
HAL Id: hal-00691652
https://hal.science/hal-00691652v1

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient visualization of 3D medical scenes for remote
interactive applications

Johan Montagnat, Eduardo Davila, Isabelle Magnin

To cite this version:
Johan Montagnat, Eduardo Davila, Isabelle Magnin. Efficient visualization of 3D medical scenes for
remote interactive applications. Image and Signal Processing and Analysis (ISPA), Sep 2003, Roma,
Italy. pp.1-10. �hal-00691652�

https://hal.science/hal-00691652v1
https://hal.archives-ouvertes.fr


Efficient visualization of 3D medical scenes for remote interactive applications

Johan Montagnat, Eduardo Davila, Isabelle E. Magnin
CREATIS, CNRS

INSA, Bât. B. Pascal, 20 av. A. Einstein, 69621 Villeurbanne Cedex, France
http://www.creatis.insa-lyon.fr/

Abstract

In this paper, we propose a software framework for de-
veloping interactive medical applications that execute on
remote servers. The 3D visualization interface of the ap-
plication can be disconnected from the computation core
to allow rendering of the medical scene on the user dis-
play while the heavy computations are executed on a re-
mote workstation or a computational grid. We introduce
a software architecture designed for reducing the communi-
cation overhead between the remote and the local processes
and for easing software development by offering transpar-
ent management of communications. Execution of a 2D and
a 3D segmentation applications are demonstrated and per-
formances are evaluated.

1. Context

Medical images produced by medical acquisition de-
vices in hospitals and radiology centers represent tremen-
dous amount of data. The annual production of digital im-
ages in Europe or the USA is estimated to thousands of
petabytes. Grid technologies [8] offer a support to archive
and process huge datasets. Automatic image analysis tech-
niques are therefore increasingly needed to index, store,
and query medical data. Grid-enabled medical applica-
tion are promising as grids will allow to assemble very
large medical databases with data spread over many acqui-
sition sites. Moreover, grids provide a very large comput-
ing power suited to process large 3D or sequence of 3D
images and to deal with compute intensive image analysis
algorithms. Grid technologies already raised a large inter-
est reflected by many research works on efficient schedul-
ing [3], data management [5], and providing information in
distributed systems. They are likely to play a key role in
a near future for processing large amounts of data using a
limited set of shared resources [4]. The new network gen-
eration with increased bandwidth, dedicated services, and
guaranteed quality of services will boost management of
large and distributed collections of data. However, remote
execution of interactive applications require costly specific
software development. This work proposes a software ar-
chitecture to efficiently process, visualize, and interact with

remote 3D medical images.
Due to the sensitive nature of medical data, medical im-

age analysis algorithms often need human supervision to:

• solve responsibility issues when taking decisions
based on data analysis results;

• allow a user intervention when the automated process-
ing is inaccurate or erroneous.

Therefore, many interactive medical applications have been
developed offering maximum automated assistance to free
the user from tedious and error prone tasks while allowing
a specialist to control the algorithm output. For instance,
image segmentation and computer assisted diagnosis tools
usually require user supervision. Other applications such
as medical intervention simulation, augmented reality, and
telemedicine also require user interaction and large comput-
ing power by nature.

Although grids are promising for many medical appli-
cations [14], interactive applications executions on remote
systems are made difficult by the need to provide a user in-
terface decoupled from the computing application. In this
paper we discuss a software architecture designed to exe-
cute remote complex medical application requiring visual-
ization of 3D scenes and interaction with the user. The main
objectives of this work is to:

• Provide a multi-purpose, flexible, and transparent so-
lution easing the development of various remote inter-
active applications without requiring the user to know
about the internals of multi-processes programing and
network transmission.

• Ensure efficient transmission of graphic data to al-
low the rendering of complex 3D medical scenes ef-
ficiently.

• Allow remote execution of compute intensive appli-
cations on remote workstations or grid infrastructures
dedicated to high performance computing.

