
DM2: A Distributed Medical Data Manager for Grids∗

H. Duqueab, J. Montagnata, J.-M. Piersonb, L. Brunieb, and I.E. Magnina

a CREATIS, CNRS UMR 5515, http://www.creatis.insa-lyon.fr/
b LISI, INSA de Lyon EA 629, http://lisi.insa-lyon.fr/

INSA, Bât. B. Pascal, 7 av. J. Capelle, 69621 Villeurbanne Cedex, France

Abstract

Medical data represent tremendous amount of data

for which automatic analysis is increasingly needed.

Grids are very promising to face today challenging

health issues such as epidemiological studies through

large image data sets. However, the sensitive nature of

medical data makes it difficult to widely distribute med-

ical applications over computational grids. In this pa-

per, we review fundamental medical data manipulation

requirements and then propose a distributed data man-

agement architecture that addresses the medical data

security and high performance constraints. A prototype

is currently being developed inside our laboratories to

demonstrate the architecture capability to face realistic

distributed medical data manipulation situations.

1 Medical applications on computa-

tional grids

Recently, computational grids [7, 8] achieved a large
success among the distributed computing community.
Many technical developments aim at providing a mid-
dleware layer allowing to submit remote jobs [2, 5, 9],
store data [4], and get information on a distributed sys-
tem [15]. But most importantly, from the user point
of view, grids should allow transparent access to dis-
tributed resources and enable easy data and algorithms
sharing.

Medical data analysis is a domain where grid tech-
nologies are very promising. Health centers are using
an increasing number of digital 3D sensors for medical
data acquisition [1], representing tremendous amount
of data for which automatic analysis is needed. Grid
technologies offer: (i) an increased computing power

∗This work is partly supported by the IST Eu-
ropean DataGrid project (http://www.edg.org/),
the French ministry for research ACI-GRID project
(http://www-sop.inria.fr/aci/grid/public/) and ECOS-
Nord Committee (action C03S02).

for complex modeling and simulation algorithms, (ii)
a distributed platform with shared resources for dif-
ferent medical partners with similar data processing
needs, (iii) a common architecture to access heteroge-
neous data and algorithms for processing, and (iv) the
ability to process very large amounts of data (e.g. for
epidemiological studies).

However, to remain transparent from the user point
of view, a middleware layer should take into account
the particular needs of medical applications. Although
weakly structured, medical data have a strong seman-
tic and metadata are very important to describe data
content (such as images). Furthermore, medical data
are sensitive and should only be accessible by accred-
ited users, which makes data manipulation over a wide
area network difficult.

In this paper, we address the medical data manage-
ment related issues for grid computing. We first detail
in section 2 medical data requirements. In section 3,
we propose a novel data management architecture that
is currently being investigated in our laboratories.

2 Medical data and security issues

2.1 Medical data

Although there is no universal standard for storing
medical images, the most established industrial stan-
dard is DICOM (Digital Image and COmmunication
in Medicine) [6]. DICOM describes both an image
format and a client/server protocol to store and re-
trieve images on/from a medical image server. Most
recent medical imagers implement the DICOM proto-
col. They play the role of acquisition device and image
server communicating with their clients over a TCP/IP
hospital network. The DICOM file format is made of a
header containing metadata followed by one or several
image slice(s) in a single file.

The metadata contains two kinds of information:

• sensitive patient-related metadata such as the
patient name, sex, age, the radiologist name, the
hospital, etc.

• image-related metadata such as the image ac-
quisition device, constructor, and parameters, the
acquisition date, the number of images stored, the
size of images, the field of view, etc.

To the patient information can be added all clinical
metadata that are not originally part of the image ac-
quisition such as notes by medical experts. Although
patient metadata is the most sensitive part of the data,
no medical data, including the image content, should
ever be accessible to unauthorized users.

Today, medical data are often stored and archived
inside each medical image producer (hospitals, clinics,
radiology centers...). The medical record (image files
and metadata) of one patient is distributed over the
different medical centers that have been involved in
his healthcare. Medical data are usually disconnected
from the outside world to solve security issues. Sev-
eral Picture Archiving and Communication Systems
(PACS) [10] have been developed to provide data man-
agement, visualization, and, to some extent, process-
ing. However, they are restricted to data management
inside each hospital and hardly address the problems
arising when considering a global system with commu-
nication of sensitive data between sites.

