu-tion, i.e. it has the same 
ombinatorial properties (
oin
iden
es, 
ollinearities,
oplanarities, et
.). So a random solution (X0, Ae), {(X, A) : F (X, A) = 0}with the spe
i�ed 
ombinatorial properties is typi
al with probability 1 for aset of witness solutions. Note that systems exist with witness solutions, whi
hare di�erent in 
ombinatorial properties, and no 
ontinuous deformation existsto transform one into the other. For an example of su
h a system see �gure 14in [16℄.We 
an then study the degrees of freedom of the system by studying therank of the Ja
obian F ′(X0, Ae) on a typi
al witness X0, and in the 
ase ofunder-
onstrainedness, the stru
ture of the allowed in�nitesimal motions 
an bededu
ed from the study of the kernel of F ′(X0, Ae).In the rest of this paper, we 
onsider that rows of the Ja
obian matrixrepresent 
onstraints and 
olumns represent 
oordinates of the unknowns. We
lassi
ally denote by m the number of rows and by n the number of 
olumns ofthe matrix. 5



2.2 Generation of a witnessThe sket
h is usually a witness but due to implied in
iden
es this may not be the
ase. In this 
ase, we solve the under-determined system {(X, A) : F (X, A) = 0}for a witness (X0, Ae). In the subdivision solver presented in [7℄, the nonlinearmonomials x2

i and xixj for i < j are repla
ed by additional variables xi,i and xi,j ,whi
h are en
losed in a polytope BD(xi, xi,i, xi,j,i<j) ≥ 0 with halfspa
es givenby the non-negativity of relevant Bernstein polynomials (Bernstein polytope).The quadrati
 
onstraint system be
omes a polytope S(xi, xi,i, xi,j,i<j) ≥ 0after rewriting into the additional variables xi,i and xi,j . The subs
ript D of
BD(xi, xi,i, xi,j,i<j) ≥ 0 indi
ates that this polytope depends on the domain D.In this way, bounds for the solution domain of quadrati
 polynomials 
an beexpressed as two linear programs

min xi and max xi

S(xi, xi,i, xi,j,i<j) ≥ 0
BD(xi, xi,i, xi,j,i<j) ≥ 0Domain bounds are 
omputed by linear programming in order to redu
e the
urrent solution domain D. If the feasible set is empty, whi
h is dete
ted bylinear programming, then the 
urrent domain box 
ontains no solution. Other-wise, we 
an perform a sequen
e of redu
tions and bise
tions of domain boxesuntil the domain box D = [x1, x1] × . . . × [xn, xn] is δ-small: (xi − xi) < δ forall i. These δ-small boxes 
over the solution set pie
ewise.The subdivision solver requires a domain box to start the sear
h. The in-tervals for generi
 parameter values of 
onstraints are easy to �nd: angle pa-rameters cos θ (cos θ instead of θ to avoid trigonometri
 fun
tions in the solver)are in [−1 + ǫ,−ǫ] or [ǫ, 1 − ǫ] with a small, arbitrary ǫ; intervals for distan
eparameters d 
an be obtained from magnitude bounds of the point 
oordinates.Finding a bound on the magnitude of any root [36℄, would be ne
essary to provethat the system has no solution. For the problems here, a bound on the point
oordinates is known beforehand.In order to enumerate all solutions of a system, we used mid-bise
tion of thelargest interval in [7℄, whi
h minimizes the height of the exploration tree while
y
ling through dimensions. For the 
ase of determining a single solution as fastas possible, the 
hoi
e of the smallest interval (greater or equal δ) is bene�
ialas setting variables to values allowing solutions improves the e�e
tiveness of thedomain redu
tion step.We sele
t the next domain box (of smallest minimum side length greaterthan δ) for redu
tion and bise
tion at random. In this way, we �nd a solutionbox 
ontaining a random solution, and we take the box 
enter proje
ted ontothe solution set as a witness.As examples, we show two systems of di�erent di�
ulty. In �gure 2, twotriangles with a 
ommon point p0 are spe
i�ed by six side lengths. In therandom solution, the side lengths are all di�erent. In �gure 3, four points and�ve lines with 10 point-line in
iden
es are spe
i�ed by four angle parameters anda distan
e parameter. The left part shows a solution with symmetri
 and ni
e6
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Figure 2: �The butter�y�: 2D system with 5 points and 6 distan
e parameters
d(p0, p1), d(p1, p2), d(p2, p0), d(p0, p3), d(p3, p4), d(p4, p0).
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Figure 3: 2D system of 4 points and 5 lines with 10 point-line in
iden
es, 4 angleparameter angle(qp, cp), angle(cp, rp), angle(rq, cq), angle(cq, pq) and 1 distan
eparameter d(r, c). Symmetri
 solution (left) and random, typi
al witness solu-tion (right). 7



