N
N

N

HAL

open science

Flexible and Dynamic Control of Network QoS in Grid
environments: the QoSINUS approach

Pascale Vicat-Blanc Primet, Johan Montagnat, Fabien Chanussot

» To cite this version:

Pascale Vicat-Blanc Primet, Johan Montagnat, Fabien Chanussot. Flexible and Dynamic Control of
Network QoS in Grid environments: the QoSINUS approach. Cluster 2004, Sep 2004, San Diego,

United States. pp.1-10. hal-00691636

HAL Id: hal-00691636
https://hal.science/hal-00691636

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00691636
https://hal.archives-ouvertes.fr

Flexible and Dynamic Control of Network Quality
of Service in Grid environments: the QoSINUS
approach*

Pascale Vicat-Blanc Primet? Johan Montagnat!
Fabien Chanussot?

! CNRS UMR5515, CREATIS, INSA de Lyon, 69621 Villeurbanne, France
2 INRIA-ENS LIP, RESO, 46, allée d’Italie, 69 007 Lyon, France

1 Abstract

Grids rely on a complex interconnection of IP domains that may exhibit
changing performance characteristics and may offer different quality of ser-
vice (QoS) facilities. We examine the case of a biomedical application dis-
tributed over a grid and show how it may suffer from uncontrolled communi-
cation performance. Then we present the QoSINUS service that dynamically
allocates the network resources to Grid flows in order to match their specific
QoS requirements under different load conditions. The aim of this approach
is to optimize the end to end performances the heterogeneous mix of grid
flows gets from the network to enhance the individual application’s perfor-
mance as the overall grid infrastructure performance and utilization level.
The QoSINUS service is based on the programmable network approach that
offers flexibility, evolutivity and enables dynamic adaptation to network load
variations. Finally results of QoSINUS experiments conducted in the con-
text of the eToile french grid testbed based on the high speed and DiffServ
capable research network infrastructure, VTHD, are presented.

2 Introduction

The purpose of Computational Grids is to aggregate a large collection of
shared resources (computing, communication, storage, information) to build
an efficient and very high performance computing environment for data-
intensive or computing-intensive applications [6].

*This work was funded by the RNTL eToile project of the French ministry of research,
by the European Commission program IST-2000-25182 through the EU DataGrid project
and IST-2001 DataTAG project, the INRIA project RESO, and the french ministry for
research ACI-GRID project.

There are many possible utilizations of a grid, not only intensive com-
puting but also interactive usage and remote access to expensive instruments
or huge scientific data bases exploration for instance. Many data transfer
patterns will occur in such an environment. Bulk data transfer from one
location to an other and time constrained message exchanges of fine-grained
parallel applications may have to coexist. Consequently, in Grids, the qual-
ity of service (QoS) the heterogeneous mix of flows receives may affect the
overall grid performance, as well as each individual application performance.

But the underlying communication infrastructure of these large scale
distributed environments is a complex interconnection of multi IP domains,
with changing performance characteristics and different quality of service
facilities. The Grid Network cloud may thus exhibit extreme heterogeneity
in performance and reliability that can considerably affect the global appli-
cation performances. The total lack of resource control in IP networks may
be responsible for performance problems that are not acceptable in grids
environment.

This paper is organized as follows: we examine the case of a biomedical
application distributed over a grid and show how it may suffer from uncon-
trolled commmunication performance in section 3. Then, section 4 presents
the QoSINUS service that has been designed to dynamically allocate con-
trolled network resources to Grid flows and to flexibly manage the network
quality of service at the edge of the grid network cloud. The results of ex-
periments conducted in the context of the French grid testbed eToile are
detailed in section 5.

3 QoS in Grids

3.1 The medical imaging example

Several analysis [2, 11| have shown that the QoS requirements spectrum of
Grid flows is broad comprising needs like the guaranteed delivery of a com-
plete huge data file, the predictability of the TCP throughput, a stability-
level for data-delivery. To understand the specificity of QoS requirements
of grid applications, we introduce the example of a content-based query of
medical image databases application.

