
HAL Id: hal-00691697
https://hal.science/hal-00691697

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A particle-spring approach to geometric constraints
solving

Simon Thierry

To cite this version:
Simon Thierry. A particle-spring approach to geometric constraints solving. Symposium on Applied
Computing, 2011, TaiChung, Taiwan. pp.1100-1105, �10.1145/1982185.1982428�. �hal-00691697�

https://hal.science/hal-00691697
https://hal.archives-ouvertes.fr

A partile-spring approah to geometrionstraints solvingSimon E.B. ThierryLSIIT, UMR CNRS-UdS 7005Université de Strasbourgsimon.thierry�unistra.frMarh 2011AbstratCurrent iterative numerial methods, suh as ontinuation or Newton-Raphson, work only on systems for whih the orresponding matrix is asquare one. The geometri onstraint systems need thus either to have nodegrees of freedom, or to be a system the software an anhor, i.e. a rigidsystem.In this artile, we propose a new iterative numerial approah whihan handle both rigid and under-rigid geometri onstraint systems. It isbased on the translation of the system under the form of a partile-springsystem where partiles orrespond to the geometri entities and springsto the onstraints. We show that onsistently over-onstrained systemsare also solved.We show that our approah is promising by giving results of a pro-totype implementation. We propose traks for enhanements of the ap-proah whih ould takle its drawbaks (mainly stability).Keywords : Geometri onstraints solving, Mass-spring system, Numeri-al iterative omputation1 IntrodutionGeometri onstraint solving is a key funtionality in Computer-Aided Design(CAD) software. The basi idea is to solve onstraints of distane, angle, ini-dene, tangeny, et. applied to geometri elements suh as points, lines, irles,planes, spheres, et. A Geometri Constraint System (GCS) is a set of suh on-straints, generally given under the form of a tehnial sketh, on whih the userinteratively plaes the onstraints. A solution of a GCS is a set of oordinatesof the geometri elements (a �gure) whih satis�es the onstraints. A GCS witha �nite number of solutions is said to be well-onstrained. If it allows �exions, itis said to be under-onstrained. When it has no solutions, it is over-onstrained.1

Mathis and Thierry [20℄ give formal de�nitions of GCS and of their resolutionand deomposition.The literature ontains many di�erent approahes of the resolution of GCS,whih an be roughly lassi�ed in four families: rule-based methods performexpliit geometri dedutions with expert systems; graph-based methods on-sider the onstraint graph, where a node represents a geometri element andan edge a onstraint, and ompile the geometri knowledge under the form ofombinatorial rules; symboli methods onsider the underlying equations andsolve the equation system, forgetting the geometri nature of the problem; nu-merial methods also translate the GCS into an equation system, but then useiterative omputations to approximate the solutions. Whatever the approah is,a general trend in the last two deades has been to deompose the system [14℄,in order to lower the omplexity of the resolution as well as to enhane theresolution power. For a more omplete view of the geometri onstraint solving�eld, the reader may refer to some surveys [13, 15℄.Numerial methods are of primary importane for an industrial software,beause they are omplete: they are not limited to a ertain lass of systemsand are not sensitive to geometri theorems whih the developpers did not takeinto aount. They may sueed for GCS other methods fail to solve. Buturrent numerial methods only work on rigid systems. When they are able tohandle under-onstrained systems, they do it at the expense of speed.Yet, under-onstrained systems are important for interative and intuitivesolvers. Non-expert users annot be expeted to design a well-onstrained sys-tem, sine it is easy, espeially with large onstraint systems, either to add aredundant onstraint by failing to realize that a part is already rigid, or to leavesome parts artiulated though the intent was that they be rigid. Moreover,being able to solve any system (if it has solutions) is neessary to give feedbakto the user. For instane, interative theorem provers used for geometri proofsannot yet have a drawing feature, whih would help the user better understandthe urrent situation.In this artile, we propose a new approah to numerially handle geomet-ri onstraint systems by onsidering them as partile-spring systems (knownalso as mass-spring systems). Partile-spring systems are widely used in om-puter graphis to simulate the behaviour of deformable objets: musles [22℄,loth [24℄, hair [26℄, surgery tools [16℄ or fae expressions [30℄, among manyothers. We propose to use them to �nd approximate solutions of geometrionstraint systems: geometri elements beome partiles and onstraints be-ome springs. We explain the simple implementation we made and show that itgives satisfatory results. We show that it an solve under-onstrained and well-onstrained systems alike. We show that onsistently over-onstrained systems(i.e. systems whih are generially over-onstrained but yet have solutions) arein general solved more quikly. Non-onsistent over-onstrainedness, though, isshown to be hard to detet.The rest of this artile is organized as follows. Setion 2 reviews relatedwork by detailing the existing numerial methods. Setion 3 details how webuild a partile-spring system from a geometri onstraint system and how we2