shaped triangles, obtained by additional minimum distan
e 
onstraints betweenthe triangle points. In the right part, a typi
al witness solution is shown, whi
hwas found at random. It is used for further analysis.3 Over-
onstrainednessWe already showed in se
tion 1 that the dete
tion of over-
onstrainedness is a
ompli
ated yet essential problem in the �eld of geometri
 
onstraints solving.In this se
tion, we show that the use of the witness method leads to ane�
ient and robust dete
tion of redundan
y in geometri
 
onstraints.We also show the usefulness of the witness method to enhan
e robustness ofde
omposition methods by an a

urate 
omputation of the boundary.3.1 In
remental dete
tion of redundan
yWe showed in [25℄ that it is possible to interrogate a witness in order to dete
twhether a set of 
onstraints is dependent or not. Indeed, it is possible to 
omputethe rank of the Ja
obian matrix at the witness and to 
ompare it with thenumber of 
onstraints. However, �nding a maximal independent subset of adependent set is not a trivial problem. Working on the witness, the naive ideawould be to try and remove 
onstraints one by one and, at ea
h step, 
omputethe rank again to determine if the 
onstraint is redundant with the remainingset. If the rank of S − c equals the rank of S, then 
onstraint c is redundantand 
an be removed. Performed this way, the removal of redundant 
onstraintsis expensive. Yet, 
onsidering an in
remental 
onstru
tion of the geometri

onstraint system allows to identify the set of redundant 
onstraints with noadditional 
osts in 
omparison to the basi
 dete
tion of redundan
y.Indeed, 
onsider a geometri
 
onstraint system S with no redundan
y be-tween the 
onstraints. Applying the Gauss-Jordan elimination method on theJa
obian matrix at the witness leads to a matrix J ′ = (IP ) with I a m × mdiagonal matrix and P a m × f matrix, f = n − m being the number of a
-tual degrees of freedom of the system. This method has a known 
omplexityof O(min(n, m)nm). Let us now 
onsider a system S′ with S ⊂ S′. In orderto know if S′ is over-
onstrained, one only needs to in
rementally add the ge-ometri
 entities and the 
onstraints (bearing in mind that a 
onstraint 
an beinserted only when the geometri
 entities it 
on
erns are all in the system) of
S′ − S to S and applying Gauss-Jordan again. Sin
e the leftmost part of thematrix is the diagonal, the number of operations is at most 2 min(m, n)f : forea
h row of I, ea
h non-zero element of P must be multiplied and added to thenew row. The number of operations is in fa
t far smaller, sin
e the number ofzero elements in the new row of the matrix is high.Pro
eeding in
rementally does not raise the number of operations: it only
hanges the order of the operations. Indeed, the 
lassi
al Gauss-Jordan elimina-tion method 
onsists in 
olumn-by-
olumn operations: for ea
h 
olumn c, dividerow c by Jc,c, then substra
t Jr,c times this new row from row r for every r, so8
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r6 −1 1 0 0 0 0 1 −1that 
olumn c is a null ve
tor ex
ept for the c-th value. With the in
remental
al
ulus of the redu
ed row e
helon form, one pro
eeds row by row: for ea
h row
r, substra
t Jc,c times row c for ea
h c < r, then divide row r by Jr,r so thatthe r − 1 �rst elements of row r are zero and the r-th element is 1. Thus, theoverall 
omplexity of the in
remental 
omputation of the redu
ed row e
helonform of J is also of O(min(n, m)nm).The in
remental version of the Gauss-Jordan elimination has the same 
om-plexity as the one-step version, but has a major advantage in our 
ase: at ea
hstep, when a 
onstraint is inserted, one may 
ompare the new rank with theprevious one and thus dete
t a redundant 
onstraint. With exa
tly the samenumber of operations as in the 
ase of the 
lassi
al Gauss-Jordan elimination,one obtains the redu
ed row e
helon form of the Ja
obian matrix together withthe list of redundant 
onstraints.Let us 
onsider the 2D example of �gure 4. The Ja
obian matrix of thissystem is shown in table 2. Consider the following witness: p1 = (2, 7), p2 =
(5, 6), p3 = (1, 1) and p4 = (6, 3). The Ja
obian at this witness is shown intable 1, with a partial Gauss-Jordan elimination, sin
e the sixth row has not9



