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Abstract. Levelset methods were introduced in medical images seg-
mentation by Malladi et al in 1995. In this paper, we propose several
improvements of the original method to speed up the algorithm con-
vergence and to improve the quality of the segmentation in the case of
cardiac gated SPECT images.

We studied several evolution criterions, taking into account the dynamic
property of heart image sequences. For each step of the segmentation
algorithm, we have compared different solutions in order to both reduce
time and improve quality.

We have developed a modular segmentation tool with 3D+T visualiza-
tion capabilities to experiment the proposed solutions and tune the algo-
rithm parameters. We show segmentation results on both simulated and
real SPECT images.

1 Motivations

Cardiovascular pathologies are the first cause of mortality in industrialized coun-
tries. Functional imaging of the heart such as gated SPECT images provide low
invasive inspection methods useful for cardiac diagnosis. However, high noise
level and low resolution make these images difficult to interpret. Moreover, the
dynamic properties of 3D heart image sequences make manual analysis of the
images extremely tedious.

In this paper, we propose an automated segmentation method of the heart
boundaries based on the levelset method. The resulting models can be used for
quantitative dynamic parameters computation useful for medical diagnosis such
as the left ventricle volume variations or walls thickness variations. These param-
eters allow to compute precise estimates of well established clinical indicators
such as the ejection fraction. Combining the SPECT intensity information with
the model geometry allows to precisely locate necrosed myocardial area, and
estimate the tissue viability.

In the following sections we focus on the first step of this process which is the
segmentation. Making the segmentation automatic in SPECT images is known



to be a hard problem due to the lack of information (low resolution), blurred
boundaries, high noise level, low contrast, and the need for reliable results.

We use a model driven approach in order to segment the heart. Different
geometrical models exist (see [10] for a survey). The original model-based seg-
mentation methods were 2D explicit contours [8] later on extended to surfaces
in 3D [15,3]. The levelset method is an alternative implicit surface representa-
tion due to Osher and Sethian [11] and Caselles [1]. It has been introduced for
segmenting medical images by Malladi and Sethian [9].

Most shape recognition algorithms need to know the topology of objects to
recover. The levelset method allows to perform topology changes during the
segmentation process without introducing additional complexity. It has been
widely used in segmentation [2,4,12,7,5,6].

2 The levelset method for segmentation

In the levelset method, the model C is implicitly defined as the zero levelset of a
higher dimension function . Starting from a given shape Cy, the model is able
to evolve toward the shape of the object to segment, according to the first order
evolution law:

oC

= FR = (Fit + Foet)N (1)
with F' the force applied on the surface and N the surface normal vector. This
force may be decomposed into two components:

— an internal component Fj,;, enforcing a regularity constraint over the surface
— an external component, Fi.;, taking into account the image to enforce the
convergence of the model shape toward the data.

For simplicity, we will explain the levelset approach in case of 2D images.
Given an initial contour Cy, the levelset function is u(z,y) = d((z,y), Co) where
d is a signed distance (see figure 1). The initial contour is indeed defined as
C = {(z,y)|u(z,y) = 0}. u is therefore represented as a distance map. Outside
the contour, map values are positive. Inside, they are negative.

The level set method shows that the model evolution (equation 1) corre-
sponds to an evolution of the distance map satisfying ([9]):

Ou

2 = F [ Vull = (Fut + Fowt) |Vl )
where u(z,y,t) is the evolutive distance map. This equation is only valid at the
model location. As a consequence, the distance map property of v will not be pre-
served. In order to cope with this problem, we need to reinitialize u periodically
so that it corresponds to a distance map, i.e. to constrain ||Vu|| = 1.

The level set formulation extends straight forward in 3D with a higher di-
mension distance map. We can therefore consider surface model for 3D and
3D+T images segmentation. Equation 2 is discretized using an explicit scheme
for numerical implementation.

The segmentation algorithms steps are:



negative distance

positive distance

Fig. 1. Distance map wu, in dimension 2

Initialization: the initial location of the surface
Loop:

Compute the forces: defined by a criterion

Make the distance map evolve: using equation 2

Reinitialize the distance map: in order to enforce ||Vu|| = 1.
Convergence: iterate until the algorithm converges (need a stop criterion)

In the following sections, we study each of these steps in order to optimize
the segmentation algorithm. We use synthetic data (with or without white noise)
made from simple geometric forms or more realistic forms (shape similar to the
heart left ventricle) for experiments. We have also used simulated images by the
MCAT method [13] and real SPECT data provided by the Pr J. Darcourt of the
Pasteur hospital (Nice, France).