ompute its iterative states. Setion 5 gives pratial examples of several geo-metri onstraint systems and of their resolution. Setion 5.2 elaborates on thespei� ase of onsistently over-onstrained systems. Setion 5.3 gives quan-titative results whih show that our approah, though naively implemented, issatisfatory. Setion 6 onludes and gives perspetives.2 Numerial solving methodsNumerial methods look for an approximate solution of system F (X, U), with
X the set of geometri elements (the unknowns) and U the set of metri values,suh as distanes and angles (the parameters). F is the equation system or-responding to the GCS. The best-known and most ommonly used numerialmethod is the Newton-Raphson method [29℄. It onsists in approximating F byits tangent hyperplanes when searhing for a root: from an initial �gure f0 andparameters u, it onsists in approahing a root of F by omputing the series
fn+1 = fn−F ′(fn, u)−1F (fn, u) until a su�iently near-zero �gure is found. Ithas onvergene issues (see [17, Fig. 1℄) and its attrations basins are fratals,whih may ause it to be ounter-intuitive(see [17, Fig. 3℄).Another ommonly used method is homotopy, also known as ontinuation.Introdued in the �eld of geometri onstraint solving by Lamure andMihelui [17℄,it was used by various authors [7, 8℄. For given values of the parameters, themethod onsiders the funtion H(X, t) = t× F (X) + (1− t)× (F (X)−F (f0)).It indues a linear interpolation between H(X, 0) = F (X) − F (f0), whih iszero for X = f0, and H(X, 1) = F (X) = 0. The ontinuation method onsistsin following the urves de�ned by the equation system H(X, t) = 0, from t = 0and X = f0 to t = 1. More details on ontinuation methods an be found in [3℄.Other purely numerial methods were proposed but are not often used [1,4, 19, 23℄. Hybrid methods were proposed, ombining numerial iterations withgraph-based or rule-based reasoning: Shrek et al. [25℄ desribe a multi-agentsystem where numerial methods are used when other formal solvers annotsolve the system. Lee et al. [18℄ on the one hand, Ait-Aoudia et al. [2℄ on theother hand, enhane their graph-based method by performing numerial ompu-tations for solving steps whih are not feasible ombinatorially. Likewise, Fabreand Shrek [9℄ extend the work of Gao et al. [10℄ to solve quasi-indeomposablesystems: they remove a set of onstraints so as to be able to deompose thesystem and replae them by an equivalent number of new onstraints; then theyuse Newton-Raphson iterations to hange the values of the parameters of thenew onstraints in order to satisfy the previously removed onstraints.All of these methods require the system to have as many variables as un-knowns, i.e. the system must be generially rigid so that we an add three/sixequations in 2D/3D (these additional equations anhor the system in the plane/spae).If the number of variables di�ers from the number of equations, speial teh-niques must be used, whih are ostly [17℄.Methods able to numerially handle under-rigid systems are not many: Ge etal. [11℄ onsider the sum of squares of the di�erent equations and then test two3