Table 2: The Ja
obian matrix for the system of �gure 4.
x1 y1 x2 y2 x3 y3 x4 y4

r1: dist(p1, p2) x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0
r2: dist(p1, p3) x1 − x3 y1 − y3 0 0 x3 − x1 y3 − y1 0 0
r3: dist(p2, p4) 0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2

r4: dist(p3, p4) 0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

r5: dist(p2, p3) 0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
r6: dist(p1, p4) x1 − x4 y1 − y4 0 0 0 0 x4 − x1 y4 − y1

Figure 5: �The double-banana�: famous 
ounter-example to the extension ofLaman's 
hara
terization of rigidity in 3D. Ea
h segment represents a distan
e
onstraint.been modi�ed. That is, table 1 shows the matrix obtained by performing thein
remental version of the Gauss-Jordan elimination, after inserting the sixth
onstraint but before performing Gauss pivoting on it. It is easy to see that thesixth row is redundant, sin
e it 
an be obtained by substra
ting the �rst rowfrom the se
ond one. Thus, we dete
ted the over-
onstrainedness.For a more 
omplex and famous example, 
onsider the double-banana (see�gure 5): adding the last 
onstraint of the double-banana leads to a zero-�lledrow in the Ja
obian matrix at the witness. If one 
onsiders an example withhigher 
onne
tivity [23℄, our method still su

eeds to e�
iently dete
t over-
onstrainedness.Moreover, the witness method 
orre
tly handles redundan
y in under-
onstrained
ases, where graph-based methods are helpless be
ause they do not 
onsidergeometri
 theorems. For instan
e, 
onsider the 2D example of �gure 6. It is un-likely that a graph-based method 
an ever dete
t the fa
t that point y is �xed,10
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hanged: p1 = (ap)∩ l, p2 = (bp)∩ l, p′ = (ap2)∩(bp1),

y = (ab) ∩ (pp′).no matter what 
oordinates are given to point p and line l. Hen
e, a graph-basedmethod would see this system as a system with 8 remaining degrees of freedom(5 for the three aligned points a, b and x, 1 for line l traversing x and 2 for point
p) and would 
onsider that adding a 
onstraint distan
e between points a and
y removes a degree of freedom. The witness method, however, dete
ts that thisnew distan
e 
onstraint is redundant and that the unknown y is determined bythe system though l and p 
an be 
hosen at random.3.2 Computation of well-
onstrained boundary systemsThis easy and e�
ient way to 
ompute a maximal independent subset of the
onstraints is also useful in de
omposition to make sure that the boundary of asubsystem is not over-
onstrained.Re
all that the boundary of a system S′ a

ording to a system S is the setof all information 
omputable in S′ about geometri
 entities whi
h are both in
S and S′. For instan
e, if S′ is a rigid system whi
h shares three points withsystem S, then the boundary of S′ 
ontains the following displa
ement-invariant
onstraints:
• the three point-point distan
es,
• the three angles between the sides of the triangle.It is easy to see that if the boundary of a subsystem is not added afterremoval of the subsystem from a rigid GCS, then the remaining GCS be
omesunder-
onstrained be
ause information is lost. For instan
e, 
onsider the GCSof �gure 4 without the 
onstraint shown with dotted lines. The triangle p1p2p3is rigid and trivially solved. If it is removed from the system, the remainingGCS is a 2-bars system 
ontaining two distan
e 
onstraints: p3 � p4 and p2 �

p4. This remaining system has solutions whi
h are not sub�gures of the globalGCS, sin
e the angle between both bars may vary.To get rid of this problem, one may add the boundary of the solved sub-system to the remaining system [24℄. In the example above, the boundary oftriangle p1p2p3 
onsists of the distan
e between points p2 and p3. With a biggerboundary, a new problem arises. Consider, for instan
e, a rigid subsystem whi
hshares three points with the remaining system. One 
an 
ompute the values ofthe three point-point distan
es, but also the values of the three angles. Thus,11



the boundary is an over-
onstrained GCS with three points and six 
onstraints.Although, formally, the system is not over-
onstrained sin
e the metri
s are 
on-sistent, it is stru
turally over-
onstrained, whi
h means that any 
ombinatorialmethod will fail to 
ontinue the solving pro
ess.Using our in
remental Gauss-Jordan elimination method, one 
an 
ompute awell-
onstrained subset of the boundary system whi
h 
ontains all the informa-tion to generate the rest of the boundary system. One adds all the 
onstraintsof the boundary one by one to an empty system. If the last inserted 
onstraintis redundant with the previous ones, one removes it.Note that all maximal independent subsets of the 
onstraints are geometri-
ally equivalent, i.e. the 
omputed boundary will depend on the order in whi
h
onstraints are 
onsidered, but whatever this order is, the result will be 
orre
t.4 Dete
tion of maximal rigid subsystems in ar-ti
ulated systemsIn this se
tion, we show how the witness method 
an be used to e�
iently dete
tall maximal rigid subsystems (MRS) of a geometri
 
onstraint system, even withsystems for whi
h graph-based methods would fail to dete
t rigidity. We give abasi
 algorithm based on a series of Gauss-Jordan eliminations then show twoways to enhan
e 
omputation speed.The basi
 idea of our MRS dete
tion algorithm is to study whi
h geometri
entities are �xed when one an
hors a referen
e for the displa
ements (see [24℄ or[30℄ for a formal de�nition of referen
es). In the witness framework, an
horinga referen
e for the displa
ements 
onsists in swit
hing 
olumns in the Ja
obianmatrix so as to put the three 
olumns of the referen
e in the right-most positions.Indeed, performing a Gauss-Jordan elimination diagonalizes the matrix fromthe left and thus 
onsists in expressing the di�erent 
oordinates as fun
tionsof the right-most 
olumns (the ones that do not belong to the identity partof the matrix). For instan
e, table 1 shows the redu
ed row e
helon form ofthe Ja
obian matrix at the witness for the GCS of �gure 4. Sin
e this GCS isrigid (with the redundant 
onstraint removed), three 
olumns do not belong tothe identity part of the matrix: they 
orrespond to 
oordinates x4, y4 and y3,whi
h form a referen
e for the system. All other 
oordinates 
an be expressedin fun
tion of these three 
oordinates. For instan
e, the �rst line of the matrixmust be interpreted as x1 −
4

5
y3 − x4 + 4

5
y4 = 0, i.e. x1 = 4

5
y3 + x4 −

4

5
y4.When the GCS is not rigid, three parameters are not enough to an
hor allentities. There are then more than three 
olumns at the right of the identity.Table 3 shows the redu
ed row e
helon form of the Ja
obian matrix at a witnessfor the GCS of �gure 7. Noti
e that 
olumns y2 and y4 were moved to the right,sin
e it would have been impossible to �nd a pivot and �nish the Gauss-Jordanelimination otherwise. All 
oordinates 
an be expressed as fun
tions of y2, y4,