In this regard, X client/server protocol is not suitable. In-
deed, X transmission of graphic bitmaps is network inten-
sive (compared to the transmission of minimal geometric
information needed to describe medical models) and is not
adapted for a high degree of interactivity. Moreover, 3D



graphic visualization is today usually achieved locally us-
ing specialized rendering hardware available on most recent
computers while remote computing facilities might not pro-
vide any specific hardware.

2. Interactive medical applications

Interactive applications follow the simple loop depicted
in figure 1. The application is made of an iterative algorithm
that progresses by small steps. At each step, the application
collects some input from the user (through the mouse or
another specialized device), and take into account this in-
put to process the following iteration. After one iteration,
the algorithm state is updated and some feedback (usually
through visualization) is returned to the user to inform her
of the current application progress. Collecting user input
and sending feedback might not necessarily happen every
algorithm iteration depending on the application.

Get user input

Data sent to algorithm

Algorithm progression

Visualization

Exit

Data returned to user interface

Figure 1. Interactive application general
structure.

In particular, medical applications often manipulate 3D
data. Most modern medical image acquisition devices
(Magnetic Resonance Imaging, Computed Tomography
scanners, Nuclear Medicine scanners, Ultrasound devices,
etc [1]) are capable of producing 3D images with very de-
tailed informations on the imaged body. To analyze such
images, 3D geometrical and anatomical models have been
developed [13, 16, 9].

Visualization of 3D medical images in not straightfor-
ward since a user cannot at a glance visualize the interior
of a 3D volume. Different visualization techniques exist
that transform the original volume in a representable data.
This might be a single slice extracted out of the volume or
a synthesized representation as may be obtained by surface
or volume rendering techniques for example [2]. Medical
applications usually display additional geometrical repre-
sentations of some internal modeling of the data. This in-
formation is often much more compact than the complete
3D data set. Therefore, rather few information need to be
exchanged between the computing machine and the graphic
interface.

In the literature, many works dealing with remote
data visualization are reported. Many work concern
post-processed data visualization [12], while other con-
sider interaction with the data [2]. Some of them of-
fer asynchronous objects management and real-time con-
straints [17, 11]. However, few of them address the specific
needs of medical image processing applications [7, 15], and
optimized computational grids for solving medical prob-
lems is still an emerging field.

3. Remote 3D visualization and interaction
framework

3.1. Porting interactive applications to a remote
platform

Our implementation is based on C++ libraries developed
in our laboratory, although the proposed framework does
not depend on this specific language. Our libraries pro-
vide basic objects to describe 2D and 3D medical scenes
made of a set of graphical objects and visualization facil-
ities to display all these graphic objects in an application
window. Medical scene examples are shown in figures 3
and 4. The user can interact with the 3D scene by different
means through the mouse. She can (i) change the display
parameters, (ii) select an active graphic object that she can
(iii) move (translate, rotate, and rescale) or on which she
can (iv) apply application-dependent actions. In addition,
an object-dependent menu is proposed for object specific
manipulations. We will refer to a stand-alone application
to mention a classic application designed to run on the lo-
cal graphic system using these libraries by opposition to a
remote application that is executed on a remote server. Our
goal is to make as few modifications as possible in the user
code to move from a stand-alone to a remote application.

In order to execute interactively, a remote application
needs to create an interface window on the user local ma-
chine. Figure 2 illustrates the remote execution procedure.
A graphic daemon is running on the user local machine and
waits for incoming connection requests. From its command
line interface, the user can connect to a remote machine or
use some grid middleware to start the remote application on
the desired target (1). At execution time, the remote appli-
cation needs to know (through a command line parameter)
the IP address of the local machine on which the interface
should be displayed. It connects on a predefined port of the
local machine (2), activating a local process that will deal
with the user interface (3). It can then start the main com-
putation loop (4), identical to figure 1 except that all user
input is transported from the user interface to the remote
process and all visualization data are sent the opposite di-
rection through a communication channel.