optimization methods. An evolutionary approah was proposed by Cao et al. [5℄but the results are not yet satisfatory. Geneti algorithms are used for lassial(i.e. non-geometri) onstraint solving [6℄, but none of these methods are spei�to geometri onstraints.3 Partile-spring systems and geometri onstraintsA geometri onstraint system (GCS) onsists in a set X of geometri elements(the unknowns), a set U of metri values (the parameters) and a set C ofonstraints. We note G = (C, X, U). The goal of a geometri onstraint solveris to yield valid �gures, that is, for a valuation of U , a valuation of eah elementof X suh that the onstraints of C are satis�ed.A partile-spring system onsists in a set P of partiles, with no mass, anda set R of springs, eah spring being linked to two or more partiles. It an berepresented as a graph (or a hypergraph for springs linked to more than twopartiles). We thus note S = (P, R). Eah spring has a (possibly in�nite) setof stable states, aording to the relative positions of the assoiated partiles.When it is not in a stable state, a spring applies fores on its partiles, pushingor pulling them towards one of its stable states. A partile-spring system is saidto be in a stable state if for eah partile p ∈ P , the sum of the fores appliedon p by the springs whih are not in a stable state is 0. This happens when allsprings are in a stable state or when the fores applied by the springs aneleah other.There are mainly two ways to represent a partile-spring system [27℄: ex-pliitly, eah iteration onsists in omputing the fores that the di�erent springsapply on the partiles and displaing the partiles aordingly ; impliitly, thedi�erential equations of the partiles displaements are onsidered and solved.Impliit representations yield more stable tehniques but are less intuitive. Be-ause our goal was to build a prototype and see if the partile-spring approahan be a satisfatory solving tehnique, we onsidered an expliit representation,whih is easier to implement.The partile-spring system S = (P, R) assoiated to a GCS G = (C, X, U)is built naturally by transforming eah x ∈ X into a partile p ∈ P and bytransforming eah onstraint c ∈ C into a spring r ∈ R. The stable states of aspring r assoiated to a onstraint c are de�ned as the states where the positionof the partiles of r satisfy c.We give here examples of how to transform onstraints into springs. Distaneonstraints are the most straightforward: they are assoiated with lassialhelial springs. A helial spring is in a stable state when the distane betweenits partiles is exatly the metri of the orresponding onstraint. If the distanebetween the two partiles is bigger, the helial spring pulls the partiles towardseah other. If the distane is shorter, the spring pushes the partiles apart.Figure 1 illustrates those three ases with a helial spring orresponding to adistane onstraint with a metri of 3. Said otherwise, if there is a distaneonstraint with metri k between points p1 and p2, the orresponding helial4

a b Figure 1: Helial spring orresponding to a 3-distane onstraint: stable state(a) and two unstable states with the orresponding fores applied to the partiles(b and).PSfrag replaements a

bm a b Figure 2: Torsion spring (a) and two ways to simulate its ation: tangentialdisplaement of a and b (b) ; replaement by a helial spring between a and b().spring applies a fore of −−→p1p2 ×
k−|−−→p1p2|

|−−→p1p2|
× d on p1, d being a damping fator(see setion 4).We take angle onstraints into aount by torsion springs. In our prototype,we did not expliitly onsider �line partiles� and de�ne a line by two points.Thus, angles are between three points. Figure 2a illustrates a torsion spring ina stable state. There are several ways to simulate the ation of a torsion springorresponding to a onstraint on angle âmb:1. the physis-inspired way is to apply a fore on a (resp. b) whih is orthog-onal to −→ma (resp. −→mb), i.e. simulate a displaement along the tangent tothe m-entered irle with radius |−→ma| (resp. |−→mb|) ; it is represented on�gure 2b,2. another lassial way is to simulate the ation of the torsion spring witha helial spring between a and b ; it is represented on �gure 2,3. a fore an be applied on partile m along the angle bisetor,4. the torsion spring an be simulated by two helial springs m-a and m-b.Of ourse, hybrid ways an be onsidered. Choosing a way gives the diretionsof the fore vetors applied on the partiles. Whatever way is hosen, their normis omputed aording to the law of osines:

|
−→
ab|2 = |−→ma|2 + |

−→
mb|2 − 2|−→ma||

−→
mb|cos(âmb)To our knowledge, there is no real spring orresponding to inidene andtangeny onstraints. We transform these onstraints into helial springs with5

gliding anhor points. For instane, a point-line inidene onstraint orre-sponds to a helial spring between the point and its orthogonal projetion onthe line. This spring has a zero-distane stable state.We also onsidered irles, with a enter partile and a radius. Tangenyonstraints are then also zero-distane helial springs between the enter of theirle and its orthogonal projetion on the line, together with a virtual helialspring between the enter of the irle and its perimeter.4 Iteration algorithmThe iteration algorithm we onsidered is straightforward, sine we use expliitrepresentation of the springs. At eah step, a loop onsiders eah spring. Eahspring omputes the fores to be applied on eah of its partiles. After this loop,a seond loop onsiders eah partile, in order to sum the fores and apply themon the partile. Algorithm 1 gives the pseudo-ode for this iterative proess.Alg. 1: One iteration step of the solverInput: S = (P, R): a partile-spring systemResult: S′: S after one iteration step of the solverforeah spring r ∈ R doforeah partile p linked to r do
−→
f ← fore vetor applied by r on pStore vetor −→f in pforeah partile p ∈ P do