2.2 Requirements for medical data on the Grid

Data management and replication mechanisms [14]
proposed by grid middlewares mainly deal with flat
files. Data access control is handled at a file level. In
the DataGrid project for instance, user authentication
relies on the asymmetric key-based Globus Grid Secu-
rity Infrastructure layer (GSI) [3]. This infrastructure
does not take into consideration metadata and does
not address patient record distribution. Therefore, we
investigate the creation of a Distributed Medical Data

Manager unit (abbreviated as DM2 later in this doc-
ument) that interfaces with the grid middleware. It
should provide:

• Reliable and scalable storage for images and meta-
data produced by medical imagers. This includes
connection to the grid file replication mechanism
and a metadata location service granting access to
distributed medical records (see section 3.2.2 for
details). To face scalability and reliability issues
in a wide area environment, replication of meta-
data also appears necessary.

• Data and associated metadata should be synchro-
nized by the information system as they are se-

mantically connected (they should have the same
lifetime, same access patterns...).

• Through a proper query service, metadata should
describe a dataset and allow it to be processed.
This implies a proper interface between the grid
job submission service and the data/metadata
manager.

• Encryption is needed to restrict access to autho-
rized users.

• A fine user identification mechanism should con-
trol access rights to the data.

• Finally, medical data traceability is an important
feature: a medical doctor is often interested in
knowing from where a computed data originates,
and conversely, it may be useful for optimization
reasons to remember which computations have al-
ready been carried out a given data set and what
results were produced.

Processing or querying data over a grid raise prob-
lems of confidentiality and confidence that the user may
have in the grid security infrastructure. Ideally, medi-
cal data should not be accessible by any unaccredited
user, including system administrators of sites where the
data are transported for computation. To ensure a rea-
sonable confidentiality level, we plan to decouple the
sensitive metadata from the image data. The metadata
will only be stored on a limited number of trusted sites,
where administrators are accredited, and can only be
sent to accredited user stations. The image data can be
stored, replicated, and manipulated on standard grid
nodes given that it is encrypted to make its content
retrieval difficult.

3 Managing distributed medical data

3.1 A sample usecase

To illustrate our proposal for a DM2, we will con-
sider the following usecase. A cardiologist looks for
heart images similar to a case of one of his patients
to confirm his diagnosis. He want to rank existing im-
ages through a similarity score resulting of a computa-
tion involving his patient image and an image database.
Once the images are ranked, he need to visualize the
most similar cases and their attached diagnoses. The
diagnosis he makes for his patient can be recorded
in the information system for improving the existing
database. In technical terms, the cardiologist needs to:

• Access a large data set made of comparable heart
images that are distributed over different hospi-
tals.

2

• Make computations (similarity measurements) on
a large number of images in a very limited time.

The grid can help on both aspects by providing a very
large distributed image database and the computing
power needed. However, this implies that there is a
full and secured interface between the grid computa-
tion services, the medical data servers, the associated
metadata, and the user interface.

3.2 Key issues in designing the DM2

A distributed system is made of several intercon-
nected computers and a shared state describing the
cooperation of these computers [11]. To respond the
requirements described in section 2.2 the DM2 is de-
signed as a complex system involving multiple grid ser-
vice interfaces and several interacting processes geo-
graphically distributed over an heterogeneous environ-
ment. It is a gate to the grid as well as an intermediary
(proxy) between the grid and a set of trusted medical
sites. Its complexity has motivated us to first propose
an architecture describing the DM2 components and
second to implement our system as one possible in-
stance of this architecture. To tackle the DM2 com-
plexity, we propose the multi-layers architecture out-
lined in section 3.2.1. We also need to interface the
DM2 with underlying grid services as detailed in sec-
tion 3.2.2.

3.2.1 DM2 layered architecture

The DM2 needs to interconnect with existing services
on the internals of which we have no control. We will
refer to engines to designate the DM2 services that we
develop to avoid confusions. Each engine is composed
of a set of independent processes which interact by ex-
changing messages. We design each Distributed Sys-

tem Engine (DSE) through a layered architecture that
takes into account the requirements for high perfor-
mance and data integrity. The architecture increases in
semantic significance through five layers (see figure 1).
At the lowest level, DSE0, the system is made of pro-
cesses that can communicate through a message pass-
ing kernel. The DSE1 level brings atomic operations
(transactions) to process complex requests composed
of many messages. The upper layer DSE2 deals with
distribution over several engines. On top of the dis-
tribution layer come the application (DSE3) and user
interface (DSE4).