Medical imaging is data intensive due to the size of medical images. For
instance, a CT-scanner usually produces 3D images made of 50 to 100 slices.
Each slice is a 512? image. Each voxel intensity is encoded on 16 bits. This
results in a 25 to 50 Mb image. A typical 3D Magnetic Resonance Image
is 2562 per slice, 128 slices, 2 bytes per voxel resulting in a 16 Mb image.
Content-based query of images on a grid requires the distribution of large
data set over the network.

Digital medical images are stored in databases. The simplest data struc-
tures are flat files: one file for each (2D or 3D) image. Meta-data on image

files (e.g. patient name, acquisition type, etc) are usually stored in relational
tables and used for querying the available data. Beyond simple queries on
meta-data, physicians want to search for images close to a sample they are
interested in, so that they can study cases similar to the image they are look-
ing at. This involves an analysis of the image contents to determine images
from a database that are similar to a sample image.

Several similarity measures may be used to measure the differences be-
tween images [8, 10, 9]. Although these computations are not very intensive,
the comparison of a sample image against a complete database may become
intractable due to the size of medical databases. However, the computation
can be easily distributed on a computation grid since the comparisons of the
sample image with each image of the database are independent.

Figure 1 illustrates a content-based query on a computation grid. A sam-
ple image is available on the physician’s computer. A complete database is
available from a storage site. The images are distributed over the compu-
tation grid to perform similarity measurements. The result returned to the
user interface is a score for each image in the database. The physician can
then select the highest score images for visualization.

Physician interface

.

2) scores
3) best
images 1) sampleimage - -
1) database images - -

Figure 1: Content-based query on medical images

3.2 Performance analysis and Network requirements

The application does not exhibit real-time constraints. However, computa-
tions should be fast enough for a reasonable use in clinical practice (fast
means minutes in this context, 30 minutes at most). The computation time
of the similarity measures is rather low (from few seconds to 15 minutes on
a 1GHz Pentium processor, depending on the measures estimated and the
input image size). Therefore, the network transmission of the images to the
computing sites may become a bottleneck.

Let S the total search time, n the image number, T the transfer time of
an image I between two nodes and C' the computing time of image I with
another image J. Assuming, all computations are done on one processor and
the database is located in the same site, the total search time S; will be:
S1 =nC.

If, given site N, the location of the end user, site V; the location of the
DataBase, site N, the location of a computing node, we assume that the
effective rate » (TCP throughput) on links N, — Ny, N, — N, and N, — N,
are equivalent and stable, then the transfer time T of an image is constant
and depends on the size [of the image I: T = % If the operations are
dispatched on k processors and the database cut in k equal partitions, S
the total search time will be:

nC n
Sk - ? %T + kT
with 7T being the time to transfer the k partitions to the k processors and
kT the time to transfer the image I to the k processors.
We denote SpeedUp the speedup obtained with a search deployed over

the grid.
S1 nkC
d = — =].
SpeedUp = o = O T (n 4)T (1)

Consequently we have:

1. If % is low, the speedup goes to 0. In this condition, it is better to
adopt a centralised approach.

2. If % is high, the speedup goes to k. It is then very interesting to
split the database in as much partitions as possible and distribute the
computing load to the maximum available computing nodes.

nk
2n+k27

n

3. If % =1, the speedup goes to depending on the ratio 7.

Let’s consider now that 7" is not constant, going from lower than C
to higher, what may be the usual case on a classical TCP/IP best effort
congested link, performances will be difficult to predict. The appropriate
choice of k becomes very complex and the global application performance
impossible to determine. We conclude that, on a grid, it is very important to
have an accurate evaluation of the data transmission and a stable throughput
because it can impact the distribution strategy and the overall performance.
To optimize the application performance, a grid scheduler should interact
with the network performance measurement system and the network QoS
control system according to the following steps:

1. initialisation: estimate of T, T,stm, using a grid network performance
measurement tool. Compute

Testim ?

2. scheduling: determine k based on C, T,gm and n;

3. execution: ensure that T’ remains as close as possible to Tegsti, using a
network QoS control system.