−→v ← Σ−→
f ∈F

(d×
−→
f), with

• F the set of fore vetors stored in p

• d the damping fator (see below)
p← p +−→vreturn SIn setion 3, we explained how to ompute the diretion of the fores appliedon the partiles. It also is easy to ompute the norm of these vetors if one is toput the partiles in the right plae in only one step: for distane onstraints, forinstane, the norm of eah vetor is half of the error between the atual distaneand the onstraint distane. If one were to do this, however, it would result ingreat instability when di�erent fores are applied in the same global diretion,moving a partile beyond the wanted position.To avoid this problem, a damping fator must be used. In order to makesure that this damping fator is small enough to prevent a partile from goingbeyond the point where the fores reverse, we use a 1

n
damping fator, where nis the highest number of springs linked to a same partile.We do not onsider the kineti energy of the partiles, sine they have no6

mass. This means that, due to the damping fator, when there are two springsor more, we annot reah an exat solution and an only tend to a zero-error.It is possible for the user to ask that some partiles do not move. If a partile
p is anhored, the fores applied by the springs linked to p must me modi�edaordingly, so that p does not move, and the other partiles move more.After eah step of algorithm 1, we ompute the error of the system. Weonsider the minimal error (the error on the spring whih is nearest to a stablestate) and the maximal error. We also onsider the mean error and the rootmean square (RMS) error. To ompute the error on torsion springs, we nor-malize the angle values to the largest distane onstraint metri. These valuesannot be measured as an error ratio, due to inidene and tangeny onstraints.This leads to several possible stopping onditions, aording to the di�erenterror statistis and to the user's will. If a very preise �gure is needed, the usermay want the solver to stop only when the maximal error is below a given smallthreshold. If the user only needs a rough idea of what a solution looks like, asmall RMS error is enough.Due to the possibility of instabilities, we also onsider two other stoppingonditions: reahing a given amount of iterations, and reahing a stable statewithout having reahed a satisfying error value. To identify the latter, we om-pare the error modi�ation of eah spring after a step of algorithm 1. If the errormodi�ations are all below a given ε, we onsider the system to have reaheda stable state. Note that the system may atually be globally moving, if thefores applied by the di�erent springs de�ne a rigid motion.Algorithm 2 gives the pseudo-ode of the overall solver.Alg. 2: Partile-spring geometri onstraint solverInput:

G = (C, X, U): a geometri onstraint system
X0: initial �gure (valuation of the unknowns)Output:
Xs: approximate solution
b: boolean indiating if the solver sueeded

S = (P, R)← partile-spring system orresponding to G and X0

e← error statistis
i← 0while e is not satisfying do

S ← solving step using algo. 1
i← i + 1
e← error statistisif modi�ations of e are too small or i is too high thenreturn P , falsereturn P , trueThe omplexity of the algorithm is as follows: algorithm 1 works in O(|p|+7

PSfrag replaements
p1

p2

p3

PSfrag replaements
p1

p2

p3a bFigure 3: One resolution step with 2 springs
|r|) sine it traverses eah spring one and eah partile n + 1 times at most, nbeing the maximal number of springs linked to a partile, i.e. a small onstant.Algorithm 2 uses algorithm 1 and omputes errors at eah iteration. Computingerrors means traversing eah spring and is thus in O(|r|). The overall omplexityof eah iteration of algorithm 2 is thus O(|p|+2|r|). Sine the number of partilesis similar to the number of springs, the omplexity of the partile-spring solveris O(3|p|), i.e. O(|p|).5 Pratial examplesWe give here pratial examples of how our partile-spring prototype solverbehaves. We then fous on the spei� ases of torsion springs and detail theonsequenes of redundant onstraints.Let us onsider a GCS with three points p1 . . . p3 and two distane on-straints: the distane between p1 and p2 is onstrained to be 2, and the distanebetween p2 and p3 must be 3. In this example, the damping fator is 1

2
, 2 beingthe maximal number of springs attahed to a single partile. On �gure 3a, theinitial distane between p1 and p2 is 3 and the distane between p2 and p3 is2. The �rst helial spring thus applies on p1 a fore direted towards p2 with anorm of 1 (error to the onstrained value) × 1

