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General Deformable Model Approach for Model-based Reconstruction

In this paper we propose a general approach for performing model-based reconstruction. The task consists in deforming a reference shape in order to extract a geometric model from a 3D dataset. To achieve this goal, two complementary approaches have been widely used. The deformable model framework locally applies internal and external forces to fit 3D data. The non-rigid registration framework iteratively computes the best global transformation that minimizes the distance between a model and the data. We first show that applying a global transformation on a surface model, is equivalent to applying some global forces on a deformable model. Second we propose a scheme where we combine the registration framework with the deformable model framework. This hybrid deformation model allows us to control the amount of deformation from the reference shape with a single parameter. Finally, we propose a general algorithm for performing model-based reconstruction in a robust and accurate manner. We have applied this approach to the reconstruction from both range data and medical images.

Introduction 1.Model-based Reconstruction

Model-based reconstruction consists in deforming a given contour or surface template in order to fit some dataset. This approach differs from general reconstruction techniques where no a priori knowledge about the geometry or the topology of the object is known. The inclusion of important prior knowledge for reconstruction is beneficial when the shape variability of the object remains small or when the dataset is difficult to segment. The interest of the method is thus to provide a good initial model while taking into account some shape variations.

The segmentation of human organs from CT or MRI images, is a good example where model-based reconstruction can be applied. In general, a kidney looks very much alike another kidney, even tough there may be significant shape variation due to differences of gender or size.
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Figure 1. The principle of model-based reconstruction

The model-based reconstruction problem can be summarized in the following manner (see figure 1) : let be a contour or surface model of a given object consisting in a set of vertices , ( ). Let be a tridimensional dataset (such as range data or a CT-scan image). The problem is to find a transformation such that is an appropriate representation of the object in dataset . A transformation associates with each vertex a vertex . To find the transformation , two different approaches have been proposed :

1. The registration framework [START_REF] Brown | A Survey of Image Registration Techniques[END_REF]. In this case, the transformation is searched among a restricted class reg of transformations defined over the whole Euclidian space : reg

Usually those classes of transformations form a group of transformations with respect to the composition operator. Examples of such classes of transformations reg are the group of rigid, similarity and affine transformations. We call this transformation a global transformation because it is defined on all Euclidian points. The number of degrees of freedom is limited : 6 DOF for the group of rigid transformations, 9 DOF for affine transformations... Typical registration methods [START_REF] Besl | A method for Registration of 3D shapes[END_REF][START_REF] Zhang | Iterative point matching for registration of free -form curves and surfaces[END_REF] iteratively compute the best transformation through least-squares estimation until some convergence criterion is met.

2. The deformable model framework [START_REF] Kass | Snakes: Active Shape Models[END_REF]. In this case, the transformation is only defined for the vertex position of the model .
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Because there is no a priori restriction on the type of transformation, this framework is also called freeform modeling.

In all cases, finding a transformation is equivalent to finding a displacement field defined as [START_REF] Cohen | Using deformable surfaces to segment 3-d images and infer differential structures[END_REF] Registration Free-Form Deformation Generality Robustness Efficiency

Figure 2. Comparison between the registration and free-form deformation framework

The characteristics of the registration and free-form deformation framework are summarized in table 2. On the one hand, registration methods describe a transformation with far less degrees of freedom than free-form deformations. Therefore their generality of representation, ie their ability to represent shape variations, is less important than the freeform deformation approach. On the other hand, because of their restricted degrees of freedom (DOF), they tend to be more robust than free-form deformations which require a very close initial position.

The computation efficiency of either method is dependent on the application. Free-form deformations require the computation of a closest point thus the computation cost is : [START_REF] Declerck | Automatic registration and alignement on a template of cardiac stress and rest spect images[END_REF] where is the number of vertices of the deformed model. For deformable models the computation time is approximately proportional to the number of vertices. Registration requires an additional stage which is a least square estimation of the transformation thus : [START_REF] Delingette | Simplex Meshes: a General Representation for 3D Shape Reconstruction[END_REF] where is the number of DOF of the computed transformation. For low degrees of freedom transformations, is negligible and registration is as efficient as free-form deformations. But as the number of DOF rises, the transformation becomes more complex and the computation time may become prohibitively high. Examples of complex transformation are the B-Splines defined over cubic lattices.