3.3 How to control communication performances in Grids?

The Grid network cloud is a complex aggregation of heterogeneous domains
offering various performances guarantees and QoS strategies that Grid de-
signer cannot control. Distributed applications, like the medical imaging
application, generally rely on TCP protocol running over IP for wide area
communications. IP is a connectionless protocol and therefore it has no
inherent mechanisms to deliver guarantees according to traffic contracts.
When congestion occur, end to end flows experience varying latency (queues
on interfaces) or traffic loss that can damage dramatically the end to end
throughput.

The problem of network performance control can be studied from differ-
ent view points in grids:

e Monitoring and forecasting systems (like the Network Weather Ser-
vice [14], 7], or network performance measurement architecture de-
signed for the DataGrid project [4]), measure and predict end to end
performances and help to characterize the links and the network behav-
ior. Such services can be used to perform the first step of our previous
example.

e Enhanced network services that increase the network performance con-
trol are required to assure the communication performance. Such ap-
proaches have to rely on transport protocols and QoS services deployed
in IP networks. Such services may help to achieve the goal of the last
step identified above.

Generally, two solutions have been adopted to improve and control the
communication performances at network level:

e the first one consists in masking the variability of the network per-
formances, by integrating compensation mechanisms directly in the
transport protocols, like in TCP or FEC.

e an other approach consists in adding control in the network in order to
avoid performance variation and to offer some guarantees in transfer.
This approach is known as IP Quality of service.

A large effort to provide QoS architecture at network level has been done
during the last ten years. Three types of QoS approaches have been studied
for service differentiation at packet level:

e services that provide strict guarantees (absolutes) with resource reser-
vation like in the standardized IntServ architecture [3] and RSVP [?],

e services that provide strict guarantees without resource reservation and
state management in core routers like in CoreStateless model [?] based
on dynamic packet state concept,

e services that offer statistical guarantees (differentiated services) to ag-
gregates through packet prioritisation in approaches like DiffServ [1]

The IntServ architecture presents a scalability problem because this model
requires that control and forwarding state for all flows are maintained in
routers. The corestateless approach requires the help of routers to compute
flow virtual clocks with mechanisms not available in actual equipments. This
approach is not deployed in existing infrastructures. The DiffServ architec-
ture is a more scalable and manageable standardised architecture. Two ser-
vices are frequently deployed: EF, that provides minimized delay, and AF
that assures a minimal bandwidth. However DiffServ [1] is a pure in network
solution that cares on packets (level 3 building block) and aggregates while
end to end users pay attention to the performances of individual flows (level 4
abstract unit). DiffServ applies dedicated per-hop behaviors to aggregates of
packets. Consequently, end to end flows are not assured to receive bounded
guarantees. Moreover, users applications have no way to specify in advance
and control the service they expect. Finally, as the QoS resources are scare
and/or costly, they have to be finely managed.

The next section describes the QoSINUS architecture that has been de-
signed to dynamically control the QoS performance of grid flows.

4 The QoSINUS approach

4.1 Goals and usage scenario

The approach we propose aims to enable Grid applications, that may strongly
benefit from QoS guarantees, to simply access the various QoS capabilities
offered by IP domains. A Grid oriented QoS API and a programmable
QoS service have been designed to introduce flexibility and dynamic in the
management, control and realization of end to end, flow level QoS in Grid
context. The aims of the QoSINUS service are to:

1. provide heterogeneous Grid flows with a mean to specify their QoS
objectives;

2. dynamically map these objectives with the IP QoS services provided
in the network, according to the state of the link, the QoS mechanisms
configured and the experienced performances.

This approach combines application aware and infrastructure aware com-
ponents activated within the network, at the interface of the Grid computing
domain and the Grid long distance networks, as shown in figure ??. Such an
approach increases slightly the complexity at the frontier points, but main-
tains the core network and the grid applications simplicity.

>From the user point of view the QoSINUS service is invoked in two
phases, as presented in figure 2. During a first programming phase, a QoS
request is transmitted to the QoSINUS service. Then the sender transmits
data packets: the QoSINUS decision component chooses dynamically the
appropriated class of service to cross the domain, trying to simultaneously
optimize the QoS resource usage and the flow performance.