In order to be transparent from the user point of view,
the same code should be executable either stand-alone (on
the user machine, avoiding communication overhead) or re-
motely, depending on the context. To allow this, the library
decouples data structures from graphic representations: to



Create interface

Process graphic events

Process communication events

Exit

Interface program

Connect to graphic server

Send interface description

Get user input

Compute

Send graphic events

Exit

Computational program

Shell

Graphic daemon

Remote computing machineUser local interface

Communication

channel

3. fork graphic process

1. submit job

2. connect to user interface

4.

Figure 2. Remote interactive applications overview (see text).

each component of the scene (medical object, model, etc)
is associated two objects. The data structure object will re-
main on the computing host. The graphic object does not
hold any data except graphic representation parameters. It
is using the geometric information contained in the data ob-
ject for rendering. Each graphic object redefines two re-
draw methods: one remote method is sending data to be
displayed and on local method is getting the data and ac-
tually performs the redraw. In case of stand-alone applica-
tion, both methods are executed sequentially on the same
machine and a stack is used to avoid sending data through
the network loopback interface. In case of remote execu-
tion, two instances of each graphic object composing the
scene are created. The first instance lies on the computing
host and is responsible for sending data to the second in-
stance, that lies on the local host, each time a redraw event
is received.

3.2. Communications

To obtain a high interactivity level, e.g. including real-
time requirements such as needed for surgery simulation
for instance, communications between the program and the
user interface should be as efficient as possible. For some
critical applications, a guaranteed network quality of ser-
vice may even be mandatory. Both user feedback and vi-
sualization information should be exchanged between the
remote and the local process. Usually, visualization (3D ob-
jects) represent much more data than user feedback (mouse
clicks) and it is the most critical part in terms of perfor-
mance.

A two levels communication protocol has been designed
in our framework. A higher level interface protocol allows

the user to create or delete interfaces widgets and graphic
objects. A lower level graphic protocol is designed to send
3D data that compose the graphic scene to the local ma-
chine.

3.3. Communication channels

In our implementation we are using direct process com-
munication through UNIX sockets for optimal performance.
A C++ object encapsulates the communication channels
and performs optimization such as packing small message
into a long binary chain that is transmitted using as few
packets as possible. On the fly compression could be used
to improve performances further. The communication layer
is hidden from the user through standard method calls. The
system dynamically determine whether it is running stand-
alone or remotely and either execute local code or send a
message to the graphic daemon for the corresponding code
to be executed on the local machine.

3.4. Interface protocol

The interface protocol defines messages to manage in-
terface creation, user interaction, and program termina-
tion. Messages sent from the remote to the local ma-
chine include TERMINATE (disconnect and terminate in-
terface program), EVALUATE (evaluate transmitted script),
CREATE (create a new graphic object), DELETE (delete
a graphic object), and REDRAW (cause a redraw of the
3D scene). Conversely, messages sent from the local to
the computing machine include TERMINATE (disconnect
and terminate computation program), READ (read new data
from a file/stream), WRITE (write data to a file/stream),



START (start computation loop), STOP (stop computation
loop). the interface communicators on the local and the re-
mote machines periodically poll the incoming messages to
respond these commands.

3.5. Graphic protocol

Whenever a viewer window needs to be refreshed (be-
cause the viewing parameters changed, the graphic window
needs to be redrawn, or the 3D scene has been updated),
the local process sends redraw events that cause a redraw
procedure of all graphic objects to be called. The redraw
procedure needs to retrieve the data content from the re-
mote machine for each graphic object. Therefore, each pair
of graphic object instances use pre-defined methods to ex-
change geometric data (scalar values, vectors...). In case of
stand-alone execution, these methods use an internal stack
to avoid network communication through the local loop-
back interface. In case of remote execution, these meth-
ods send the graphics information from the remote process
to the local machine. The graphic communication protocol
includes an INIT message that initiates data transmission
from the local side. The remote graphic object responds
by a set of SEND messages transmitting the geometric in-
formation needed to build the 3D scene. The local graphic
object use a set of GET methods to retrieve the messages
sent in a known order. Data transmission ends with implicit
mutual consent.