2
(the fore is shared among twopartiles) × 1

2
(damping fator) = 1

4
. It applies a symmetri fore on p2. Theseond helial spring applies a fore vetor of norm 1

4
on partile p2, pushing itapart from p3, and a symmetri fore on p3. Those four fores are shown in redon �gure 3a, the blue arrow representing the sum of the fores applied on p2.After applying these fores and displaing the partiles, we obtain the posi-tions shown on �gure 3b. The new distane between p1 and p2 is approximately

11

5
and the new distane between p2 and p3 is approximately 14

5
. The new forevetors have a norm of 0.1 (spring p1�p2) and 0.09 (spring p2�p3). Only the sumof the fores applied on p2 is shown, sine the other ones would be too small tobe visible on the �gure.Systems ontaining only distane onstraints are very satisfyingly solved.For instane, the system represented on �gure 4 leads to a maximal error of lessthan 10−4 in about 200 solving steps with random initial values, in about 150solving steps with an initial solution taken from a user sketh. Note that it isan under-rigid system. 8

Figure 4: ArtiulatedGCS with two rigid trian-gles Figure 5: Stable non-solution system not re-speting triangular in-equality
PSfrag replaements

k1

k2

k3

k4

Figure 6: Impliit in-idene onstraint when
k4 = Σ3

i=1kiIt quikly leads to a stable non-solution state in the ase of a triangle whihdoes not respet the triangular inequality. Figure 5 shows the stable state ob-tained, with the applied fores represented in red. It sueeds to �nd a solutionwith a maximal error of 10−5 for a system made only of inidene onstraintsand representing a sketh of the Pappus theorem, in about 200 iterations.It takes, however, a long time to get a satisfying solution in ases wheredistane onstraints lead to an inidene: �gure 6 shows suh a system. Sinethe fores applied on middle points, are direted towards the other points, theloser the point gets to the biggest segment, to smallest the fore attrating itgets. It takes our prototype 3000 iterations to get from a 7 × 10−3 maximalerror to a 10−3 maximal error on this system.Besides, our prototype �nds a solution to the ten spheres problem (see [17,Fig.1℄) for initial values where the Newton-Raphson method diverges. It gets a
10−3 maximal error in 600 iterations and a 10−6 maximal error in 800 iterations.5.1 Torsion springsAngle onstraints are the weakest point of our prototype, sine we ould not�nd a generally satisfying way to simulate torsion springs, among the ones itedin setion 3. Indeed, using way 4 (replaing the torsion spring by two helialsprings a −m and b −m) leads to a quik resolution of the system of �gure 7.The three other ways lead either to unstable state or to stable non-solutionstates. On the other hand, the system of �gure 8 quikly onverges towards asolution with the three other ways but leads to a stable non-solution state withway 4 or with any hybrid way partially using it.5.2 Consistent over-onstraintsUnlike most solving methods, our solver aepts onsistent over-onstraints: theorresponding springs apply fores whih are onsistent with the other fores.Atually, onsistent over-onstraints may even lead to more preision, at the9

PSfrag replaements p1

p2

p3

p4

PSfrag replaementsp1

p2

p3

p4

PSfrag replaements p1

p2

p3

p4

p5

p6

Figure 7: Rigid system solved with way 4 for angleonstraints; sketh (left) and initial values (right) Figure 8: Rigid systemsolved with any way butway 4
Figure 9: Rigid undeom-posable 2D system Figure 10: Addition of re-dundant onstraints Figure 11: Highly redun-dant version of the GCSpossible extense of resolution speed. For instane, let us onsider the 2D systemof �gure 9: it is made of six points and 9 distanes. Our solver only sueeds tosolve it with a maximal error of 10−3. If we add, for eah of the 9 onstraints,a double-triangle (�gure 10 shows how the distane onstraint between the twothik points leads to the reation of two new points and 5 new distane on-straints), leading to the system of �gure 11, then the system is solved with amaximal error of 10−7.Likewise, even without adding new geometri entities, we notied that addingonsistent onstraints leads to more preision. For instane, adding redundantonstraints to a 3D system representing a Stewart platform [28℄ helped us reduethe maximal error from 10−2 to 10−6.This means that when using a partile-spring solver, the user needs not worryabout addint too muh information, whereas on lassial solvers, it is neessaryto detet redundany and get rid of it.