y6, x7 and y7. Indeed, a referen
e for this GCS 
an 
onsist in point p7, dire
tion
p7-p6, dire
tion p5-p4 and dire
tion p3-p2.12
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ements
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p7Figure 7: 2D arti
ulated 
hain made of three rigid triangles. Distan
e 
on-straints are impli
itly represented by the segments.An important result to identify MRSs 
omes from the zeros in 
olumns y2and y4. Rows 7, 8 and 9 of table 3 
an be interpreted as the fa
t that thevalues of x5, y5 and x6 depend only on those of y6, x7 and y7. Put di�erently, ifone an
hors a referen
e for the displa
ements by pinning down p7 and dire
tion
p7-p6, then points p6 and p5 are �xed, i.e. p5p6p7 is a rigid subsystem.A naïve algorithm immediately arises, based on an
horing a referen
e for thedispla
ements, i.e. swit
hing 
olumns to have the 
orresponding 
olumns onthe right of the Ja
obian matrix and identifying the parts of the GCS whi
h are�xed. The pseudo-
ode is shown as algorithm 1. In this algorithm, an
horinga referen
e for the displa
ements means swit
hing 
olumns so as to have the
olumns 
orresponding to the referen
e at the right of the Ja
obian matrix. Inorder to not identify the same MRS twi
e, we an
hor referen
es only on untaggedparts of the GCS, that means that at least one of the 
olumns 
annot be tagged.Algorithm 1 Naïve MRS identi�
ation algorithm1: i← 02: repeat3: an
hor a referen
e for the displa
ements on an untagged part of the GCS4: perform a Gauss-Jordan elimination5: tag with label i the 
olumns of the GCS whi
h 
orrespond to 
oordinatesdepending only on the referen
e6: i← i + 17: until all the 
olumns are tagged 13



Table 3: Redu
ed row e
helon form of the Ja
obian matrix at a witness for theGCS of �gure 7
x1 y1 x2 x3 y3 x4 x5 y5 x6 y2 y4 y6 x7 y7

r′1 1 0 0 0 0 0 0 0 0 4

3

101

18
− 181

108
-1 − 473

108

r′2 0 1 0 0 0 0 0 0 0 − 7

3
− 40

9

28

27
0 140

27

r′3 0 0 1 0 0 0 0 0 0 4 29

2
− 15

4
-1 − 59

4

r′4 0 0 0 1 0 0 0 0 0 0 9

2
− 17

12
-1 − 37

12

r′5 0 0 0 0 1 0 0 0 0 0 5

2
− 7

12
0 − 35

12

r′6 0 0 0 0 0 1 0 0 0 0 3 − 7

6
-1 − 11

6

r′7 0 0 0 0 0 0 1 0 0 0 0 − 2

3
-1 2

3

r′
8

0 0 0 0 0 0 0 1 0 0 0 − 1

6
0 − 5

6

r′
9

0 0 0 0 0 0 0 0 1 0 0 − 7

6
-1 7

6The 
ost of this algorithm depends on the number k of MRSs: for ea
h ofthem, it performs a Gauss-Jordan elimination only on
e, so that the total 
ostis O(k min(n, m)nm).This 
ost 
an be redu
ed toO((k+min(n, m))nm) by not starting the Gauss-Jordan elimination from s
rat
h for ea
h MRS. At the end of line 6 in thealgorithm, the Ja
obian matrix at the witness is in redu
ed row e
helon form.By swit
hing the 
olumns in an appropriate way, one needs only perform theGauss-Jordan pivot operation on two to three 
olumns. Indeed, by looking atthe 
onstraint graph, it is possible to sele
t a new referen
e for the GCS (i.e. aset of f 
olumns, f being the number of degrees of freedom of the GCS) whi
hsatis�es the following 
onditions:
• it in
ludes a referen
e for the displa
ements whi
h is not totally tagged,
• ea
h identi�ed MRS is �xed, i.e.� the referen
e in
ludes three 
oordinates in the MRS,� the MRS shares a geometri
 entity with a �xed MRS and the referen
ein
ludes a 
oordinate in the MRS.To sele
t this referen
e, one only needs to 
onsider a geometri
 entity whi
h isin an already identi�ed MRS and whi
h is linked by a 
onstraint to an untaggedentity. More 
ases o

ur with systems for whi
h the 
onstraint graph has several
onne
ted 
omponents or with systems with impli
it points (e.g. similarity-invariant systems with only lines and angles), but the prin
iple remains thesame. Thus, in most 
ases, one only needs to swit
h two 
olumns, so as to
hange the point in the referen
e. Three swit
hes happen with dis
onne
tedgraphs. Algorithm 2 shows how to perform MRS identi�
ation. For the sake ofsimpli
ity, the algorithm is des
ribed for arti
ulated GCS made of several MRSs
onne
ted by points, but it is easily extended to systems with other kinds ofgeometri
 entities.In the 
ase of open 
hains, i.e. GCS where all 
y
les in the 
onstraintgraph are in
luded in rigid subsystems, an even less 
ostly algorithm exists, by14