3.6. Remote interface and visualization

In our framework, the interface program is generic and
does not depend on a precise application. Technically, the
interface may be described by different means such as us-
ing java byte code sent through the communication channel.
In our implementation we rely on a platform-independent
windowing system (wxWindows1 wrapped in the python2

scripting language). The script is sent through the channel
and executed on the local machine. This solution proves to
be very flexible: a program can modify its graphical inter-
face dynamically depending on the algorithm evolution and
the user interactions. There is not limitation on the gener-
ated interface induced by the system.

When an INIT message is received by a graphic object
on the remote side, it sends all graphic information needed
to redisplay that object. The following pseudo-code illus-
trates the redraw methods of a polygon made of a list of n
vertices represented as vectors:

void Polyon::localRedraw() {
int n = getInteger();
Vector v1 = getVector();
for(int i = 1; i < n; i++) {

Vector v2 = getVector();
draw(v1, v2); v2 = v1;

1http://www.wxwindows.org
2http://www.python.org

}
}
void Polyon::remoteRedraw() {
int n = data->getNbVertices();
sendInteger(n);
for(int i = 0; i < n; i++)

sendVector(data->getVertex(i));
}

The INIT message precedes the entrance into the local re-
draw code and causes the remote redraw code to start. Only
SEND messages from the remote to the local machine are
then needed until all data have been exchanged and the com-
munication ends by mutual consent. From the user point of
view, message exchanges are hidden in the get/send func-
tion calls that are defined for every primitive types or array
of primitive types. On a stand-alone execution, both local
and remote codes are executed on the same machine. The
remote code is first executed. To avoid the overhead of a
communication channel, the send methods are redefined to
push the addresses of sent data onto a stack. The local code
then pops the data out of the stack during the get methods.
Using a stack of pointers avoids useless memory copies.

When executing a remote application, two parallel pro-
cesses are running on two machines: the computation pro-
cess that periodically sends redraw event and the graphic
process that receives and treats redraw events. Depend-
ing on the relative cost of the computation loops and the
redisplay process, the two process can easily get desyn-
chronized. If the computation process is slower (the usual
case for costly applications that require remote execution),
the graphic process is just idle between two redraw events.
However, if the computation process is faster, it can over-
flow the graphic process with redraw events and spend too
much time in network transmission of the data. To avoid
that, our graphic process rejects incoming redraw events
when it is already busy by processing such an event. The
computing process can then skip data transmission and iter-
ate several times before the 3D scene is refreshed. It is also
possible to enforce a minimum redisplay rate, at the cost
of slowing down the computation process, in cases where
the computations would evolve too fast for the user to get a
chance to interact.

3.7. Transparency from the user point of view

The proposed system was designed to be as transparent
as possible from the user point of view, while remaining ef-
ficient. Indeed, most messages are completely hidden by
the graphic system and the user programs call methods that
cause the messages to be exchanged. In case of a stand-
alone execution, the behavior of the system changes trans-
parently for efficiency reasons avoiding useless message ex-
changes.



4. Results and discussion

Interactive model-based segmentation algorithms have
been ported on our platform for testing. Segmentation al-
gorithms are used to identify structures of interest such as
organs in an input image. Model-based segmentation algo-
rithms use a geometrical or statistical model of the organ(s)
of interest. A generic model with the a priori shape of the
organ is embedded into the image. To this model is asso-
ciated an energy (a real value), trade-off between the regu-
larity of the model (internal energy) and the good fit of the
model with the data (external energy). Through an energy
minimization procedure, the model can iteratively deform
to better fit the image content [16]. At each iteration, the
current shape of the model is updated and displayed on the
user screen together with the input image. The user can in-
teract by grabbing the model in areas where the automatic
convergence is not satisfactory. This algorithm is known in
2D as a snake [10], and has been extend in 3D to deformable
surfaces (such as simplex meshes [6]).

