
HAL Id: hal-00691613
https://hal.science/hal-00691613v1

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grid-enabled workflows for data intensive medical
applications

Tristan Glatard, Johan Montagnat, Xavier Pennec

To cite this version:
Tristan Glatard, Johan Montagnat, Xavier Pennec. Grid-enabled workflows for data intensive medical
applications. International Symposium on Computer-Based Medical Systems (CBMS), Jun 2005,
Dublin, Ireland. pp.537-542, �10.1109/CBMS.2005.61�. �hal-00691613�

https://hal.science/hal-00691613v1
https://hal.archives-ouvertes.fr


Grid-enabled workflows for data intensive medical applications∗

Tristan Glatard, Johan Montagnat, Xavier Pennec

Abstract

Data intensive medical image processing applications can easily benefit from grid capabilities.
However, the setting up of complex medical experiments is not straight forward on current grid
infrastructures. To ease such experiments we are developing a generic and grid-enabled workflow
framework, relying on current standards. We show results on a concrete application to medical
image registration assessment. We discuss the limitations induced by current standards and tools
and how they were overcome for deploying the application.

1 Context and objectives

Computerized medical image analysis is now a well established area that provides assistance
for diagnosis, modeling, and pathologies follow-up. With the growing inspection capabilities of
imagers and the increase in medical data production, the need for large amounts of data storage and
computing power increases. Grids have been identified as a tool suitable for dealing with medical
data [9]. Successful example of grid application deployment for image databases analysis [10],
optimization of medical image algorithms, simulation [2], etc, have been reported.

Thanks to emerging standards, grids are easing the usage of computerized medical image anal-
ysis tools for a large community of end users, not necessarily aware of computer technologies.
These standards enable data distribution and sharing as well as access to algorithms needed both
for assessing medical image processing algorithms, and for building large scale health-related ex-
periments.

1.1 Medical imaging workflows

Medical image analysis procedures are often not based on a single image processing algorithm
but rather assembled from a set of basic tools dedicated to process the data, model it, extract quan-
titative information, and analyze results. Given that interoperable algorithms packed in software
components with a standardized interface enabling data exchanges are provided, it is possible to
build complex workflows to represent such procedures for data analysis. High level tools for ex-
pressing and handling the computation flow are therefore expected to ease medical experiments
development.

Workflow processing is a thoroughly researched area. Most workflow managers are based on
a central director orchestrating a set of actors. In the Kepler system [1] the generic actors can
wrap Web Services (WS) or OGSA based services. In the Taverna project [12] the actors can be
local java processes, WS or home made services. Other workflow systems such as Triana [13]
are decentralized and distribute several control units over different computing resources. Some

∗This work is partially funded by the French research program “ACI-Masse de données”, http://acimd.labri.fr/

1



workflow systems such as ICENI [6] implement different scheduling strategies. Systems such as the
Virtual Data System (VDS) decouple the abstract description of the workflow (Chimera system [5]),
the mapping of the workflow and data to available resources (Pegasus system [3]) and the execution
orchestrator.

When dealing with medical experiments, the user often needs to process datasets made of e.g.
hundreds of individual images. The workflow management is therefore data driven and the sched-
uler responsible for sharing the loads of computation should take into account the input dataset as
well as the workflow graph topology. We are studying workflow processing of medical datasets on
grids. We are mostly interested in workflow management systems that are compliant to recent grid
standard (and especially WS which will largely be involved in the emerging WSRF specification),
interoperable, and able to deal with large datasets. Our work is based on the Taverna workflow
manager [12] that nicely decouples the different workflow components, provides an helpful GUI
for workflows description, can orchestrate standard WS actors, and provides basic mechanisms to
deal with sets of input data. Furthermore, Taverna is an open source project and it is possible to get
deep insight and potentially modify the software. It proved to be simple to deploy on standard PCs.

1.2 Application to image registration assessment

Many data intensive and complex medical applications could benefit from grid enabled work-
flows. In this paper, we are studying how classical workflow managers can adapt to a grid infras-
tructure for a concrete compute intensive application which is the assessment of medical image
registration algorithms.