—{QoSrequeﬂ H send stream }7 Application
take request
DiffServ '— Network

Figure 2: QoSINUS Usage scenario.

4.2 Design model
4.2.1 API

The first issue to solve is to allow grid applications to specify and control
their QoS. This issue is addressed by a dedicated API with 4 functions:

e QoS Set lets an application specify its QoS needs in terms of delay,
rate and loss, or transmission schedule and rate.

e QoS _Invoke and QoS _Release that are called by the client applica-
tion to let QoSINUS know that the data stream for which QoS was
requested is about to start or has ended.

e QoS Request lets the client application specify its QoS needs in a
more detailed way than QoS _Set. The QoS request is expressed in an
Xml format. The corresponding schema is given in listing ?7.

4.2.2 Service architecture

The dynamic mapping of the flows QoS specification to the existing IP QoS
facilities is addressed by a service architecture that combines flow aware and
infrastructure aware components.

We have identified four types of component for flexible QoS programming
and control:

e programming component,

e performance measurement component,
e adaptive control component,

e enforcement component.

The QoS programming component is invoked for initiating, propagating
and storing the flow QoS goals in the programmable nodes of the path.

The QoS performance measurement is responsible for the characterisation
of the specific paths. In a DiffServ context, this component can measure the
performances of each DS class on each grid path with active out of band
probes or filter and gather flow performances in band.

The adaptive control components is responsible for class mapping and
for adapting the packet marking influencing the forwarding performances
regarding the QoS goals and the current state of network classes. It monitors
and updates the allocated bandwidth of each class and acts as a decision
component that decides which class has to be attributed to the packets when
the performance measurement component indicates some change.

The QoS enforcement service, intercepts and adapts the data flows when
it is necessary. It realizes the packet marking and conditioning functions.
Other components, that are not designed in this architecture, may be added
for status report exchange between programmable nodes for example.

Various tables and soft states are associated to this service: Class al-
location table that stores the status of the allocated class bandwidth, QoS
goal structure that maintains the flows objectives and QOS flow status that
monitors the flow.

The adaptive control component is flexible, extensible, replaceable and it
is simultaneously dependant on the infrastructure QoS properties and on the
flow properties. It represents the kernel of the QoSINUS service. It decides
the adaptation according to the performance experienced by the packets of
each particular flow. With DiffServ, this adaptation means dynamic rate
shaping or packet remarking.

The QoSINUS programmable service class diagram is presented in fig-
ure 3. In that figure, QaSEngine and QaSXMLIf correspond to the program-
ming component, QaSMonitoringlf corresponds to the performance measure-
ment component interface, QaSMapper is the adaptive control component
that can be a static mapper, an adaptive mapper or an Ack-React mapper,
QaSKernellf represents the interface to the enforcement component.

Different mappings and adaptive algorithms have been designed. The
simplest one consist in a static mapping. It performs the allocation decision
on static thresholds. For example, if a delay constraint is expressed and
premium capacity is still available, an EF bandwidth corresponding to the
requested one will be allocated. All packets belonging to this flows will be

pev—— P QasxXMLIf QasPolicylf QaSMonitoringf

+getClassePerformance(): void

+startClassMonitoring(): void

+stopClassMonitoring(): void

QasstreamStatus

QaSMapper +DSCP: int
QaSEngine ~_l+sistint

+diffServClass: int

+newAttr: int +lowType: int

+softStateTimeout: int

+heartBeat(): void

+start(): void

+refresh(): void

+stop(): void +reserve(): void

+loop(): void +release(): void QaSClassStatus

+post(): void

+Configured: int
+Allocated: int

+Used: int

Qaskernellt

+netfilterSet/Get(): void

+cSet(): void

Figure 3: The QoSINUS class diagram.

marked EF. Adaptive algorithms attempt to fulfil the requirements of the
flows while optimising the classes utilization. The classes are ordered by
level of performance they offer. Adaptive mappers are thus responsible for
monitoring the performances of the flows and dynamically allocating class
resources. An example of such an algorithm is described in the next section.