Previous Work

Many approaches have been proposed to combine both free-form deformation and registration approaches. For instance, Feldmar [START_REF] Feldmar | Locally affine registration of freeform surfaces[END_REF] proposed locally affine transformations for surface-registration. Similarly, researchers have improved the robustness of deformable models by applying more global constraints. Terzopoulos and Metaxas considered in [START_REF] Terzopoulos | Deformable models[END_REF][START_REF] Metaxas | Constrained Deformable Superquadrics and nonrigid Motion Tracking[END_REF] the superposition of a rigid component with a finite element mesh. A close approach on deformable contours is proposed in [START_REF] Lai | Deformable Contours: Modeling and Extraction[END_REF]. Modal analysis [START_REF] Pentland | Closed-Form Solutions for Physically Based Shape Modeling and Recognition[END_REF][START_REF] Vemuri | From Global to Local, a Continuum of Shape Models with Fractal[END_REF] or Fourier representation [START_REF] Staib | Deformable Fourier models for surface finding in 3D images[END_REF][START_REF] Székely | Segmentation of 2D and 3D objects from MRI volume data using constrained elastic deformations of flexible Fourier surface models[END_REF] aim similarly at controlling the amount of deformation.

Contributions

We first propose a hybrid deformation scheme that integrates both global transformations, local deformations, and where the user can specify the shape adaptability of the model with a single parameter. The hybrid scheme has the advantage to be computationally efficient and simple to implement.

Second, we provide a general framework for modelbased reconstruction that combines both registration and deformable models approaches. We achieve the reconstruction by increasing the DOF of the model in an intuitive manner. The hybrid deformation scheme is used as an intermediate behaviour between registration and free-form deformations.

Deformable Models and Registration Framework 2.1 Deformable Models Framework

Deformable models evolve under the action of forces usually resulting from an energy minimizing criterion. At vertex , the external force is computed from the data and the regularizing force is computed from the geometric properties of the model. It is possible to control the internal and external forces relative effect through weight coefficients and . The ratio between and is equivalent to the regularization parameter in regularization theory.

Under the fundamental principle of dynamics, the motion of each vertex is governed by : By discretizing time and space with finite differences we get the following equation : [START_REF] Feldmar | Locally affine registration of freeform surfaces[END_REF] where is the position of at time . The overall scheme of a deformable model is shown in figure 3. 

Registration Framework

The registration framework requires the computation of a global transformation which can be evaluated iteratively using an Iterative Closest Point algorithm [START_REF] Zhang | Iterative point matching for registration of free -form curves and surfaces[END_REF]. To compute the transformation , for each vertex model , its closest point in the dataset is computed. Let reg be the group of transformations among which is searched. At each iteration, the ICP algorithm finds reg which satisfies the minimization of the least square error criterion reg [START_REF] Kass | Snakes: Active Shape Models[END_REF] The time constant has been hidden in the coefficients and Equation ( 7) provides a general criterion to evaluate the global transformation . Its resolution depends on the group of transformations considered.

Best Rigid Transformation. A rigid transformation of a point P is where is a translation vector and a rotation matrix. It can be shown [START_REF] Pennec | L'incertitude dans les Problèmes de Reconnaissance et de Recalage[END_REF] that where and are the inertial centers of and , respectively, and that R minimizes the criterion with and . Best Similarity. A similarity (rigid transformation plus a scale factor) can be written where is a diagonal matrix whose diagonal terms are all equal to the scale factor . The optimal rotation and translation are evaluated as for the rigid case. The scale factor is computed independently [START_REF] Pennec | L'incertitude dans les Problèmes de Reconnaissance et de Recalage[END_REF] with .

Best Affine Transformation. An affine transformation can be written in matrix form in homogeneous coordinates

. It can be shown [START_REF] Pennec | L'incertitude dans les Problèmes de Reconnaissance et de Recalage[END_REF] that is a closed form :

with . Best B-Spline Transformation. A B-spline transformation of is where is a piecewise polynomial function defined as a tensor product of B-spline base functions of a given order. The best spline transformation, given a set of pair of points , should minimize a criterion sum of residual distances and a smoothness term where is a weight. Details on solving this system using a conjugate gradient method can be found in [START_REF] Declerck | Automatic registration and alignement on a template of cardiac stress and rest spect images[END_REF].

Axial Constraint. We have developed an axial constraint to deform 3D models based on an axial symmetrical topology such as vessels. For more details see [START_REF] Montagnat | A Hybrid Framework for Surface Registration and Deformable Models[END_REF]. As shown in section 5.4 it gives encouraging results in segmenting vessels from angiographic images.

Other Global Transformations. Many other global transformations could be investigated. The use of transformations with more degrees of freedom (such as high degree B-splines or radial basis functions) would allow to generate a wider range of shapes, however, at a greater computation cost.