10

Table 1: Number of iterations needed to reah given preisionsNormal version With redundany
10−2 10−6 10−2 10−6Fig. 4 89 252Fig. 9 353 * 902 87762D desklamp 153 * 253 7567Pappus theorem 121 2804-onneted GCS 2092 6054 2348 8035Ten spheres 515 8183D ube 127 492 346 9303D pyramid 96 343Stewart platform 724 * 1027 9525.3 Quantitative resultsTable 1 gives the number of iterations needed to reah given threshold error,with or without redundany, for a series of geometri onstraint systems. A starindiates that the software reahed a stable state before reahing this preision,or that it reahed 10 000 iterations. An empty ase indiates we dit not try thison�guration.The systems mentioned in table 1 are the following ones:

• the 2D desklamp, the 3D ube and the 3D pyramid are lassial examples,
• the �Pappus theorem� system onsists in 9 points and eight inidene on-straints of a point to a line passing by two points,
• the �4-onneted GCS� system orresponds to the system of Fig. 9a of [21℄,
• the �ten spheres� system orresponds to the system of Fig. 1 of [17℄,
• the �Stewart platform� systems orresponds to a system as desribedin [28℄.6 Conlusion and perspetivesWe presented a new approah to solve geometri onstraint systems, based ontheir translation under the form of a partile-spring system. We implemented aprototype, using an expliit representation of partile-spring systems. Thoughthis leads to ases of instability, we gave results showing that this approah ispromising and already satisfying for appliations where a very small preisionis not needed, for instane when the user only wants to get rough feedbak onwhat the solutions look like.It works on 2D and 3D systems, rigid or artiulated. It aepts redun-dany, whih even leads to more preise results, yet at the expense of resolution11

speed. Note that partile-spring systems an bene�t from the high paralleliza-tion of GPU [12℄. A disadvantage of the approah is that non-onsistent over-onstrainedness leads to unstable states, but sine it is not the only soure ofunstable states, it annot be deteted.We intend to further develop our prototype, by �rst adding other kinds ofpartiles (lines, planes, spheres) and the orresponding onstraints. We alsointend to test an impliit representation, whih would help solve the stabilityproblems [27℄ we enounter with torsion springs.Finally, we want to add features to our prototype, so that the user aninterat with the solutions during the solving proess, by moving partiles. Thisway, the user an get a very e�etive feedbak on the artiulations of the system,by moving a point and seeing whih parts of the system are modi�ed.Referenes[1℄ S. Ait-Aoudia. Numerial solving of geometri onstraints. In IV '02: Pro-eedings of the 6th international onferene on Information Visualisation,pages 125�129, London, England, United Kingdom, 2002.[2℄ S. Ait-Aoudia, H. Badis, and M. Kara. Solving geometri onstraints by ahybrid method. In IV '01: Proeedings of the 5th international onfereneon Information Visualisation, pages 749�753, London, England, UnitedKingdom, 2001.[3℄ E. L. Allgower and K. Georg. Continuation and path following. AtaNumeria, 2:1�64, 1993.[4℄ A. H. Borning. The programming language aspets of Thinglab, a on-straint oriented simulation laboratory. ACM Transations on ProgrammingLanguages and Systems, 3(4):353�387, 1981.[5℄ C. H. Cao, W. H. Li, and B. Cong. The geometri onstraint solving basedon hybrid geneti algorithm of onjugate gradient. In G. R. Liu, V. B. C.Tan, and X. Han, editors, Computational Methods, hapter 17, pages 1117�1121. Springer, 2006.[6℄ C. A. Coello Coello. Theoretial and numerial onstraint-handling teh-niques used with evolutionary algorithms: a survey of the state of the art.Computer Methods in Applied Mehanis and Engineering, 19(11-12):1245�1287, 2002.[7℄ C. Durand. Symboli and numerial tehniques for onstraint solving. PhDthesis, Purdue University, West Lafayette, Indiana, USA, 1998.[8℄ C. Durand and C. M. Ho�mann. A systemati framework for solv-ing geometri onstraints analytially. Journal of Symboli Computation,30(5):493�519, 2000. 12