Algorithm 2 MRS identi�
ation algorithm for an arti
ulated system1: an
hor a referen
e for the displa
ements and identify and tag a �rst MRS2: repeat3: sele
t a tagged point linked by a 
onstraint to an untagged element4: swit
h the 
olumns of this point with the 
olumns of the point in the lastreferen
e5: perform Gauss-Jordan elimination on the two latter in order to identify anew MRS6: tag the new MRS7: until all the 
olumns are taggedusing both the 
onstraint graph and the Ja
obian matrix. After performingthe Gauss-Jordan elimination, a �rst MRS is identi�ed by 
onsidering all the
oordinates whi
h depend only on the referen
e. From there, one 
an 
onsider allthe 
oordinates whi
h depend on the referen
e and on one additional parameter.In the matrix of table 3, with the additional parameter y4, x3, y3 and x4 are�xed. Taking a look at the 
onstraint graph, we noti
e that the previouslyidenti�ed MRS (p5p6p7) shares only one point with the rest of the system andthus 
annot �transfer� more than two degrees of displa
ement.This enables us to remove the MRS and ex
hange the three parameters y6,
x7 and y7 with parameters x5 and y5 in the Ja
obian matrix. The numeri
alvalues are not important in this pro
ess: we 
onsider that all the values of both
olumns are non-zero. With this new matrix, one noti
es that parameters x5,
y5 and y4 form a referen
e for the displa
ements and that by an
horing thisreferen
e, x3, y3 and x4 are �xed, i.e. p3p4p5 is a rigid system. We 
ontinuethis algorithm by noti
ing that this system shares only one point with the restof the system, removing it and repla
ing it with non-zero-�lled 
olumns x3 and
y3 and thus identifying the last MRS p1p2p3.When the last identi�ed MRS shares more than one point with the restof the system, two 
ases o

ur: either the removal of the MRS leads to twodis
onne
ted graphs (i.e. the MRS is in the middle of the arti
ulated system)and one thus 
ontinues the algorithm separately on ea
h part of the graph; orthe MRS belongs to a non-rigid 
losed 
hain.When one uses this algorithm on a GCS 
ontaining non-rigid 
losed 
hains, itleads to 
ases where one 
annot dete
t the MRSs of the 
losed 
hains, be
ause ofthe inter-dependan
e of the rigid subsystems of the 
hain. After identifying the�rst MRS of the 
losed 
hain, the algorithm is stu
k be
ause it is not possible toidentify another system whi
h depends only on three parameters. In this 
ase,we get ba
k to algorithm 2 to identify the di�erent MRSs of the 
losed 
hain.Noti
e that this se
tion is about identi�
ation of maximal rigid subsystemsbut that sin
e it is based on the an
horing of referen
es, one may adapt the al-gorithms to identify maximal subsystems well-
onstrained modulo other trans-formation groups than the displa
ements.15



5 W-de
omposition of a rigid GCSThe previous se
tion gives algorithms to identify all MRSs of a GCS. Havingsu
h an algorithm leads to a natural method to de
ompose a rigid geometri

