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ABSTRACT

Many medical image processing algorithms require the com-
parison of multiple scans acquired from a given subject. In
the absence of an absolute coordinate system, these differ-
ent images have to be aligned in a common space before be-
ing able to identify similar anatomical landmarks. Several
rigid registration techniques have been proposed that esti-
mate the rigid transformation between two anatomical vol-
umes [1] but none of them introduce geometric constraints
on the possible position of the human head inside a scanner.

We propose a new method to improve the accuracy of
rigid registration in the case of small displacements by re-
stricting the number of degrees of freedom (dof) involved
in the registration process. It has been shown in a differ-
ent context that decreasing the number of dof improves the
numerical stability of the displacement recovery algorithm
[16, 8] by regularizing the minimized criterion and reducing
the number of local minima.

We developed a strategy adapted to the case of human
head displacement in a MRI scanner. This algorithm has
been successfully tested on 6 sets of fMRI volumes acquired
at the MNI on different patients. Each set is composed of
30 to 78 volumes.

1. INTRODUCTION

Linear registration of 3D medical images [1, 2, 5, 9, 6, 15]
has been intensively studied over the past decade. Linear
registration is used either to align differentimages in a com-
mon space [3, 12], or to correct motion artifacts occurring
during longitudinal acquisitions.

While multi-modality or multi-acquisition registration
may involve significant displacements as the subject posi-
tion changes between acquisitions, longitudinal studies usu-
ally involve motion with a weak amplitude that are due to
breathing motion, heart beat, swallowing, or the difficulty
of patients to remain perfectly still for long acquisition pe-
riods. Yet, fine measurements of changes in time sequences
of noisy images usually require a very precise registration
procedure (regions of activity in fMRI sequences, modifica-
tions in lesions in MRI sequences, ...).

time

LR R

-

{ h fMRI

EEG Spike detection

-

j h fMRI

EEG Basdline

<t

{ h fMRI

EEG Spike detection

h:  hemodynamic response time fMRI:  fMRI acquisition time

Fig. 1. The EEG signals are continuously observed. Some
fMRI volumes acquisitions are triggered when a spike of
epileptic activity is detected while some “baselines” are
triggered in the absence of epileptic activity.

In this paper we are dealing with fMRI images (func-
tional Magnetic Resonance Imaging) and we focus on the
precise registration of brain fMRI images acquired for lon-
gitudinal studies of epileptic patients. This is a part of a
study on EEG (Electro-EncephaloGraphy) triggered fMRI.
The EEG signal acquisitions are continuous and, when a
spike of epileptic activity is detected on the EEG signal,
one fMRI volume acquisition is triggered. Some baselines
events (without any epileptic event) also trigger fMRI vol-
umes for normal cerebral activity detection. This procedure
is explained in figures 1 and 2.

The long acquisition time and the annoyance caused by
EEG electrodes used for synchronous spike detection often
lead to small movements of the patient’s head between 3D
image acquisitions. These small displacements have to be
compensated for prior to statistical study of brain activa-
tion regions. However, these motions are constrained by the
geometry of the scanner and the anatomy of the body and
may yield to constrained displacements.

Registration of 3D medical images has been studied for
very different purposes such as computer guided surgery [7]
or multi-modality registration [14]. Methods for reducing
registration errors have been recently proposed [10]. We
propose a new method based on the use of simplified partic-
ular cases of motion to improve rigid registration accuracy
in longitudinal studies showing small motion artifacts.

The overall idea of our method is to explore particular
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Fig. 2. The EEG signals are continuously monitored. Some
fMRI volumes acquisitions are triggered when a spike of
epileptic activity is detected. During a fMRI acquisition,
the EEG signal is perturbed, as shown above.

displacement cases as opposed to a general rigid transfor-
mation between images. Particular cases lead to a reduction
in the number of dof for the transformation that allow a bet-
ter convergence of the optimization procedure involved in
rigid registration algorithms. Particular cases have success-
fully been used to recover 3D motion and camera parame-
ters in the computer vision field [16, 8].