3 Imitialization

A basic idea for initialization is to take a sphere centered in the volume with a
diameter equal to half image dimension. However, this naive approach initializes
the model far from the actual object boundaries and the convergence time is
long.

The segmentation process time has been decreased by using simple image
processing techniques to obtain a closer approximation of the object. The image
is first filtered with a Gaussian kernel in order to reduce noise. The mean and
variance of image intensity are estimated and a threshold is computed as the
sum of these two parameters, in order to eliminate a large part of the back-
ground. Thereafter, a morphomathematic opening operation is performed, using
this threshold, in order to eliminate small objects due to noise and fuse close
components. We extract the surface splitting the resulting binary image in order



to initialize the distance map (see section 5). A similar approach was proposed
for the balloon model by Cohen [3].

4 Evolution criterions and parameters

Most evolution criterions proposed in levelset-based segmentation methods are
spatial [7]. In the case of dynamic images, they only allow to segment each volume
independently of the others. The first criterion that we implemented uses only
intensity information. It makes the hypothesis that the image is composed of a
uniform intensity region (the object to segment) and a uniform background:

O = (AT~ i) — (1~ 1) + ) [Vl

with: k the curvature,
Mout mean of image external part, (3)
Mint mean of image internal part,
and [ image intensity.

This approximation is only roughly valid for SPECT images due to the image
noise, the inhomogeneity of the heart and the perfusion deficiencies causing signal
drops.

A more elaborated criterion uses both information on intensity and variance
of intensity allowing the segmentation of non uniform regions (textured region).

.
% = (2log(1 + aint) —2log(1 +02,;) o
+2 (- ij’zj_t()fz_ Oint _ (- /11'o+ut()72_ Tout + /\KZ) (V|
int out

with: & the curvature,

out mean of image external part, (4)

Wine mean of image internal part,

0out variance of image external part,

oint variance of image internal part,
L and [ image intensity

Equation 5 presents a spatial and temporal criterion [5]. Let I,, represent
the image at instant n. The whole sequence is used in order to filter noise and
determine the mean background intensity (B):

dun
B = (20— pine,)” = (B = L) + X)) [[Vu|

with: K, the curvature,
B the whole sequence mean background intensity, (5)
Wint, mean of image n internal part,
and I,, image n intensity.



4.1 Influence of the curvature

Using the evolution criterion 3, different weights A of the curvature have been ex-
perimented. The figure 2 shows that for segmentation quality and segmentation
time, we need to find a compromise for the A value.
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Fig. 2. On the left: evaluation of the quality on the final segmentation for different
values of \. We observe that the larger the curvature weight is, the better the final
segmentation is. On the right: segmentation time. For large values of A, the numerical
scheme is unstable. A good compromise is to take a A value around 100.

4.2 Do we need to recompute the distance map gradient ||Vu| ?

The distance map gradient ||Vu|| is used in the evolution equation 2. If the
distance map is a real distance map or if we reinitialize it often, ||Vu|| = 1 and
we do not need to compute it. However, frequent reinitializations are costly.

If we do not reinitialize u frequently, the distance map is false as soon as
we update u according to the evolution equation. We observed that the levelset
surface becomes sharp and the gradient is high near the isolevel 0. The pixels
need a greater force to move from outside to inside the object (and conversely).

A naive approach would consist in introducing the computed value of the
gradient into the evolution equation. However, we observed that this quickly
makes the explicit numerical scheme unstable. A diminution of the time step is
then needed at the cost of an increased convergence time.

It appears that using ||Vu|| = 1 leads to a more stable algorithm and the
distance map only need to be periodically reinitialized.

5 Reinitialization

As seen before, the equation 5 is only true at the model location. This is illus-
trated in figure 3. In order to preserve the distance map, we need to reinitialize
it regularly, every n iterations.



Fig. 3. Evolution of the distance map gradient in the model neighborhood during the
segmentation of a synthetic ventricle. The reinitialization is made every 8 iterations.
From left to right and top to bottom, we show the 16th first iterations. The blue color
corresponds to a gradient value 0, the purple 1 and the red 10, which is the maximum
value. The other colors are interpolated from these values.