Se
m

an
tic

L
ev

el

DSE0: message passing

DSE4: user

DSE3: application

DSE1: transaction

DSE2: distribution

Figure 1. DSE layers

3.2.2 Interfacing medical data servers with the

grid middleware

The European DataGrid (EDG) middleware proposes a
standard storage interface to the underlying mass stor-
age systems. Through this interface, the middleware
may access files on distributed and heterogeneous stor-
age pools. Grid-enabled files are handled by a Replica

Manager (RM): to ensure fault tolerance and provide a
high data accessibility service, files are registered into
the RM and may be replicated by the middleware in
several identical instances. The first file registered into
the RM is a master file. Other instances are replicas.
When a file is needed, the grid middleware will auto-
matically choose which replica should be used for op-
timizing performances. Having multiple instances of a
file also increase its availability since connection errors
are likely to happen in a wide scale distributed system.
To solve coherency problems, replicas are accessible in
read only mode and modifying a master file invalidates
all its replicas. To ease files manipulation, grid wide
Logical File Names (LFN) are used to identify each
logical data (i.e. a master and all its replicas).

In the hospital, each image can be made up of one
or several DICOM files representing portions of the im-
aged body. The DM2 plays a double role to interface
DICOM servers with the grid middleware as illustrated
in figure 2:

• It makes an interface between the grid RM and
the DICOM servers.

• It provides a standard storage interface allowing
to exchange files with other grid services.

For each new DICOM image or set of DICOM images
(depending on the semantic of the DICOM series) pro-
duced by an imager, a LFN is created and registered
into the RM. The DICOM files thus becomes, from the
grid side, a master file. There is not necessarily a phys-
ical file instance behind this LFN but rather a virtual
file made up of a set of DICOM files, that can be re-
constructed on the fly by the DM2 if a request for this
LFN comes in. For efficiency reasons, assembled files
are cached on a scratch space before being sent out-
side. The DM2 also stores metadata and establishes a

3

link between an LFN and its patient- or image-related
metadata.

The DM2 storage interface ensures data security by
anonymizing and encrypting on the fly images that are
sent to the grid. Replicas of a medical image may exist
on any grid storage node, given that encryption forbid
data access without encryption keys. These keys are
stored with the patient-related metadata on trusted
sites only. In order to ensure data integrity, the grid
storage interface does not allow the master files stored
on the DICOM server to be deleted.

DICOM

Server

Scratch Space

Replica
Manager

...

2DM

param1 parn

Metadata manager
... ...LFN

interface
storage

interface
storage

storage
system

mass
Grid

Hospital Grid Middleware

Imagers

Header

blanking

Encryption

Service

Job
Submission

Figure 2. DM2 interface between the medical
imagers and the grid

3.3 DM2 layers

As mentioned earlier, we decomposed the DM2 ar-
chitecture in 5 layers to tackle its complexity. This
section further describes each layer’s role.

3.3.1 DSE0: message passing

The core of the DSE0 is a message passing kernel in
charge of the efficient transmission of messages be-
tween the DM2 processes. Our kernel implementation
is based on Inter-Process Communication (IPC) ser-
vices. The DSE0 transmits messages between the IPC
kernel and the external network for access to both local
and remote services.

3.3.2 DSE1: transactions

On top of the simple message transportation layer,
DSE1 implements atomic operations (transactions)
made of multiple sub-operations. A transaction suc-
ceeds if and only if all sub-operations succeed. If a
failure occurs the system is left in a coherent state.

It offers the ACID properties: Atomicity, Consistency,
Isolation and Durability [11].

A transaction involves multiple requests to exter-
nal services and internal engines. To deal efficiently
with complex transactions, we introduce the notion of
tasks. Tasks are sets of sequential requests and transac-
tions are sets of sequential and/or concurrent tasks (to
shorten the processing time). We implemented trans-
actions, tasks, and requests through four kinds of spe-
cialized processes that we will refer to as drivers:

• The TRransactions Drivers (TRD) are processes
which can manage a whole transaction made up
of a set of sequential or parallel tasks. A transac-
tion could imply having access to different external
services (tasks).

• The TasKs Drivers (TKD) are processes in charge
of doing a specialized part of a transaction, which
could imply getting sequential access to an exter-
nal service or to a set of request drivers.

• The ReQuest Drivers (RQD) are in charge of ac-
cessing the remote components such as other en-
gines and external servers. They solve low level
issues such as connection management. These
drivers transmit messages and receive responses
that they route to the calling processes.