This procedure has been successfully tested on several
patients from an EEG triggered fMRI study at the Montréal
Neurological Institute.

2. BACKGROUND EQUATIONS

2.1. Rigid displacement equations

A point M in the world space is moving to the position M’
by arotation R and a translation t :

=RM+t

A rigid displacement is parameterized by the rotation R and
the translation t = [t t, t.]7 parameters which are con-
stant in the whole volume. The rotation matrix R depends
only on three parameters r = [r, r, r.]7 related to the ro-
tation angle 4 and to the rotation axis direction, represented
by the unary vector u by :

r=0usf=r

A rigid displacement is thus parameterized by 6 parameters
corresponding to the 6 degrees of freedom.

Using the notation & which represents the cross-product
operator by r :

0 =Ty Ty
r=rA.=| 7, 0 —Tz
Ty Tg 0

the rotation matrix R is expressed as : R = ef. The reader
can easily verify that R is a rotation matrix (RR” = I
and det R = +1). Since ¥3 = —0, the decomposition of
the exponential can be rewritten in a simple way, using the
Rodrigues formula, [13] :

sin @ 1 —cos@

_ = )
R=I+——f+—p—f 1)

If we consider the vector p = 2 tan(£)u, we can verify
that this new parameterization lead to a ratlonal formulation
of the Rodrigues formula 1 :

1 ~2
R=I+ Lﬁ”p] @
L+ 5
and we have :
# = 2arctan <”p”
12— 3—trace(R
trace(R) = ‘ZlAll o |p|]2 = 4 3tracel®)

The benefit of this formulation is twofold : rational equa-
tions leads to more precise numeric computations and, the
inverse equations are also simpler :

Pz = A(Rs2 — Ras)
py = A(Ri3 — Rs1)
pz = A(Ra1 — Ri2)

) 2
Wlth )\ : % (]' + @> : 1+t7‘11266(R) )

During fMRI acquisition, the patient try to move as little

as possible, however they still move. If the angle of rotation

of these unwanted displacement is small enough, the rota-

tion may be approximated by its first order expansion:

) 1 —r, ry
R=e"=I+74+0(F)=| 7. 1 —-r
Ty T 1

The inverse transformation is trivial.

2.2. Particular cases of displacement

We are interested in the rigid part of volume registration.
Other non rigid deformations are not taken into account be-
cause we are dealing with only one patient at the same time
(the skull is rigid) and one image modality (no scales and
shears). As a generally accepted hypothesis, we will con-
sider that there is no head displacement during one volume
acquisition, which lasts approximately 2 seconds. In this
part, we will study the equations of rigid displacement and
their singularities.

A subject lying down in the scanner has the head ap-
proximately fixed by a head coil as shown in figure 3. It
is still possible to move but with a small amplitude and of-
ten not along all 6 degrees of freedom. The displacements
are mostly small rotations around an axis passing near the



Fig. 3. Head coil in the Siemens scanner. A stabilizes the
ears positions, B the nose and C, the head coil stabilizes the
head back.

head center. The mislocalization of the center of reference
is responsible of the translation components.

Since we are interested in particular directions of the ro-
tation axis, we will consider the r vector to have or not to
have one or several null components. We show in table 1
three sets of cases that we will study in this paper. The first
set corresponds to different cases of translation direction,
the second to the rotation mode (no rotation, small rotation,
general rotation) and the last set to different cases of rota-
tion axis. A particular case of motion is composed by a
particular case of each label set.

A particular case is called “tiRjuk” where the indices 1,
4 and k correspond to the values in table 1. Since in case
of no rotation (R1) we do not care about the rotation axis,
we will consider the following values of indices : ¢ € [1; 8],
j €[1;3]and, if j = 1then k = 1else k € [1;7]. We thus
have 8 % (1 * 1 + 2 % 7) = 120 different particular cases.