The overall scheme of the registration framework is shown in figure 4.

General Framework for Model-Based Reconstruction 3.1 Registration as a Displacement Field

The purpose of this section is to show the link between computing a global transformation on a model and applying an external force field to a deformable model. Let be the vertex position of a model at time . In the registration framework, we first compute the closest points
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, then find the best transformation and finally apply the transformation at each vertex :

. The displacement field applied between two iterations is therefore where is identity transformation :

In section 2.1, we have seen that the displacement field applied on a deformable model is equal to We can therefore consider that the registration method based on the ICP algorithm is equivalent to having a deformable model without inertial and internal forces ( , ) and submitted to the global force : (8)

Link between Global and External Forces

The computation of external forces is dependent on the type of datasets. In this paper, we suppose that the external force acting on vertex is of the form : [START_REF] Mcinerney | A Finite Element Model for 3D Shape Reconstruction and Nonrigid Motion Tracking[END_REF] represents the "closest" point on the object where should be attracted. In practise, we have verified that external forces based on the notion of "closest" point lead to more stable behavior than external forces based on the notion of gradient of potential field. This is because the potential field extracted from the gradient information may have steep minima that entail oscillations of the surface around those minima. To remove those oscillations, it is necessary either to decrease the time-step or blur the image at the larger scale. The former method has the drawback of slowing down the convergence whereas the latter removes and displaces some minima of potential field.

In section 4, we will see different expression of the external force for reconstruction from range data and volumetric images.

By comparing equation 9 with equation 8, we can see that the displacement field for a registration-based deformation has less DOF than an external force field applied on deformable model since it is constrained by the nature of the transformation.

Hybrid Deformation Scheme

In previous sections, we have demonstrated the equivalence between registration-based deformation and the application of a global force to a deformable model. We now propose a hybrid deformation scheme, where a deformable model is submitted to global, external and internal forces. The purpose of this scheme is the following : to have a computer-efficient deformable model with an easy control of the number of DOF.

Our approach is to weight with a single parameter the influence of global forces versus external forces : The hybrid deformation scheme is efficient because the search for closest points has to be performed only once for the computation of the global and external forces. Furthermore, we usually can use transformations with few DOF since controls model variability. Thus the least square estimation of the transformation is done efficiently.

General Model-Based Reconstruction

In section 3.3 we have introduced a hybrid deformation scheme that allows to control through a single locality parameter the amount of deformation allowed. In figure 6, we present the general framework that allows us to achieve model-based reconstruction. The principle of this framework is to the number of DOF during the deformation in order to combine robustness with accuracy. We first apply iterative registrations with rigid, similarity and affine transformations. We then choose values of lambda between 0 and 1 (usually around 0.2) to increase the shape deformation. Finally, we apply free-form deformation to closely fit the data. 
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Figure 6. General framework for Model-Based Reconstruction

The remaining problem is to determine when to change the transformation class and therefore increase the number of DOF. When considering the model-based registration problem shown in figure 15, we measure the total vertices displacement between two consecutive iterations of the ICP registration. Figure 7 shows the results for four different transformations. We propose two strategies to set the low threshold :

Absolute displacement. An absolute threshold value is provided by the user.

Relative displacement. The threshold is computed as a percentage of the initial displacement. We let the model evolves a few iterations (three for instance), compute the mean displacement and set the threshold as a fraction of the obtained value.

We have runned the same face registration experiment with an automatic thresholding to change transformations : each deformation stage ends when the model displacement is lower than 0.1% of the initial displacement. Figure 8(c) compares the two strategies in term of number of iterations. The total number of iteration set manually (solid line) is much higher than the number of iterations needed to meet the automatic threshold (dashed line). It reveals a significant diminution of the total computation time. 

Simplex Meshes

Simplex meshes [START_REF] Delingette | Simplex Meshes: a General Representation for 3D Shape Reconstruction[END_REF] are meshes with constant vertex adjacency and have interesting geometric properties. 2-simplex meshes are a natural extension of active contours in 3D and they provide a powerful framework to express regularizing constraints. A 2-simplex mesh of is a 3-connected mesh. Each vertex position can be expressed as a function of its neighbors , , , its metric parameters , , and its simplex angle . The metric parameters and the simplex angle are intrinsic parameters that describe the shape of a mesh with a given topology up to a similarity.

The simplex mesh framework is computationally very efficient. Local force computation does not require a minimization step. The example given in figure 9 requires a 50 seconds of computation on DEC Alphastation 500/400Mhz.