• The TOol Drivers (TOD) are processes which per-
form internal operations for debugging support or
improving the efficiency. Examples of such pro-
cesses are the caching of requests and results, log-
ging, security checking, and tracing operations.

A DM2 engine works as follows: (i) A message ar-
rives at a transaction driver and a transaction is ini-
tiated. (ii) The transaction starts different concurrent
tasks, using independent processes (TKD). (iii) Each
task get access to the requests drivers (RQD) so that
it can reach the external services. (iv) The request
drivers (RQD) opens connections and send messages
to the external services. (v) Each driver uses the tools
it needs (TOD). See section 3.4.2 for a concrete exam-
ple.

3.3.3 Upper layers

DSE2 brings additional distributed facilities on top of
the two lowest levels. It is in charge of localizing
data and services, transmitting request to proper hosts,
etc. It may take advantage of completely decentralized
Peer-to-Peer (P2P) techniques or to semi-hierarchical
tree structures such as LDAP for distributed data lo-
calization.

DSE3 is the application layer, offering a program-
ming interface (API) so that an application can be built
on top of the underlying distributed system.

4

DSE4 is the user layer. It offers high level access to
data, metadata and algorithms registered in the sys-
tem. It can be implemented as web portals or graphical
applications. For instance, a user might have access to
similarity algorithms published by the DM2 architec-
ture (through this portal) that he wants to apply to a
subset of images (according to its access rights).

3.3.4 Extensibility and Interfaces

The architecture allows external applications to inter-
act with the distributed system, and to execute locally
on the same node or remotely. The system can ac-
cess other servers offering additional services (e.g. grid
services) or be accessed by clients trying to take ad-
vantage of the DM2 services. In this way additional
functions such as cache, security, file transfer and en-
cryption, database access, etc, can be easily interfaced,
and designed as independent modules for easing soft-
ware development.

3.4 Using the DM2 in real applications

A prototype is currently under development to
demonstrate the relevance of the proposed architec-
ture in realistic medical applications. At the moment,
we have implemented the interface to a DICOM server
(Central Test Node), metadata handling through SQL
tables with a secured access interface, but we do not
have a fully secured and distributed system yet. Our
prototype is therefore an assembly of DSE0 and DSE1

processes (message passing and basic transactions) fol-
lowing the above architecture.

3.4.1 DM2 software components

Let us consider the usecase described in section 3.1. In
order to set up this application we implemented:

• A set of request drivers for issuing requests to
and getting results from the grid services. The
DICOM RQD accesses the DICOM server where
medical images are stored and the metadata RQD

is a driver for the database service where image
metadata are stored.

• Each one of these services has an associated mul-
tiprocess task driver which is able to execute con-
current demands. The DICOM TKD can make
parallel transfer of DICOM files for instance.

• In addition, a communication daemon TRD has
been implemented in order to receive messages
from the network side and to start the execution
of transactions.

3.4.2 Detailed usecase

First, the cardiologist enters a query (e.g. find the MRI
of Mr X acquired yesterday in this hospital) through
the DM2 user interface. The DM2 sends a query
for retrieving metadata to the grid metadata interface
through the metadata RQD and TKD. The user autho-
rizations to access the data are checked by the external
metadata service and the patient file logical identifier
and its associated parameters (imaging modality, re-
gion of interest, dynamic sequence, MR acquisition pa-
rameters, etc) are returned to the user interface.

A request is made to find all images comparable to
the image of interest (same body region, same acquisi-
tion modality...) and for which a medical diagnosis is
known. The DM2 layer 2 should be used to distribute
the request on all hospitals with metadata services. In
the current implementation, the single metadata ser-
vice is queried through the metadata RQD and TKD

again. The logical identifier of all images matching the
patient source file parameters are returned.

A request is then made for computation of a simi-
larity measure [12, 13] between the patient image and
each image resulting from the previous query. The job
submission service of the grid middleware is used to
distribute computations over available working nodes.
For each job started, the grid replica manager trig-
gers a replication of the input files to process onto grid
computation nodes. When requesting files to the DM2

storage interface, the DM2 queries the DICOM server,
assembles MR images on the fly onto its scratch space
and returns images to grid nodes. Figure 3 details this
operation: on top, the grid middleware triggers a DM2

transaction for getting an image. (1) It first makes se-
curity checks. (2) It then accesses the database (meta-

data TKD) to locate the DICOM files. (3) A cache

TOD (when available), can be used to improve the
latency transfer. (4) Assuming the cache does not con-
tain the requested file, it should be copied from the
DICOM server. The DM2 queries the DICOM server
through the DICOM RQD and retrieves in parallel a
set of DICOM slices that are assembled onto scratch
space to produce the 3D image requested. (5) Finally,
the image is stored into the cache and returned to the
grid calling service.