5.1 Classical Reinitialization
Usually, the distance map is reinitialized using the Sussman et al [14] equation:

Su if u < 1,sign(u) = -1
Fri sign(u) x (1 — ||Vu||) where: elseif —1 <u < 1,sign(u) =|ul (6)
else sign(u) =1

The withdraw of this method is the computation cost. It can be limited using
the narrow band method [9]. But is is even more efficient to proceed to a faster
reinitialization that is presented in the following section.

5.2 Fast reinitialization

This method involves 2 steps. The first step cuts the distance map just around
the model: using 8-connexity in 2D or 26-connexity in 3D, we preserve only pixels
or voxels that have a neighbor with an opposite sign in the distance map values.
The second step expands this to all the distance map: we begin with distance
map values around the edges and propagate the values using distances.

In this case, we reduce the computation cost without reducing the segmen-
tation quality. We can also restrict the reinitialization to a narrow band around
the model, but the gain is not as important as in the case of classical reinitializa-
tion: distances greater than the narrow band size are not computed and voxels
outside the narrow band are assigned a constant upper value.



Distances values with respect to the yellow transparent vozel: the blue vozels are
at distance 1, the purple v/2 and the red /3.

6 Stopping the segmentation process

We studied several stop conditions: the variation of the surface, the variation of
the volume, and the variations of energy criterions. The two first criterions are
necessary but not sufficient (when the model converges, its surface and volume
are constant). The last one is sufficient (the equation evolution corresponds to
a minimization of the model energy with a gradient descent method). However,
computing the model volume or surface is much cheaper than computing its
energy, and it is very unlikely that the model will evolve significantly for several
iterations while its surface and its volume remain constant. Therefore, we used
surface and volume variation as stop conditions as well.

We observe periodic oscillations (see figure 4) due to the variation of energy
which is caused by the distance map reinitializations: after each reinitialization
the distance map is flatten, the surface encounters less resistive gradients, and
evolves more than before reinitialization (when we need larger forces to move).
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Fig. 4. Energy variation during the segmentation process, using reinitialization every
8 steps. We observe oscillations corresponding to the reinitialization frequency.



7 Experiments

We present in figures 5, 7 and 6 the result of the segmentation of a real SPECT
image of the heart left ventricle. The sequence is composed by 8 frames of dimen-
sion 64x64x28 voxels. Each voxel has a dimension of 2.5x2.5x5 mm?3. When the
heart muscle relaxes (diastole), the contrast between muscle intensity and back-
ground decreases. On contrary, the contrast is better when the muscle contracts
(systole).

Due to this low contrast in diastole images, a small portion of the right
ventricle is also segmented in frames 4 to 7 using criterion 3 or 4 (figures 5 and
7). Spatial criterions fail to take into account image intensity variations along the
sequence. Using criterion 5 improves the segmentation by taking into account the
intensity variation of the ventricle in the whole sequence (see figure 6). We could
further improve this result by taking into account the fact that the myocardium
is hardly compressible and that the model volume should be constant in all time
frames.

| ' . .
Fig. 5. From left to right and top to bottom, segmentation results from frame 0 to
frame 7 of the cardiac sequence, using criterion 3.

Fig. 6. From left to right and top to bottom, segmentation results from frame 0 to
frame 7 of the cardiac sequence, using criterion 5.



Fig. 7. On the left, the whole cardiac sequence viewing plane Z=11 with segmentation
result superimposed (using criterion 3). On the right, data of frame 6 with segmentation
result superimposed. We observe the two stages of a heart beat : the systole (frames 1
to 3) and the diastole (frames 4 to 7 and 0).

8 Discussion and perspectives

In this study, we have improved the segmentation (i) in quality by improving the
robustness to noise and (ii) in time: we have reduced the total algorithm time by
85%. We have studied in details each step of the algorithm. Various parameters
such as the reinitialization frequency or the curvature weight were analyzed and
tuned for reducing the computation time to a minimum.

This study of the mathematical parameters now need to be further inves-
tigated on clinical data. A more thorough validation involving comparison to
segmentation results by medical experts on a larger dataset is needed. Addi-
tional constraints taking into account the physiology of the heart such as the
almost incompressibility of the muscle could also be implemented. The method
could then be used to extract quantitative functional parameters.
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