Shape Constraint

The metric parameters and simplex angles of simplex meshes allow us to define smoothness as well as shape regularizing forces. Without external forces, a simplex mesh submitted to the shape constraint converges toward its reference shape. An example of a face model iteratively returning to its reference shape is given in figure 9. 

External Force Computation

We compute the external force as a vector directed along the normal direction proportional to the distance of to the dataset. Whether the force is computed from range data or volumetric images, the external force is of the form : where represents some data point.

External Force Computation on Range Data

The computation of the external force is dependent on the notion of closest point. For every vertex of the mesh, we search for the closest data point and the force is then computed as : ref [START_REF] Pennec | L'incertitude dans les Problèmes de Reconnaissance et de Recalage[END_REF] where is a weight parameter, is the normal vector of the mesh at , is the stiffness function and ref is a reference distance.

The force is computed as the projection of the vector along the normal direction. The distance ref is the maximum distance of attraction of a data point. The stiffness function ensures that the force decreases sharply when the distance between and is greater than ref .

The computation of depends on the nature of the dataset and can be achieved with two algorithms : Projection Method On dense range images extracted from triangulation principles, we restrict the search along a two-dimensional segment in the image, projection of the tridimensional line passing through and directed along . This segment is centered around the projection of and is only a few pixels long, depending on the value of ref .

Once the closest point along the segment has been found, we search for the closest point in a window around that point.

KD-tree

When no calibration matrix is available, we compute the closest point with a kd-tree [START_REF] Preparata | Computational Geometry: an introduction Texts and monographs in computer science[END_REF]. This data structure gives the closest point inside a sphere centered around and of radius ref , at nearly constant time.

External Force Computation on Volumetric Images

On volumetric images, the task of reconstruction usually consists in isolating regions of consistent intensity values. Therefore, gradient intensity is the main information on which is based the external force. As in [START_REF] Cohen | Using deformable surfaces to segment 3-d images and infer differential structures[END_REF] and [START_REF] Mcinerney | A Finite Element Model for 3D Shape Reconstruction and Nonrigid Motion Tracking[END_REF], we combine both gradient intensity and edge information for the computation of :

The gradient intensity is used for local deflection of the mesh towards the voxels of maximum variation of intensity. The edge information, on the other hand, corresponds to maxima of gradient and entails larger of the mesh.

The force at vertex relies on the search in a neighborhood of , of the voxel of maximum gradient intensity. If is the voxel containing , then we inspect all voxels in a window around for the voxel center , of highest gradient intensity (see figure 10(a)). The force expression is then :

The gradient force can be made more specific by incorporating additional constraints : gradient direction constraint and intensity value constraint.

The edge image is built by thresholding the gradient intensity values. Our approach consists in finding the closest edge voxel in the normal direction of the mesh. At vertex , we find the closest voxel , and a tridimensional line of voxels is scanned in the direction of (see figure 10 (b)). The maximum number of voxels scanned is given by the reference distance ref , determined as a percentage of the overall radius of the edge image. If is the closest edge voxel along the normal line, then the edge force is given by : [START_REF] Staib | Deformable Fourier models for surface finding in 3D images[END_REF] Similarly to the gradient force, we can add constraints to the determination of the closest edge voxel. 

Results

Estimation of Registration Quality using Hybrid Deformations

In this section, we demonstrate the robustness of the hybrid deformation scheme. We consider the following experiment : given some range data of a foot, we have built the model of figure 11 We then fit the mesh on the original range data for a fixed number of iterations to get model . Running the deformation process with different deformation schemes, the quality of registration is evaluated as the pointwise distance between the reconstructed model and : . A small value of implies that vertices positions of are close to those and therefore that the transformation is robust and accurate. Figure 12 shows the values of for a rigid registration (first point) an affine registration (second point) or a hybrid deformation affinely constrained following a first rigid fit (other points). This result can be interpreted in the following manner : if the model is too constrained, the model cannot deform enough to fit the dataset. On the contrary, if it has too many DOF, the surface vertices can be submitted to large displacements during the deformation. In particular, a point of high curvature is not necessarily deformed into a point of high curvature. We have applied the general reconstruction scheme presented in section 3.4 for recovering face models. In figure 13 (a) and (b), we show the simplex mesh model that will be used to fit the range data of figure 13 (c). We will use the texture of the reference to study the applied transformations. For instance, we can check if the vertices lying on the nose of the reference model will be moved on the nose of the range image.