onstraint system. We 
all this method W-de
omposition and a system whi
h
an be de
omposed by this method is said to be W-de
omposable. In thisse
tion, we explain the prin
iples of W-de
omposition and give examples.Algorithm 2 identi�es maximal rigid subsystems, i.e. if a MRS 
an be de-
omposed in several rigid subsystems, this will not be dete
ted. The basi
 ideaof W-de
omposition is to remove 
onstraints from the 
onstraint graph and seeif it breaks the MRS in non-trivial MRSs, i.e. MRSs whi
h are not limited totheir boundary (e.g. a system limited to a point-point distan
e). If it does,then we use W-de
omposition on ea
h non-trivial MRS. Algorithm 3 gives thepseudo-
ode of the algorithm.Algorithm 3 W-de
ompositionInput: a rigid GCS S withits 
onstraint graph G = (V, E) anda witness W of SOutput: a list of rigid subsystems1: repeat2: Sele
t a 
onstraint e3: Identify MRSs of (V, E/{e}) with alg. 24: while ea
h MRS is equivalent to its boundary do5: Choose another 
onstraint e and identify MRSs of (V, E/{e})6: until all 
onstraints are tested or there is a MRS whi
h is not equivalent toits boundary7: if no MRS bigger than its boundary is found then8: return list [G℄ //G is W-inde
omposable9: else10: remove all the 
onstraints in
luded in non-trivial MRSs11: insert the boundary of all non-trivial MRSs in the system// 
f. se
tion 3.212: reintrodu
e 
onstraint e in the system//this gives a rigid 
onstraint system13: re
ursively W-de
ompose the resulting system14: re
ursively W-de
ompose all previously identi�ed MRSs15: return the 
on
atenation of the lists obtained in the last two linesLet us illustrate this algorithm on the example of �gure 8a, whi
h representsthe 
onstraint graph of a rigid GCS. The graph is 3-
onne
ted and has two K3,3subgraphs, 
onne
ted by three �middle� edges. Algorithm 2 dete
ts the rigidityof the whole system. Let us 
onsider the removal of two 
onstraints at line 2 ofalgorithm 3: dotted edges e1 and e2.If we remove edge e1, the use of algorithm 2 at line 3 identi�es four MRSs:the rigid K3,3 subsystems, and ea
h edge between them. The latter are equiv-alent to their boundary. Repla
ing the rigid hexagons by their boundaries andreintrodu
ing edge e1 leads to the graph of �gure 8b (note that edge e1 must be16
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Figure 8: 2D systems where edges represent point-point distan
es; a: 3-
onne
ted 
onstraint graph made of two K3,3 graphs 
onne
ted with 3 
on-straints; b and 
: graphs obtained by repla
ing MRSs identi�ed by algorithm 3by their boundary with respe
tively edges e1 and e2 removed.taken into a

ount for the 
omputation of the boundaries). The re
ursive useof W-de
omposition (line 14) on ea
h non-trivial MRS leads to the knowledgethat they are not W-de
omposable, as does the re
ursive use on the system of�gure 8b (line 13).If we do not remove edge e1 but e2 instead, the left K3,3 subsystem of�gure 8a is no longer rigid. The identi�
ation of non-trivial MRS thus onlyidenti�es the hexagon on the right of �gure 8a. On
e it is repla
ed by itsboundary, we obtain the system shown on �gure 8
. The re
ursive use of W-de
omposition will then lead, after removal of one of the three �middle� edges,to the identi�
ation of the se
ond rigid hexagon and thus to the system shownon �gure 8b.Exe
ution time depends on the 
hoi
e of the removed 
onstraint. In theworst 
ase, all 
onstraints are tested: n times the algorithm 2 is used, thus the
omplexity is O(n3m).Our algorithm is more powerful than algorithms found in the literature, forseveral reasons:

• �rst of all, it is independent of the 
onne
tivity of the 
onstraint graph.17



PSfrag repla
ements
a b

Figure 9: 2D examples for the W-de
omposition: ea
h vertex is a point andea
h edge represents a distan
e 
onstraint. a: W-de
omposable 4-
onne
tedGCS (the blue subsystem is rigid); b: W-inde
omposable system; 
: there areW-inde
omposable systems with an arbitrary number of points.For instan
e, �gure 9a gives an example of a 4-
onne
ted 
onstraint graphwhi
h is W-de
omposable, no matter what is inside the inner blue part aslong as it is rigid,

• se
ond, it is also not based on a 
luster formation. Sin
e the graph of�gure 9b is not de
omposable by 
urrent graph de
omposition methods,the system of �gure 9a, with the inner part repla
ed by �gure 9b, willalso lead to a de
omposition failure for these methods, whereas it is W-de
omposable.Ultimate de
omposition 
onsists in yielding a triangular equation system.For algebrai
 systems, Wu-Ritt de
omposition or Gröbner basis with lexi
alorder lead to su
h de
ompositions, but unfortunately, they are untra
table inthe CAD domain. On the other hand, W-de
omposition is not as powerful asthese algebrai
 methods sin
e it is possible to 
onstru
t an in�nite family ofW-inde
omposable 
onstraint systems like the one depi
ted in �gure 9
: thereis no 
onstraint in this system su
h that its removal produ
es a system with aMRS bigger than a point-point distan
e. But, on the positive side, it is easy tosee that
• all Owen-de
omposable systems are W-de
omposable (that is, arti
ulation18