Figure 3. Snake-based 2D segmentation.
Left: initialization. Middle: automatic result.
Right: supervised result.

Figure 4. Simplex model-based 3D segmenta-
tion. Left: initialization. Right: supervised
result.

Figure 3 shows a 2D deformable contour used to segment
the heart left ventricle contour from a cardiac Magnetic Res-
onance slice of the thorax. The initial contour (a simple cir-
cle) is overlaid on an MR slice on the left. The result of

automatic segmentation is shown in the center, while the re-
sult obtained by user interaction (a few mouse clicks while
the model is being deformed) is shown on the right. Simi-
larly, figure 4 shows a deformable surface used to segment
the heart left ventricle from a Magnetic Resonance volume.
On the left is shown the surface initialization overlaid on a
3D medical volume represented by 3 orthogonal slices and
on the right is shown the result of supervised segmentation.

Figures 5 and 6 show several performance measurements
of the remote execution of 2D and 3D interactive model-
based segmentation algorithms ported on our platform.

In first rows of figures 5 and 6 are reported the total
number of bytes exchanged during a segmentation task and
the corresponding network usage to measure the network
stressing. Application-related measurements are also given:
the number of iterations per seconds is dependent on the al-
gorithm efficiency. The number of iterations per redraw de-
pends on the relative time needed to make one computation
loop and one scene redraw. The total execution time gives
an application performance indicator for a fixed number of
iteration (given amount of computation). Each measure is
reported in 3 cases (columns): (1) the stand-alone applica-
tion that do not need network transmission of the data, (2)
the remote application running the graphic daemon on the
same host than the computing process, and (3) the remote
application running the graphic daemon and the computing
process on two different hosts connected over an IP network
(with a measured 200Kbits/s capacity).

To interpret these result, note that the stand-alone appli-
cation only involves one process. Therefore, the algorithm
evolution and the graphic rendering are performed sequen-
tially, with one rendering for each algorithm iteration. Con-
versely, in the remote application case, two concurrent pro-
cesses are running (either on the same machine in the local
case or on two different machines in the remote case). Due
to the relative cost of the rendering compared to a single
computation iteration with the fast models used in this test-
ing, this is penalizing for the stand-alone application while
the remote application performs several iterations for each
rendering. This results in a longer execution time of the
stand-alone application and a much larger number of bytes
sent to the renderer. Past the initialization stage, where the
background image is sent, the number of bytes transmitted
for rendering is only dependent on the model size (the num-
ber of vertices: i.e. 50 vertices for the snake and 500 ver-
tices for the simplex surface in this example) and is fairly
low (ten’s of bytes per second in the 2D case and thousand
of bytes per second in the 3D case) even without compres-
sion (for higher resolution models, data compression could
be valuable though). This results in a very fluid interaction
and makes possible the remote execution of the supervised
segmentation application.

Using the X display client/server mechanism for execut-
ing the same applications necessitates to transmit the com-
plete interface window bitmap picture at each redraw event.
This results in so poor performances that the 2D applica-
tions can hardly be considered as interactive anymore and



the 3D application just could not really be executed interac-
tively on a remote machine.

2D snake stand-alone local remote
number of bytes sent 1243 55 45
throughput (Mbits/s) 0.053 0.012 0.008

iterations / second 42.56 209.22 186.86
iterations / redraw 1 51.88 64.64

execution time 4.70 0.96 1.07

Figure 5. 2D remote segmentation perfor-
mances.

3D simplex stand-alone local remote
number of bytes sent 14667 3529 2473
throughput (Mbits/s) 0.288 0.097 0.042

iterations / second 19 27.56 17.03
iterations / redraw 1 5.8 8.12

execution time 10.2 7.26 11.74

Figure 6. 3D remote segmentation perfor-
mances.