4.2.3 Ack-based earliest deadline first TCP stream ordering

The Ack-based mapping algorithm aims at ensuring that TCP data transfers
are completed within the specified schedule, and at allocating the DiffServ
classes optimally.

This algorithm assumes that the application is able to specify the sched-
ule it plans to follow for it’s data transfer. The schedule is specified in terms
of start date, stop date and amount of data to transfer.

The streams are ordered according to their deadlines: the stream with
the earliest deadline is taken care of first.

The algorithm tracks the achieved performance of each TCP stream it
controls, and tries to compensate if it gets lower than the requested perfor-
mance.

The following actions are taken by the programmable QoS service, that
correspond to the performance measurement, adaptive control and enforce-
ment components mentioned in the previous section.

Ack-based transmission tracking The system evaluates the amount of
data transmitted at a given moment in time using the TCP acknowledgment
messages flowing from the flow’s receiver back to the sender.

The acknowledgment number included in the TCP ACK packets is not
exactly equal to the actual amount of data successfully received. But it is a
good estimate of the amount of transmitted data.

Earliest deadline first ordering The system uses an earliest deadline
first ordering scheme, to order the streams it manages. Comparing the initial
requested schedule with the actual amount of data transmitted for each
stream, the system is able to determine which streams are behind schedule.
The stream behind schedule with the earliest deadline is given the maximum
priority, i.e. is marked in the best performing DiffServ class.

The assumption here is that a stream with a later deadline will have the
opportunity to catch up later on. This allows for example, to lower a massive
bulk transfer throughput a little bit, when smaller urgent communications
have to take place. This approach should thus lead to a more efficient use of
the network resource.

5 Experiments

5.1 The e-Toile VTHD testbed

The e-Toile project [12] is an experimental wide area grid testbed !. One
of the original aim of the project is to focus on the High Performance Grid
Networking dimension and to evaluate the benefit that grid middlewares and
applications can get from enhanced networking technologies.

The VTHD (vraiment trés haut débit) network infrastructure [13] inter-
connects the e-Toile grid nodes with access link of 1 to 2 Gbps. The e-Toile
middleware relies on existing middleware (Globus [5], Grid Engine...) and
integrates new building blocks. The e-Toile middleware aims to fully exploit
the power of the networking infrastructure.

5.2 VTHD DiffServ implementation

The Gigabit VTHD [?] Backbone provides four DiffServ classes (EF, TCP
AF, UDP AF and BE). The principle of the DiffServ configuration in VITHD
is that a bandwidth share is statically provisioned in the edge routers and
allocated to the four DS classes. Each access point has to control and to
shape the traffic injected in each class. Table 1 gives the absolute rate
allocated to each DiffServ class.

The first experimentation consisted in evaluating the raw performances
of the DiffServ classes obtained from one edge to another. Best Effort and
EF TCP performances have been measured in five network loads conditions:
no background traffic, 267Mbits /s, 535Mbits/s, 840Mbits/s and 1000Mbits/s

le-toile is a RNTL project (réseau national de recherche en logiciel) funded by French
Ministry of Research

10

DS Class Share
Expedited Forwarding 10%
Assured Forwarding for TCP | 30%
Assured Forwarding for UDP | 30%
Best Effort 30%

Table 1: The statical bandwidth share of VTHD DiffServ classes.

UDP background traffic. Figure 4 shows the performance (TCP Throuput
and RTT) of Best Effort and EF respectively.

Best Effort TCP flow reacting to Best Effort UDP background trafic EF TCP flow reacting to Best Effort UDP background trafic
: 60 1000 T T
Bande passante (Mbits/s) —— Bande passante (Mbits/s) ——
RTT (ms) —--%--- RTT (ms) -

1000

800 800

600 \\

400 \ e

o

@
8
EF RTT (ms)

Best Effort TCP bandwidth (Mbits/s)

,,,,,,,,,,,,,,,,,,

0
0 200 400 600 200 400 600 800 1000 1200
Best Effort UDP concurrent bandwidth (Mbits/s) Best Effort UDP concurrent bandwidth (Mbits/s)

Figure 4: Best Effort and EF reacting to background traffic.