pairs are dete
ted by the 
hoi
e of the deleted 
onstraint)
• all 
onstraint systems whi
h are de
omposable by 
luster formation meth-ods or on the sear
h of minimal rigid parts, are also W-de
omposable.We think that the ratio of e�
ien
y to power of de
omposition is good enoughto give good results in CAD even in the 3D 
ase.6 Robustness issueOur method assumes it is possible to 
ompute the rank of a set of ve
tors, givenby their 
oordinates. It is a basi
 problem in 
omputerized linear algebra withwell-known methods. Only at �rst glan
e, it looks like an easy problem.Sin
e the rank is not a 
ontinuous fun
tion, it is not 
omputable in the senseof Computable Analysis [34℄. In short, Computable Analysis uses interval arith-meti
 with interval bounds represented using a long �oat arithmeti
. However,the interval width is never zero. In this arithmeti
, it is impossible to dete
tthat a number (a Gauss pivot, or a determinant) is zero. On the 
ontrary, itis possible to dete
t that a number is non-zero: 
ompute a su�
iently pre
iseinterval, not 
ontaining zero.If a rational witness is available, an exa
t rational arithmeti
 
an be used.The rank of rational ve
tors is 
omputable, and this appra
h is pra
ti
al. Itis explored in [25℄ with a number of examples. If a rational witness is notavailable, like for a regular pentagon, one may theoreti
ally resort to an exa
talgebrai
 arithmeti
, for instan
e an algebrai
 arithmeti
 based on gap theorems[1℄. Unfortunately, the large time 
omplexity of this method makes it impra
ti
alfor general systems.We use rational arithmeti
 when rational witnesses are available. When norational witness is available, and the solver is used, it provides interval approx-imations of witnesses. We use an epsilon-heuristi
 like the dynami
 geometrysoftwares (Cabri Géomètre, Cinderella, GeoGebra, et
.): we de
ide by an ep-silon threshold in the Gauss-Jordan algorithm whether ve
tors are dependentor not. Be
ause all our appli
ations of the Gauss-Jordan elimination algorithmdo not depend on a spe
ial ordering of 
onstraint rows (se
tion 3), we 
an useall pivoting te
hniques available for it.In pra
ti
e, all geometri
 
onstraint systems met in CAD / CAM seem tohave a rational witness. Systems without rational witnesses exist like for exam-ple a regular pentagon but they appear to us as arti�
ial instan
es.7 Con
lusionAfter proposing a way to generate a witness, we showed in this paper how thewitness method 
ould be used to dete
t over-
onstrained systems without anyadditional 
omputational 
ost by an in
remental Gauss-Jordan elimination of19



the Ja
obian matrix at the witness. This allows the 
omputation of a well-
onstrained boundary inside the de
omposition method.We gave algorithms to identify all maximal well-
onstrained subsystems ofa GCS, i.e. the system itself if it is well-
onstrained, or its rigid parts if it is ar-ti
ulated. From this algorithm, we dedu
ed a method, 
alled W-de
omposition,to de
ompose a rigid GCS into the set of all its non-trivial rigid subsystems,based on the removal of a 
onstraint and the 
omputation of the new maximalrigid subsystems.The method to dete
t over-
onstrainedness is e�
ient (the 
omputation ofthe redu
ed row e
helon form of the Ja
obian matrix is performed inO(min(n, m)nm))and is not tri
ked by mathemati
al theorems, even when these theorems are un-known to the developer. The MRS identi�
ation is also e�
ient (O(n2m) withalgorithm 2) and works as well with other transformation groups than the dis-pla
ements. W-de
omposition is performed in O(n3m) in the worst 
ase.For 
on
iseness reasons, the algorithms we des
ribed work on 2D systems,but they 
an be easily extended to 3D systems. Complexity of the algorithmsis independent of the dimension.Further resear
h needs to be done in order to �nd heuristi
s for the opti-mization of W-de
omposition. The example of �gure 8 shows that some edgesare better than others for the removal (line 2 of algorithm 3). We think that apromising tra
k is the 
omputation of a minimum 
hain 
overing and the sear
hfor 
onstraints whi
h appear in only a few 
hains.Referen
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