5. Conclusion

In this paper we presented a 3D object visualization in-
terface for interacting with remote medical applications.
The framework is generic and can adapt to many different
applications, even outside the medical field. The system is
both efficient and transparent from the user point of view.
It intends to ease the creation of interactive medical image
processing algorithms on remote platforms such as grids.

Efficiency is needed to insure maximal performance in
application for which interactivity may be critical (real time
constraints may be needed). One purpose of remote exe-
cution is to deliver additional computing power to the user.
The graphical system should therefore not compensate for
the computational improvement.

It is mandatory that the system remains easy to use and
as transparent as possible for the user in order to ease new
algorithm developments. Our system can run stand-alone
when no remote server is available without code modifica-
tion or recompilation. The message exchanges are hidden
from the user.

Acknowledgments

This work is partly supported by the European
DataGrid IST project (http://www.edg.org/), the
French ministry ACI-GRID project (http://www-
sop.inria.fr/aci/grid/public/), and the ECOS Nord Commit-
tee (action C03S02).

References

[1] R. Acharya, R. Wasserman, J. Sevens, and C. Hinojosa.
Biomedical Imaging Modalities: a Tutorial. Computerized
Medical Imaging and Graphics, 19(1):3–25, 1995.

[2] C. Bajaj, V. Anupam, D. Schikore, and M. Schikore. Dis-
tributed and Collaborative Volume Visualization. IEEE
Computer, 27(7):37–43, July 1994.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level Scheduling on Distributed Heterogeneous
Networks. In Supercomputing, Pittsburgh, PA, USA, Nov.
1996.

[4] V. Breton, R. Medina, and J. Montagnat. DataGrid, Proto-
type of a Biomedical Grid. Methods MIMST, 42(2), 2003.

[5] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications,
23(3):187–200, July 2000.

[6] H. Delingette. General Object Reconstruction based on Sim-
plex Meshes. International Journal of Computer Vision,
32(2):111–146, 1999.

[7] H. Delingette, E. Bardinet, D. Rey, J.-D. Lemarchal, J. Mon-
tagnat, S. Ourselin, A. Roche, D. Dormont, J. Yelnik, and
N. Ayache. YAV++: a software platform for medical im-
age processing and visualization. In IEEE International
Workshop on Model-Based 3D Image Analysis (IMVIA’01),
Utrecht, The Netherlands, Oct. 2001.

[8] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, July 1998.

[9] A. Frangi, W. Niessen, and M. Viergever. Three-
Dimensional Modeling for Functional Analysis of Cardiac
Images: A Review. IEEE Transactions on Medical Imaging,
20(1):2–25, 2001.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
Contour Models. In International Conference on Computer
Vision (ICCV’87), pages 259–268. IEEE, 1987.

[11] K. Kim. APIs for Real-Time Distributed Object Program-
ming. IEEE Computer, 33(6):72–80, June 2000.

[12] W. Lefer and J.-M. Pierson. A Thin Client Archietcture for
Data Visualization on the World Wide Web. In proceedings
of the International Conference on Visual Computing, Goa,
India, Feb. 1999.

[13] T. McInerney and D. Terzopoulos. Deformable models in
medical image analysis: a survey. Medical Image Analysis,
1(2):91–108, 1996.

[14] J. Montagnat, V. Breton, and I. Magnin. Using grid tech-
nologies to face medical image analysis challenges. In Bi-
ogrid’03, proceedings of the IEEE CCGrid03, Tokyo, Japan,
May 2003.

[15] J. Montagnat, E. Davila, and I. Magnin. 3D objects visual-
ization for remote interactive medical applications. In 3D
Data Processing, Visualization, Transmission, June 2002.
accepted.

[16] J. Montagnat, H. Delingette, and N. Ayache. A review of de-
formable surfaces: topology, geometry and deformation. Im-
age and Vision Computing, 19(14):1023–1040, Dec. 2001.

[17] C. Schmidt and F. Kuhns. An overview of the Real-Time
CORBA Specification. IEEE Computer, 33(6):56–63, June
2000.