This simple experiment shows that the EF traffic is correctly protected
while Best effort traffic is strongly affected by increasing load. The Best
Effort TCP throughput is divided by 10. This results corresponds to the
expected TCP/IP backoff behaviour.

The next section demonstrates the impact that this kind of network be-
haviour may have on the medical imaging application performance.

5.3 Expected effect of the Network QoS on the application
performance

Let’s use the database described in table 2 as an use case of the medical
imaging application presented in section 3.1.

Number of images 238

Image dimensions 181x217x181
Image size 13.6 MB
Database size 3.1 GB

Table 2: Studied image database characteristics.

Each images grey level range may be undersampled prior to processing.
This loss of precision brings an increased computation time. The following

11

experiments are therefore using undersampled version of the original images
to 8 and 12 bits when possible.

5.3.1 Application’s computation time

The medical application involves similarity measure computations over image
volumes. The complexity for all similarity measures depends on the size
and the dynamic range of medical images. Furthermore, the complexity of
computations varies from on measure to another (see [8] for details). Table 3
summarizes the measured computation time (in seconds) for the similarity
measures (excluding image I/O and undersampling) on pairs of the above
mentionned database images, the 6 similarity measures proposed, and every
possible undersampling to 8, 12, and 16 bits. The times where measured on
a 800MHz Intel pentium IIT processor.

Undersampling | SD SSD | CC RC Woods | MI ‘
8 bits 0.795 | 0.798 | 0.810 | 0.808 | 0.810 | 0.813
12 bits 13.79 | 14.46 | 16.17 | 16.05 | 15.87 | 15.92
16 bits 697.3 | 697.4 | 700.3 | 702.6 | 802.7 | 804.3

Table 3: Computation times for similarity measures computation.

5.3.2 Network transfer time

Table 4 shows network file transfer time measured in the five network load
conditions studied in section 5.2 for Best Effort and EF. This correspond
to the measurement of 27 for the database mentioned above (807MB with
k =4, 323MB with k& = 10, and 32MB with k& = 100).

transfer (s)
Class used | Concurrent trafic | 807MB | 323MB | 32MB

0 Mbits/s 9.0 3.7 0.4
267 Mbits/s 10.0 4.0 0.4
Best Effort 535 Mbits/s 16.3 6.5 0.6

840 Mbits/s 58.4 23.2 2.2
1070 Mbits/s 109.3 65.4 3.8

0 Mbits/s 9.1 37 04

267 Mbits/s | 10.0 40| 04

EF 535 Mbits/s | 10.7 43| 04
840 Mbits/s | 10.7 43| 04

1070 Mbits/s | 10.7 43| 04

Table 4: Network transfer time in different traffic conditions, corresponding
to Database transfers.

12

k

Testim (S) C(S) 4 10 100
0.8 3.26 | 7.68 | 9.86
0.17 15.37 | 3.95 | 9.85 | 67.76
734.1 | 4 10 99.01

Table 5: Application speedup using k& € {4,10,100} processors on a con-
gested EF class network.

k

Testim (S) C(S) 4 10 100
0.8 1.79 | 3.77 | 1.96
0.93 15.37 | 3.76 | 9.21 | 27.76
734.1 | 3.99 | 9.98 | 94.83

Table 6: Application speedup using k& € {4,10,100} processors on a con-
gested BestEffort class network.

5.3.3 Performance estimation

According to table 3, the mean application execution time (C) is 0.8s (for
8 bits undersampled images), 15.37s (for 12 bits undersampled images), or
734.1s (for 16 bits images). Given that n = 238, it is possible to estimate
the speedup using equation 1 for various network conditions and values of k.

According to table 4, estimation T, of the time needed to transfer an
image using the EF class when there is a 840 Mbits/s background traffic is
0.17s. It is 0.93s when using Best Effort in the same traffic conditions.

Table 5 shows the speedup obtained with EF and 840 Mbits/s of back-
ground traffic. Table 6 shows the speedup when using Best Effort class in
the same traffic conditions.