2.3. Theregistration process

We have implemented our method in the autoreg! pack-
age developed by Collins et al[3] for linear and non-rigid
registration of brain images. The algorithm is based on a
simplex optimization procedure that minimizes an objective
function [4] measuring the similarity between a resampled
source image and a target image. A cross correlation mea-
sure is used in the case of fMRI registration [11].

The simplex optimization procedure minimizes the value
of the fit value r associated to a transformation between two
volumes. This fit value is defined by :

_ A
Vi VTs

http://www.bic.mni.mcgill.ca/software/mni_autoreg/

T

label | constraints displacement
t1 t,=t,=t,=0 no translation
t2 t, =t, =0 translation on z-axis
t3 ty,=t.=0 translation on y-axis
t4 ty=1t,=0 translation on x-axis
t5 t. =0 translation L x-axis
t6 ty, =0 translation L y-axis
t7 t. =0 translation _L z-axis
t8 1%} general translation
R1 R=1I null rotation
R2 { R=1I+r first order

r=60u

— pt3p”

R3 R=1+ [1+ﬂT 2 general case

p=2tan % u
ul Ug = Uy =0 Z rotation axis
u2 Uy =u, =0 y rotation axis
u3 Uy =1u, =0 X rotation axis
ud Uy =0 rotation axis L x-axis
uS Uy =0 rotation axis L y-axis
ué u, =0 rotation axis _L z-axis
u7 %} general rotation

Table 1. Particular cases of displacements : translation di-
rection, rotation mode and rotation axis.

where :
fi = > di *ds (pointto point multiply)
fo = > d? (sum of all points squared)
fs = > d2 (sum of all points squared)

The fit value is normalized between 0 and 1. The ideal reg-
istration gives a fit value of 1.

As an initial guess of displacement, we took the identity
transformation. Considering that the motion estimation is
better when we have a reasonable guess for the center of
rotation since it makes the parameters more orthogonal to
each other (e.g. a small change in rotation will not grossly
affect the translations), we choose the center of gravity of
the head.

We embedded the rigid displacement estimation process
in a loop that examines all particular cases of displacements
and, for each case, estimates the underlying parameters of
the simplified model. After this loop, the case that generates
the best fit value is selected.

3. EXPERIMENTS

3.1. Dataused

We used fMRI volumes acquired during EEG triggered fMRI
experiments on a 1.5 Tesla Siemens Vision scanner, using
gradient echo EPI sequences. We used data from four pa-
tients which were selected because of drug resistance and




name number of
volumes
Charlie Brown1 74
Charlie Brown2 35
Charlie Brown3 30
Snoopy 66
Linus 78
Woodstock 48

Table 2. Number of data acquired for each patient. We have
two sets of data for Charlie Brown who went three times in
the scanner.

rG+1)

LRLLLE

Fig. 4. Registration with respect to the previous volume.
T'(7) is the transformation to apply on volume(i) for regis-
tration with respect to volume(i-1).

focal epilepsy : Charlie Brown, Snoopy, Linus and Wood-
stock. For each patient, EEG electrodes were placed on the
scalp and acquisition of an fMRI volume was triggered by
epileptic activities detection. Some volumes are also ac-
quired in the absence of epileptic activity (baselines) in or-
der to determine a reference for epileptic activity localiza-
tion (see figures 1 and 2). Since Charlie Brown has been
scanned three times, we have three data sets for this patient.
The number of fMRI volumes we acquired for each patient
is collected in table 2. The acquisition of volumes is not
continuous (there might be several seconds or minutes be-
tween two acquisitions) but the patient remains in the scan-
ner during the whole study (which takes less than 1h30).
Each volume is composed of 25 slices 64*64 each. The
voxels dimension is 5*5*5 mm?. The acquisition of a sin-
gle volume takes a few seconds.

3.2. Between two consecutivesvolumes, particular cases
occur frequently.

In this experiment, we identify the transformation between
each volume and the previous one as shown in figure 4. For
each pair of frames, we try all cases of rigid displacement
seen in table 1 and select the result of best fit value.