[9℄ A. Fabre and P. Shrek. Combining symboli and numerial solvers tosimplify indeomposable systems solving. In SAC '08: Proeedings of the23rd ACM Symposium on Applied Computing, pages 1838�1842, Fortaleza,Brazil, 2008.[10℄ X.-S. Gao, C. M. Ho�mann, and W.-Q. Yang. Solving spatial basi geo-metri onstraint on�gurations with lous intersetion. Computer-AidedDesign, 36(2):111�122, 2004.[11℄ J.-X. Ge, S.-C. Chou, and X.-S. Gao. Geometri onstraint satisfation us-ing optimization methods. Computer-Aided Design, 31(14):867�879, 1999.[12℄ J. Georgii and R. Westermann. Mass-spring systems on the GPU. Simula-tion Modelling Pratie and Theory, 13(8):693�702, 2005.[13℄ C. M. Ho�mann and R. Joan-Arinyo. A brief on onstraint solving.Computer-Aided Design and Appliations, 2(5):655�663, 2005.[14℄ C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Deomposition ofgeometri onstraint systems: a survey. International Journal on ComputerGraphis and Appliation, 16(5,6):379�414, 2006.[15℄ R. Joan-Arinyo. Basis on geometri onstraint solving. In EGC '09: XIIIEnuentros de Geometria Computaional, Zaragoza, Spain, 2009. Oralpresentation. Paper available at http://metodosestadistios.unizar.es/~eg09/index_arhivos/Trabajos/robert.pdf.[16℄ T. Jund, D. Cazier, and J.-F. Dufourd. Edge ollision detetion in omplexdeformable environments. In VRIPHYS '10: Proeedings of the Workshopon Virtual Reality Interatin and Physial Simulation, Copenhagen, Den-mark, 2010.[17℄ H. Lamure and D. Mihelui. Solving geometri onstraints by homotopy.IEEE Transations on Visualization and Computer Graphis, 2(1):28�34,1996.[18℄ K.-Y. Lee, O.-H. Kwon, J.-Y. Lee, and T.-W. Kim. A hybrid approah togeometri onstraint solving with graph analysis and redution. Advanesin Engineering Software, 34(2):103�113, 2003.[19℄ R. Light, V. Lin, and D. C. Gossard. Variational Geometry in CAD. Com-puter Graphis, 15(3):171�175, 1981.[20℄ P. Mathis and S. E. B. Thierry. A formalization of geometri onstraintsystems and their deomposition. Formal Aspets of Computing, 22(2):129�151, 2010.[21℄ D. Mihelui, P. Shrek, S. E. B. Thierry, C. Fünfzig, and J.-D. Génevaux.Using the witness method to detet rigid subsystems of geometri on-straints in CAD. In SPM '10: Proeedings of the 15th ACM Conferene onSolid and Physial Modeling, Haïfa, Israël, 2010.13

[22℄ L. P. Nedel and D. Thalmann. Real-time musles deformation using mass-spring systems. In CGI '98: Proeedings of the 5th edition of ComputerGraphis International, pages 156�165, Hannover, Germany, 1998.[23℄ G. Nelson. Juno, a onstraint-based graphi system. ACM SIGGRAPHComputer Graphis, 19(3):235�243, 1985.[24℄ X. Provot. Deformation onstraints in a mass-spring model to desribe rigidloth behaviour. In GI '95: Proeedings of the 14th edition of GraphisInterfae, pages 147�154, Québe, Canada, 1995.[25℄ P. Shrek, J.-F. Dufourd, and P. Mathis. Using a numerial tool in a formalonstrution method with deomposition. In B. Brüderlin and D. Roller, ed-itors, Proeedings of the 2nd International Conferene on Computer Graph-is and Arti�ial Intelligene, pages 211�233. Springer, Limoges, Frane,1998.[26℄ A. Selle, M. Lentine, and R. Fedkiw. A mass spring model for hair simula-tion. ACM Transations on Graphis, 27(3):64.1�64.11, 2008.[27℄ M. Shinya. Theories for mass-spring simulation in omputer graphis: sta-bility, osts and improvements. IEICE Transations on Informatis andSystems, E88-D(4):767�774, 2005.[28℄ D. Stewart. A platform with six degrees of freedom. Airraft Engineeringand Aerospae Tehnology, 38(4):30�35, 1966.[29℄ T. J. Ypma. Historial development of the Newton-Raphson method. SIAMReview, 37(4):531�551, 1995.[30℄ Y. Zhang, E. C. Prakash, and E. Sung. Real-time physially-based faialexpression using mass-spring system. In CGI '01: Proeedings of the 8thedition of Computer Graphis International, pages 347�350, Hong-Kong,China, 2001.

14