These tables demonstrate that the EF DiffServ class significantly im-
proves the speedup for shorter computation times where the network over-
head is most damaging the computation time.

They also demonstrate that it is possible to estimate the number of pro-
cessors to use depending on the application execution time and network
performance.

It is interesting to note that the estimation of the best k£ to use might
vary a lot for different network performances (case where T4, =0.93 versus
Testim=0.17 with C=0.8).

This emphasizes the need of keeping the % stable enough during the
application’s execution.

That’s where QoSINUS proves to be usefull, guaranteeing the stability
of a given TCP throughput and making an efficient use of the DiffServ class
resources.

13

The next section illustrates how that service can help to keep the network
transmission time as close as Tegtim, as possible.

5.4 Ack-React experimentation

The goal of this experiment is to demonstrate the use of the TCP Ack packets
when evaluating the throughput of a transmission and choosing the DiffServ
class to map a stream into.

The simple algorithm below is used to choose the DiffServ class to use.
Given Cl in BE,EF, the DiffServ class of the current packet flow, Q¢ ans
the amount of transmitted data and @), the requested amount of data to
transmit at time ¢. The DiffServ allocation algorithm as follows:

Cl = BE
for each received ack
estimate Qtrans

for each control time period
if Qtrans < Qreq
Cl = EF class
else
Cl = BE class

Three sites are involved, in Lyon (I), Paris (IT) and Grenoble (III). Those
sites are linked by the VTHD network, as shown in figure 5

A TCP stream is flowing from Lyon to Grenoble. Background traffic is
emitted from Lyon to Paris, that produces a congestion on Lyon’s router,
and affects the TCP stream’s performance.

The QoSINUS programmable service is deployed at the VITHD border in
Lyon, and controles the TCP streams emitted from Lyon to the network.

This test’s procedure is as follows:

The application, that needs to transmit 486 MBytes of data, sends its
QoS request. The stream is scheduled between t + 10 seconds and t
+ 70 seconds. The requested rate is 64 Mbps.

About 11 seconds later, the TCP stream is started.

At t + 20 seconds, the background traffic is triggered, at 1 Gbps.

At t + 57 seconds, the background traffic is stopped.

The application stops sending data whenever its done with the trans-
mission of its 486 MBytes of data.

14

Figure 5: Network topology

5.4.1 Impact of the background traffic

The first step consists in observing the impact the background traffic has on
the TCP stream, if nothing is done to protect it.

Figure 6 shows how the TCP stream behaves in this case.

As long as the concurrent traffic is not emitted, the TCP stream achieves
some 120 Mbps, and gets ahead of schedule.

But it gets much slower (arround 15 Mbps), once the concurrent traf-
fic is started. The stream is thus behind schedule when the transmission
completes.

5.4.2 Reacting to the Ack packets

The same procedure is repeated. But the DiffServ class mapping algorithm is
turned on, to check that it’s able to protect the TCP stream’s performance.
Figure 7 shows what happens in this case.
The TCP stream is affected the same way as before by the background
traffic. But here, the system is able to detect that the achieved transmission

15

Background traffic impact

Ack-based estimate
Application’s schedule ==-z==-
5e+08 - k
4e+08 |- B
m
Q
=
)
£
= 3e+08 R
©
o
o
o
L
2
5 2e+08 - b
=
1e+08 b
0 g / Il Il Il L L L
0 10 20 30 40 50 60 70 80
Time (in seconds)
Figure 6: ACK based adaptation turned off
Reacting to the ACKs
Ack-based estimate
Application’s schedule -------
5e+08 |- ~ A
4e+08 |- E
n
Q
=
)
£
E 3e+08 R
<
o
o
1%
g
2
5 2e+08 - b
=
1e+08 B
0 B4 L L L L L
0 10 20 30 40 50 60 70

Time (in seconds)

Figure 7: ACK based adaptation turned on

performance gets lower than the requested one (arround t + 28 seconds).

The system reacts accordingly, and alternatively marks the stream’s
packets in EF, to boost the transmission rate, and back to Best Effort,
when it catches up. In this case, the achieved performance curve sticks to
the requested performance curve and the transmission is able to end within
schedule.