4 Conclusions

Medical image processing over the grid opens new
opportunities for applications involving large medical
datasets. However, full deployment of medical appli-
cations require medical sites to be interconnected and
grid middlewares to provide secure and efficient access

5

GRIDDICOM Metadata

DICOM RQD GRID RQD Metadata RQD

Metadata TKD

GRID TKD

DICOM TKD

GRID

DM2 TRD

tcp/ip

ip
c

ip
c

Cache TOD

tcp/ip

Security TOD

1

2

3

4

5

Figure 3. DSE1 usage example: retrieving a
medical image from the DICOM server.

to the distributed and sensitive medical data. The se-
mantic content of medical data should also be taken
into account by developing grid-wide tools to manage
associated metadata.

The architecture proposed in this paper allows us to
build a complex distributed system, taking advantage
of classical theory (transactions concept) and propos-
ing solutions to implement a high performance data
manager (decomposition of transactions in concurrent
tasks and requests). The DM2 system allows the physi-
cians to get secure access to their patients’ images and
to send hybrid requests over huge databases.

We implemented a first prototype to demonstrate
the relevance of the DM2 for realistic medical applica-
tions. On-going work concerns data security and dis-
tribution. Many other aspects related to medical data
management could not be addressed in this short paper
including the need for tracking data origin and logging
data processing, optimization procedures such as data
and request caching.

References

[1] R. Acharya, R. Wasserman, J. Sevens, and C. Hino-
josa. Biomedical Imaging Modalities: a Tutorial. Com-
puterized Medical Imaging and Graphics, 19(1):3–25,
1995.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and
G. Shao. Application-level Scheduling on Distributed
Heterogeneous Networks. In Supercomputing, Pitts-
burgh, PA, USA, November 1996.

[3] R. Butler, D. Engert, I. Foster, C. Kesselman,
S. Tuecke, J. Volmer, and Welch V. A National-

Scale Authentication Infrastructure. IEEE Computer,
33(12):60–66, 2000.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury,
and S. Tuecke. The data grid: Towards an architecture
for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer
Applications, 23(3):187–200, July 2000.

[5] Karl Czajkowski, Ian Foster, Nick Karonis, Carl
Kesselman, Stuart Martin, Warren Smith, and Steven
Tuecke. A resource management architecture for meta-
computing systems. Lecture Notes in Computer Sci-
ence, 1459:62, 1998.

[6] DICOM: Digital Imaging and COmmunications in
Medicine. http://medical.nema.org/.

[7] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputer Applications,
15(3), 2001.

[8] Ian Foster and Carl Kesselman. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kauf-
mann, July 1998.

[9] Francesco Giacomini, Francesco Prelz, Massimo Sgar-
avatto, Igor Terekhov, Gabriele Garzoglio, and Todd
Tannenbaum. Planning on the grid: A status report.
ppdg-20, particle physics data grid collaboration., Oc-
tober 2002.

[10] H. K. Huang. PACS: Picture Archiving and Commu-
nication Systems in Biomedical Imaging. Hardcover,
1996.

[11] Sape Mullander, editor. Distributed Systems. Addison
Wesley, 1993.

[12] G.P. Penney, J. Weese, J.A. Little, P. Desmedt, D.LG.
Hill, and D.J. Hawkes. A Comparison of Similarity
Measures for Use in 2D-3D Medical Image Registra-
tion. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI’98), volume 1496 of
LNCS, pages 1153–1161, Cambridge, USA, October
1998. Springer.

[13] A. Roche, G. Malandain, X. Pennec, and N. Ayache.
The Correlation Ratio as a New Similarity Measure
for Multimodal Image Registration. In Medical Im-
age Computing and Computer-Assisted Intervention
(MICCAI’98), volume 1496 of LNCS, pages 1115–
1124, Cambridge, USA, October 1998. Springer.

[14] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holt-
man, and B. Tierney. File and object replication in
data grids. In 10th IEEE Symposium on High Perfor-
mance and Distributed Computing (HPDC2001), Au-
gust 2001.

[15] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor,
R. Wolsky, and M. Swany. A grid monitoring archi-
tecture. tech. rep. gwd-perf-16-2, global grid forum,
January 2002.

6