Results on Range Data

We have positionned the reference model in a slightly different orientation and position than the range data, as seen in figure 14 (a). With a purely deformable scheme ( ), the shape of the face has been recovered but the transformation does not preserve the geometry (figure 14 (c)). We now compare the computation time for global, hybrid and free-form deformation (see figure 16 (a)). In this chart, we can see that global transformations with few DOF such as affine transformations have the same computational cost than free-form deformation despite its high level of DOF. On the other hand, more complex global transformations such as B-Spline transformations require a much high computational cost. The cost of globally constrained deformation is marginally higher than free-form deformation. This is because the cost the computing the external force (or the closest point) is much higher than computing the best global transformation (here with affine transformation). 

Results on Volumetric Images

Model-based reconstruction is well-suited for the extraction of anatomical structures from 3D medical images. Because most organs have similar shapes between patients, it is often a good strategy to use an a priori information on the shape to extract. Furthermore, this method allows to recover parts that are hardly visible in the original images.

We show three examples of human organs with which our general reconstruction scheme has been successful : liver, brain ventricles and kidney. The recovered geometric models can then be used for surgery planning or diagnosis.

Figure 17 (a) (c) and (e) show the original liver, kidney and ventricle models of complex shape and topology. The reference template of the kidney does not have any cavity because of the large variation between patients. The datasets consist in abdominal CT-scan and MRI data of the head.

CT-scan images have a low contrast and therefore the model must be robust enough to deform smoothly even in presence of low gradient regions. However, it must be deformable enough to fit the drastic inter-patient variability of abdominal organs.

We performed the segmentation following the general deformation scheme presented in section 3.4. The model is first registered rigidly then affinely (locality parameter

). As the fit improves and the model is less sensitive to outliers, degrees of freedom are added by smoothly increasing up to . Segmentation of the brain ventricles is performed in a similar way ( is released up to ). For kidney segmentation, we refine the mesh based on an area criterion in order to recover the cavities. 

Vessels Segmentation

Segmentation of vessels around an aneurism is important for diagnosis and pathological understanding. Using deformable axially constrained models (see [START_REF] Montagnat | A Hybrid Framework for Surface Registration and Deformable Models[END_REF]) we perform a segmentation of the aneurism and the surrounding vessels. The extracted model is easy to visualize and it allows one to perform quantitative measures such as volumetric evolution.

Figure 19 (a) shows the initialization of deformable models inside a volumetric image. The aneurism is modeled by a sphere affinely constrained through the hybrid deformation scheme. Vessels are initialized as cylinders restricted by a hybrid axial constraint. The result of the deformation process is shown in figure 19 

Conclusion

We have introduced a general reconstruction framework that encompasses both deformable models and registration approaches. The hybrid deformation scheme is an efficient and simple algorithm for controlling the amount of allowed deformation.

In the future, we plan to incorporate some additional statistical information in the reference model, in order to constrain further the deformation.
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 3 Figure 3. The iterative scheme for classical deformable model reconstruction
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 4 Figure 4. The iterative scheme of registrationbased segmentation
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 10 We call , the locality parameter. It controls the number of DOF of the deformable model. With , the model is under the influence of global forces and internal and therefore has very few DOF. With , the model is under the influence of internal forces and external forces and therefore has a maximum number of DOF. With intermediate values of , we can control the shape variation allowed during the deformation.
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 5 Figure 5. The iterative scheme for a deformable model under hybrid deformation
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 7 Figure 7. Displacement of model

  Figure 8. Registration with automatic thresholding

  the radius of the circumscribed circle at the triangle is the distance between and the center of the circumscribed circle. is a function describing the elevation of above plane .
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 9 Figure 9. Shape constraint
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 10 Figure 10. (a) Computation of the gradient force ; (b) Search of the closest edge voxel along the normal line for the computation of .

  (a). The model was manually deformed to get the model of figure 11 (b).
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 11 Figure 11. (a) foot model;(b) range data and deformed model
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 12 Figure 12. Distance of the deformed model
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 13 Figure 13. Reference face (left, center) and range data (right)
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 14 Figure 14. Initialization (left) and face recovered using local deformations (center, right)
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 15 Figure 15. rigid, affine, hybrid deformations and textured result
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 16 Figure 16. Computational cost of global, hybrid and free-form deformation
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 17 Figure 17. Models of the liver (top) brain ventricles (middle) and kidney (bottom)
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 18 Figure 18. Slices of the recovered shapes

  (b) and the final model obtained after topological operations is shown in figure 19 (c).
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 19 Figure 19. Vessel models
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