16

6 Conclusion

This paper presented the problem of mapping the QoS requirements of grid
flows to the QoS services offered by IP network services. The results obtained
on an experimental grid testbed show the benefit the Grid application can
expect from IP QoS services available in current academicals network in-
frastructures. A medical image analysis application corresponding to a real
usecase has been exposed and its theoretical performances analysed. This
application has been selected as it is strongly dependent on the network ca-
pacity and representative of grid application flow performance requirements.
A flexible service named QoSINUS that has been designed to dynamically
manage the QoS classes of an [P domain and serve the needs of grid applica-
tion is proposed. The use of this service by grid applications and middleware
offers a very flexible, transparent and efficient QoS control. An adaptive
marking algorithm has been proposed and is very promising. In the case
of pricing, it can be very important from an economical poiunt of view, to
save EF bandwidth. More experimentation now needs to take place, focus-
ing on the earliest deadline first ordering of several concurrent streams. An
extension of QoSINUS in the context of heterogenous multidomain network
is also under study. The programmable network approach and the modular
architecture of QoSINUS also permit to easily deploy new algorithms and to
study other QoS approaches like bandwidth on demand allocation.

17

References

[1]

2]

3]

[4]
15]

[6]

7]

[8]

[9]

[10]

[11]

Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang,
and Walter Weiss. An architecture for differentiated services. Internet
Request For Comments RFC 2475, Internet Engineering Task Force,
December 1998.

F. Bonnassieux, P. Primet, and P. Clarke. Network provisioning for the
datagrid testbedl. Technical report, EU DATAGRID report Deliverable
D7.1 - Approved by the EC January 2001, 2001.

Robert Braden, David Clark, and Scott Shenker. Integrated services in
the internet architecture: an overview. Internet Request For Comments
RFC 1633, Internet Engineering Task Force, June 1994.

European datagrid ist project. http://www.edg.org/.

Tan Foster and Carl Kesselman. Globus: A metacomputing infrastruc-
ture toolkit. The International Journal of Supercomputer Applications
and High Performance Computing, 11(2):115-128, July 1997.

Tan Foster and Carl Kesselman. The grid : Blueprint for a new com-
puting infrastructure. Morgan Kaufmann Publishers Inc., 1998.

Benjamin Gaidioz, Richard Wolski, and B. Tourancheau. Synchroniz-
ing network probes to avoid measurement intrusiveness with the net-
work weather service. In Proc. 9th IEEE Symp. on High Performance
Distributed Computing, 2000.

J. Montagnat, H. Duque, J.-M. Pierson, V. Breton, L. Brunie, and
Magnin I.LE. Medical Image Content-Based Queries using the Grid. In
Healthgrid’03, pages 138-147, Lyon, France, January 2003.

G.P. Penney, J. Weese, J.A. Little, P. Desmedt, D.LG. Hill, and D.J.
Hawkes. A Comparison of Similarity Measures for Use in 2D-3D Med-
ical Image Registration. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI’98), volume 1496 of LNCS, pages 1153
1161, Cambridge, USA, October 1998. Springer.

A. Roche, G. Malandain, A. Ayache, and S. Prima. Towards a Better
Comprehension of Similarity Measures Used in Medical Image Registra-
tion. In Medical Image Computing and Computer-Assisted Intervention
(MICCAI’99), volume 1679 of LNCS, pages 555-564, Cambridge, UK,
September 1999. Springer.

P. Vicat-Blanc/Primet. High performance grid networking in the data-
grid project. special issue Future Generation Computer Systems, Jan-
uary 2003.

18

[12] P. Vicat-Blanc/Primet, G. Romier, and M. Soberman. Le projet e-
toile: développement et mise en oeuvre d’une grille haute performance.
In Proceedings of "Journées Nationales du RNTL 2002", 2002.

[13] Vthd. http://www.vthd.org/.

[14] R. Wolski. Dynamically forecasting network performance using the Net-
work Weather Service. Cluster Computing, 1(1):119-132, 1998.

19