Concerning the registration between two consectives vol-
umes, particular cases often give better result (and never
worse) and the mean improvement is significant. We show
in figures 5 to 10 the improvement brought by the particu-
lar approach. The value A displayed represents the relative
improvement of the particular case compared to the general

A%
200

150 |- -
100 |- -
ol |
o1 ¥ Ls
0 10 20 30 40 50 60 70 80
frames

Fig. 5. A values for each volume from equation 3. Measure-
ment of the particular cases approach in the case of registra-
tion of one volume with respect to the previous one. This
example shows, for patient Charlie Brown1, that our method
increase the accuracy of parameters estimation. The mean
improvement is 15 % with standard deviation 17.

method. This is obtained by :

__general case fit value — best case fit value
" identity fit value — general case fit value

©)

This value may be unstable when there is no displacement
because of the nullity of the denominator. In the following
experiments, we will not take the values of A greater than
150 % (white bars) into account.

For each volume, we give the degrees of freedom in fig-
ures 11 to 16. The value 6 corresponds to 3 degrees of free-
dom in rotation and 3 in translation. The rotation may be
general or approximated to its first order.

We have experimented 323 registrations, each with 120
different particular cases. We observed that, among these
120 different cases, only 63 were selected, meaning that
some may not occur in practice. The general case was se-
lected 43 times, the first order of rotation with 6 dof 67
times, and the others, less than 20 times. This preliminary
result could be useful in order to reduce the number of cases
to test, and thus, reduce the computational cost. Further-
more, it could be interesting to study, for a volume to be
registered with respect to another, if some cases are equiva-
lent regarding the fit value. This would allow to select only
few cases among the 120.

The interest of using a first order development of the
rotation is demonstrated by the fact that, considering the
323 registrations, first order rotation was selected 204 times,
general rotation 111 times and null rotation 8 times.

4. CONCLUSION

In this paper, we presented an adapted strategy to compen-
sate for head small displacements in a scanner. The ap-
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Fig. 6. The same as figure 5 for patient Charlie Brown2.
The mean improvement is 12 % with standard deviation 24.
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Fig. 7. The same as figure 5 for patient Charlie Brown3.
The mean improvement is 11 % with standard deviation 23.
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Fig. 8. The same as figure 5 for patient Snoopy. The mean
improvement is 2 % with standard deviation 2.
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Fig. 9. The same as figure 5 for patient Linus. The mean
improvement is 15 % with standard deviation 24.
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Fig. 10. The same as figure 5 for patient Woodstock. The
mean improvement is 1.4 % with standard deviation 2.
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Fig. 11. Degrees of freedom of best case for each volume
in the case of registration of one volume with respect to the
previous one. The value 6 corresponds to 3 dof in rotation
and 3 dof in translation. This example shows, for patient
Charlie Brownl, that there is often less than 6 dof. The
mean dof is 4.5 with a standard deviation of 1.0
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Fig. 12. The same as figure 11 for patient Charlie Brown2.
The mean dof is 4.6 with a standard deviation of 1.1
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Fig. 13. The same as figure 11 for patient Charlie Brown3.
The mean dof is 4.9 with a standard deviation of 0.9
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Fig. 14. The same as figure 11 for patient Snoopy. The
mean dof is 5.5 with a standard deviation of 0.7
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Fig. 15. The same as figure 11 for patient Linus. The mean
dof is 4.6 with a standard deviation of 1.1
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Fig. 16. The same as figure 11 for patient Woodstock. The
mean dof is 5.6 with a standard deviation of 0.6



proach was tested on several sets of fMRI volumes. The
experimental results show an improvement of the registra-
tion accuracy in most cases. Between two frames, particular
cases occur frequently. We observed also that some cases
studied never occur in practice.

The strategy described here is not dependent of the ac-
quisition procedure and can obviously be applied to other
image modalities.

This study could be extended in different ways. First,
a clinical trial involving a larger amount of subjects would
confirm whether it is possible to withdraw some particular
cases. Second, the results could be refined by identifying
the particular cases that arise from the specific geometry of
the head coil (flat, spherical, ...).
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