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Abstract

Medical image segmentation is often a difficult task
due to the low contrast, the low signal/noise ratio and
the presence of outliers in images. However, it re-
mains a critical issue for image interpretation, pat-
tern recognition and automatic diagnosis. Deformable
models are well-suited for capturing the geometry and
the shape wvariability of anatomical structures from
medical images. Indeed, they introduce an a priori
knowledge in the segmentation process that increases
its robustness to noise and outliers. In this paper, we
address many problems related to volumetric medical
image segmentation based on deformable models in-
cluding model initialization, model topology, deforma-
tion behavior and image features extraction.

1 Introduction

For the past decade, there has been a significant re-
search effort for achieving medical image segmentation
based on deformable models. The main incentive be-
hind this research is to provide reliable segmentation
tools that are both robust and generic.

A wide variety of surface representations and evo-
lution frameworks have been proposed in the litera-
ture [13]. For instance, deformable models were in-
troduced by Kass et al as 2D explicit deformable con-
tours [9] and generalized to the 3D case by Terzopou-
los et al. [20]. Parametric representations such as su-
perquadrics [21, 2] and discrete representations [16, 8]
have also been proposed. Recently, implicit repre-
sentations have been used with the ability to handle
topology changes [11, 22, 10].

When considering the segmentation of medical im-
ages, the basic idea is to steer deformable models to-
wards the image structure boundaries. Due to the
image noise and the lack of contrast between struc-
tures in many image acquisition systems [1], it is in
general needed to constrain the model variation space

and to introduce some a priori information during the
deformation process. For instance, statistical shape
variations from a training set [6] may be used to con-
strain the deformation of a geometric model.

In this paper, we introduce a discrete surface rep-
resentation called simplex meshes. It provides a sim-
ple geometric representation combined with a powerful
framework for regularization (section 2). In section 3,
we propose several methods to achieve shape regular-
ization which is a key issue of deformable modeling.
We consider local regularizing constraints designed to
ensure local surface regularity whether prior informa-
tion on the expected anatomical structures shape is
available or not. We also constrain the deformations at
a global scale to make the segmentation process robust
to outliers and false positives. In section 4, we propose
an automatic model initialization method to generate
a surface mesh from an image with the desired shape
and topology. We show how to use topology operators
on discrete meshes to allow surface resampling as well
as changes in the surface genus (section 5). Finally,
we use simplex meshes for medical image segmenta-
tion in section 6. Various image geometries as well
as image acquisition modalities are considered. Heart
left ventricle segmentation from 3D ultrasound images
are shown.

2 Simplex Mesh Representation

A simplex mesh M is defined by a set of vertices {p;}:
and a specific connectivity function. Each vertex of a
k-simplex mesh is connected to exactly k + 1 neigh-
bors. A 1-simplex mesh is a simple deformable contour
composed of a polygonal line. A 2-simplex mesh is a
deformable surface for which each vertex is connected
to exactly three neighbors. A detailed description of
simplex meshes is given in [§].



2.1 Geometry

Due to its specific connectivity, a 2-simplex mesh is
topologically dual to a triangulation. Figure 1 (left)
shows a 2-simplex mesh example (solid line) and a dual
triangulation (dashed line).
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Figure 1: (Right) 2-simplex mesh duality with trian-
gulations; (Left) Geometry and definition of the regu-
larizing force.

The main features of simplex meshes lies in their
simple geometric description. Figure 1 (right) shows
a vertex p; of a 2-simplex mesh and its three neigh-
bors, Pngh; (i)- Let P; be the plane defined by

p:’s three neighbors. We denote p;- the projec-
tion of p; on P; and n; the unit normal vector of
P;.  We introduce the circumscibed circle to tri-
angle (pllglll(i)7p11g112(i)7pnghs(i)) with center ¢; and
radius r;, and the circumscribed sphere to vertices
(pi7pnghl(i)7pnghz(i)vpnghs(i)) with center o; and ra-
dius RZ

We call metric parameters the barycentric coordi-
nates ¢!, 2, and €3 = 1 — e} — 2 of p;- with respect
to p;’s neighbors. They control the relative position
of pi- in P;. The simplex angle ¢; € [—, 7] is defined
by :

. ri .
sm(gpi) = ESlgn((pnghl(i) - pi) : ni)

¢ — ol .
cos(yp;i) = HIR%IHS%H((Q — 0j) - D).
It controls the elevation of vertex p; above P;. We
define a vertex discrete mean curvature as H; = % =
Smr(—“’) Under some assumptions it can be shown that
the discrete curvature of a mesh whose vertices lie on a
continuous and sufficiently differentiable surface con-

verges towards the surface mean curvature.

The vertex position p; is uniquely defined by its
three neighbors, its metric parameters and its simplex
angle :

3
Pi = Z Ef pnghj(i) + H(pnghj(i) ) 537 Q‘Qi)nz\
i=1

_ (r7 = d?)tan(g;)
e/1? + (17 — d)tan(p;)? + 7

.= 1if|(,0i|<%
S —lif e > §

d; = ||pi-cill

It can be shown that a simplex mesh shape is defined
up to a similarity transformation by the set of its met-
ric parameters and simplex angles {e}, %, p;};.

2.2 Law of motion

In a 2-simplex mesh, each vertex is submitted to a
regularizing, or internal force (fi,;) dependent on the
surface geometry and a data attraction, or external
force (foxt). The vertex p; is considered as a phys-
ical mass evolving according to a Newtonian law of
motion :

’p; _ dp;
aw - ar

m; + fint(pi) + fext(pi)v (1)
where m; and v are respectively the vertex mass and a
damping parameter. Equation 1 is discretized in time
using finite differences with an explicit scheme :

P§+1 = pf + (1 - 7)(1’3 - pﬁ_l )+ aifint(pﬁ) +ﬂifext(pﬁ)v

where «a; and ; are force weights including the vertex
mass and the time step. The stability of this scheme
is guaranteed if a; and [; are below a given threshold.

3 Regularization

Shape regularization is a key issue in deformable mod-
eling. Regularization of the deformation process can
be controlled at different scales.

3.1 Local regularization

Due to its discrete nature, the regularization of a sim-
plex mesh is not based on the evaluation of surface
partial derivatives but on the relative position of a
vertex with respect to its neighbors, i.e. in terms of
metric parameters and simplex angles. More precisely,
each vertex p; is attracted towards a point p; (see fig-
ure 1, right) on a smoother mesh. Let &, @; and p;-



denote the metric parameters, the simplex angle and
the projection of p; on P; respectively. The internal
force can be decomposed as the sum of a tangential
and normal component :

fint(pi) = ftg(pi) + fnr(pi) = (f)zL - pzl) +
(H (Pugh, (i): €+ i) — H(Pugn (i), & §i) ).

The tangential component of the internal force con-
trols the vertex spacing over the surface. To ensure
uniformly spread vertices, metric parameters are all
set equal : &} = &7 = &7 = 1. The normal component
constrains the mean curvature of the surface through
the simplex angle. The definition of ¢; depends on the
level of geometric regularity that should be enforced.

Let N5(7) be the set of all vertices connected to
vertex number ¢ by an edges path whose length is
less than s edges. The scale parameter, s, defines the
neighborhood size over which the mesh is regularized
and plays an important role. For medical image seg-
mentation we usually consider :

e Mean curvature continuity. To ensure that the
vertex discrete mean curvature converges towards
the weighted average mean curvature of its neigh-
borhood, we set

si ;
cﬁi:arcsin I Z eijL_%) N Z eijzl.

r
JENL(D) J JENL(i)

This smoothness constraint should be used when
no anatomical shape information is available.

e Shape constraint. Let {¢3}; be the set of simplex
angles defining the reference shape of an anatomi-
cal structure. Setting @; = ¢ constrains the sur-
face to converge towards the reference shape in
the abscence of external forces. This constraint
should be used when an a priori shape informa-
tion is available.

3.2 Global regularization

In general, the convergence of the deformation process
is very sensitive to the model initial shape and orienta-
tion. One approach proposed by Besl and McKay [3]
is to iteratively apply a global transformation T that
minimizes a least-square criterion. This criterion cor-
responds to the distance of the deformed model to a
set of boundary points. With the notation introduced
previously, the optimal transformation 7" is :

— H ) . . . 2
T = argTIenTl?eg ;A 1T (pi) — (s + Bifext(Pi))]
Pi
(2)

where {foxt(p;)}: is the set of displacement vectors of
vertices towards boundary points and Tee is a given
group of transformations with a limited number of de-
grees of freedom (DOF). Widely used transformation
groups include rigid transformations (6 DOF), simi-
larities (7 DOF) and affine transformations (12 DOF).
For these three transformation groups, there exists a
closed form solution for solving equation 2.

By restricting the transformation in T,eg, this al-
gorithm improves the robustness to noise and outliers
of the image segmentation. Therefore, this approach
tends to be less sensitive to the initial model position
than classical deformable model approaches. However,
its drawback is to limit the possible range of model de-
formations. It may not allow to describe the complex
shape variability of anatomical structures.

3.3 From local to global regularization

Many approaches have been proposed to combine
a global deformation procedure limiting the model
shape variations and a local deformation component
to match small shape variations [21, 18, 19]. In [14],
we introduce a computationally efficient scheme com-
bining a global transformation estimation and local
deformations. The global transformation T is con-
verted to a global and regular force field : fyopa1(Pi) =
T(p;) — p:- The surface is submitted to internal, ex-
ternal and global forces. A locality parameter \ allows
to weight the influence of each force :

pit =pl+ (17! -pi™")+

/\(aifint(pz) + ﬂifext(pg)) + (1 - /\)fglobal(pz)~ (3)

From equation 3 it can be seen that when A\ = 0, the
deformations are purely global, and when A\ = 1, the
deformations are only local. Any other value of \ leads
to an intermediate behavior. This approach is efficient
since external forces are computed only once for local
and global forces estimation. The global transforma-
tion is estimated using a closed form solution.

This method allows a “coarse-to-fine” approach sim-
ilar to the Graduated Non-Convexity algorithm [4].
When ) is 0, the deformation problem is rather con-
vex and the convergence is robust. As A increases,
several local minima appear until the original (local)
equation is used. At each iteration, the current de-
formation optimum is used as an initialization for the
model.



4 Initialization

The initialization of deformable models has often been
considered as the main limitation of that approach. In
some medical applications, it is possible to estimate a
prior shape and orientation of the anatomical struc-
ture of interest, knowing the patient orientation inside
the acquisition device. Global transformations may
then be used to compensate for the small orientation
and scale variations between a rough initialization and
the patient image.

Nevertheless, it may happen that the initial posi-
tion and/or shape of the anatomical structure is not
known. We then propose an automatic procedure to
build a simplex mesh directly from the volumetric im-
age [7]. First, the image needs to be binarized, using
thresholding and mathematical morphology operators,
to reveal a rough approximation of the structure of in-
terest. A two stages algorithm is used to initialize the
mesh from the binary image. Figure 2 (left) shows an
example on an MR Image of the hand.

e A surface tracking algorithm first extracts a sur-
face from the object boundary voxels (center).
The resulting surface needs to be a discrete 2D
manifold.

e A sampling algorithm preserving the surface
topology then produces a mesh at a given res-
olution. It propagates regions from randomly se-
lected seeds over the surface. By splitting regions
when needed, a simplex mesh is created. The re-
sult is obtained by adapting the mesh topology to
the desired level of detail and deforming the mesh
in the original image (right).

Figure 2: Simplex mesh automatic initialization in an
MR Image of a hand.

5 Topology

Topology adaptation of deformable models is an im-
portant feature when the datasets are reliable enough
to allow an automatic detection of topology changes.
Discrete mesh topology operators include both mesh
resampling (Eulerian operations) and changes in the
surface genus (non-Eulerian operations).

5.1 Surface adaptation and refinement

Mesh sampling is key to control the model level of de-
tail. In general, one wants to minimize the size of the
geometric representation (a compact model) with suf-
ficient details to represent the finest image structures.
We developed topology operators allowing to locally
refine or decimate a simplex mesh surface [17].

Figure 3: Surface refinement for heart and vessels seg-
mentation

Figure 3 shows the segmentation of a dog’s heart
and blood vessels from a CT-scan starting from a
spherical model. From left to right the model is re-
fined based on its local discrete curvature; it consists
of approximatively 500, 1500 and 5000 vertices.

5.2 Topology changes

Automatically adapting a surface genus during the
deformation process is a challenging issue. The im-
plicit representation (level set) is well-suited to topol-
ogy changes since no surface parameterization is re-
quired. However, level sets suffer from other limita-
tions such as the difficulty for user interaction and
its expensive computing time. Mclnerney and Ter-
zopoulos proposed the «T-snakesy models [12] to ap-
ply topology changes on discrete contours and sur-
faces, based on the decomposition of space on a simpli-
cial grid. We propose an algorithm for automatically
performing topology changes on 1-simplex meshes. It



is also based on a decomposition of space on a regu-
lar grid, although it is not restricted to close contours
as T-snakes. Figure 4 shows a circular topology de-
formable contour segmenting a vertebra. The contour
is pushed by a balloon force to grow until it locks on
edges. New vertices are created when needed and the
contour self-intersects resulting in a split into two con-
nected components.

Figure 4: Topology adaptable snake

6 Medical images segmentation

6.1 Image geometry

Most medical images are sampled along a regular grid
in Euclidian space. However, some acquisition devices
acquire volumetric images using different geometries.
In particular, 3D ultrasound probes often acquire a set
of 2D planes that may not be parallel to each other.
Figure 5 shows a rotative ultrasound probe and the
corresponding cylindrical sampling grid. In these im-
ages, the data density decreases as a function of the
distance to the symmetry axis. In [15] we proposed
an algorithm for filtering images with a non Euclidian
geometry. This is especially useful to extract gradient
information which is the main feature used for image
segmentation.

6.2 External forces

Although the use of global deformations improves the
segmentation robustness, high segmentation accuracy
can be achieved by introducing some specific knowl-
edge about the structures of interest.

External forces are computed from an image I to
push a deformable model towards anatomical struc-
ture boundaries. In their seminal paper [9], Kass et al

Figure 5: A rotative ultrasound probe and the re-
sulting cylindrical geometry image. This image was
acquired at the CHU Brabois by Dr Lethor for the
Echocard3D project.

proposed to use the gradient of the image gradient’s
norm as the external force : fo.y = V||VI||. The po-
tential field associated with this force tends to be fairly
narrow around image edges. Moreover, the model evo-
lution might become unstable. Cohen [5] proposed a
normalization to avoid instabilities and adds a bal-
loon force that causes the model inflation. The use of
a function of the distance from a model vertex to the
edge points also avoids instabilities. Thus forces com-
putation often requires the extraction of main edges.
A distance map is then computed from the edges or a
closest edge point is determined for each model vertex.

6.2.1 Gradient based forces

We use different external forces depending on the im-
age quality and specificity. For most CT and MR im-
ages, the contrast is high enough to extract boundaries
using a gradient operator. The model then tracks close
boundaries at each pixel by scanning image voxels
along the normal direction at each vertex. The scan-
line algorithm is illustrated for Euclidian and cylin-
drical images in figure 6. Restricting the boundary
search along the model normals reduces the scanning
time without limiting the deformation capabilities.

If the scan-line from a vertex intersects a voxel of
high gradient norm, the external force is computed as
the displacement vector from the vertex position to
the boundary voxel center. To make the boundary
detection more robust, several criteria can be taken
into account :

e Range. The scan-line algorithm scans voxels
within a limited range to avoid reaching outliers
when gradient voxels are lacking. The range pa-
rameter is either dependent on the image size or
of the average structure size when it is known.



Figure 6: Scan-line algorithm for different image
geometries.

e Contrast. In fairly well contrasted images, a lower
gradient intensity threshold can be set to ignore
voxels whose gradient’s norm is too low (weak
contours or noise).

e Direction. If the segmented structure is brighter
or darker than the image background, the gra-
dient vector is always pointing outside or inside
that structure. A gradient voxel found on a ver-
tex normal line is rejected if its direction does not
roughly match the normal direction.

e Intensity. Finally, if the structures of interest in-
tensity range is known, a gradient voxel can be
rejected when the corresponding intensity voxel
does not fall within the expected range.

6.2.2 Region based forces

In many cases, the gradient information may be lack-
ing or the noise level may be too high to detect proper
boundaries using a gradient operator. Moreover, gra-
dient information is not necessarily relevant in some
image acquisition systems, e.g. thick lines appear in
ultrasound images along organ interfaces. An infor-
mation on the gray-level distribution is then more ap-
propriate.

We have developed an intensity region external
force [15]. At each mesh vertex, an intensity profile
is acquired from the image in the vertex normal direc-
tion. The profile is then smoothed using anisotropic
diffusion to reduce noise without altering intensity dis-
continuities. When an homogeneous region (i.e. a
profile segment with its voxels belonging to a given
intensity range) having a minimum length is found,
we search for voxels of high gradient in the vicinity
of the region’s extremities. These voxels correspond
to the region boundary and are used to compute the
external force.

Figure 7 shows the heart left ventricle segmentation
from a time series of very noisy 3D ultrasound images

with weak contours based on region-defined external
forces. On the left, the reconstructed 3D model em-
bedded in the original image is displayed. Two images
of the model intersection with one image slice at end
diastole (center) and end systole (right) are shown.

Figure 7: Segmentation of a 3D cardiac ultrasound
images sequence.

7 Conclusion

Deformable surfaces provide a powerful tool for
generic image segmentation. They produce a geo-
metric representation of anatomical structures suited
to visualization, quantitative measurements, surgery
planning and simulation. Although deformable mod-
els may be trapped by local minima of the energy
functional, their robustness is increased in many ap-
plications by the introduction of a priori information.
Finally, these models can describe a wide variety of
shapes without any restriction of topology.

Our future work will concentrate on extending the
application field of image segmentation based on de-
formable models. For instance, the segmentation of
time series of medical images is of high importance for
many medical procedures including cardiology. We
are developing time-dependent deformable models in
order to obtain time-correlated image segmentation.
Also, the reconstruction of vascular trees based on de-
formable models is challenging because of their com-
plex geometry and tubular symmetry.
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