In the absence of ground truth (which is usually the case in medical image processing), evaluation
of the accuracy and robustness of image processing algorithms is very difficult [7]. A solution that
has been recently proposed is to establish a bronze standard [11] by considering the ”exact result” as
an unknown variable that has to be estimated (along with its accuracy). This method is based on the
registration of all possible pairs of images by many registration methods (different from the one to
evaluate) in order to better exploit the redundancy of information. Given the cost of medical images
registration (in the order of tens of minutes for each pair of 3D images), the bronze standard method
is very compute intensive. In order to gridify it, the registration algorithms used are embedded in
standard WS. The Taverna workflow manager is used to schedule the processes. Yet, we had to
face many limitations induced by Taverna and its interaction with WS. Data parallelism is enabled
through an ad-hoc technique enabling asynchronous execution of multiple instances of WS.

2 Bronze standard workflow gridification

We are using four different registration algorithms in our implementation of the bronze stan-
dard method: (1) Baladin and (2) Yasmina are intensity-based. The former uses a block matching
strategy while the later optimizes a similarity measure on the complete images using the Powel
algorithm. (3) CrestMatch is a prediction-verification method and (4) PFRegister is based on the
ICP algorithm. Both CrestMatch and PFRegister register features (crest lines) extracted from the
input images. These algorithms are further described in [11]. All produce a transformation and
the bronze standard is computed from these results. Figure 1 illustrates the simplified application
workflow. Each box in figure 1 represents an algorithm and arrows show computation depen-
dencies. Lightweight computing tasks such as data format transformations have been omitted for
clarification.



2.1 Prototyping the application

Baladin registration

PFMatch ICP

Crest lines extraction

PFRegisterYasmina registration

CrestMatch registration

Input image 1 Input image 2

Output tansfoOutput tansfoOutput tansfoOutput tansfo

Figure 1. Bronze Standards application workflow

We prototyped our applica-
tion on a local cluster of 4
machines, each of them host-
ing a particular registration al-
gorithm among those described
above. In order to mimic a grid
architecture and to optimize
data exchanges, we only used
the Taverna workflow man-
ager for the workflow execu-
tion control. Data exchanges
were performed by the com-
puting components themselves,
through ssh tunnels. Thus, the information which was exchanged between the components and the
workflow engine via SOAP messages was only containing references (i.e. file locations) to the input
data of the components. No large data was included into those messages. Such an architecture is
suitable for the gridification of data intensive application because it enables a rigorous centralized
control of the execution without penalizing data transfers (data never goes via the central orchestra-
tor).

2.2 Grid enabling the workflow

Our application was deployed on the computer infrastructure provided by the EGEE European
project [4]. The platform offered is a pool of thousands computing (standard PCs) and storage
resources accessible through the LCG2 middleware [8]. The resources are assembled in computing
centers, each of them running its internal batch scheduler. The EGEE middleware is mostly batch
oriented and enables the submission of independent computing tasks on different resources through
a command line interface.

Although today migrating to conform to emerging grid standards, the EGEE middleware is not
yet compatible with the WS interface. Therefore, we have created dedicated WS able to start and
monitor computing tasks on the grid infrastructure using the EGEE command line interface. The
Taverna workflow manager can thus initiate these WS that in turn will launch grid computing tasks
as illustrated in figure 2.

Taverna
workflow
manager

Registration
web serviceinvocation

SOAP
tunneling

SSH
Grid User Interface

Command line
interface

Grid Resources

Figure 2. Interaction between Taverna and the EGEE infrastructure

There are three main limitations inherent to Taverna data management and its interaction with
WS that made the gridification of the application workflow difficult. These are generic problems
that will be encountered in any effort to gridify a data intensive application. The problems and the
proposed solutions are described below.



2.3 Static nature of the interaction between Taverna and Web Services

Due to the blocking nature of its interaction with WS, Taverna only provides static task paral-
lelism : in Taverna, a WS can only process one request at a time and will not respond to a second
request until the first one is cleared and a result has been returned. Yet the latest version of Taverna
is able to make a statically fixed number of query to a same WS to process as many identical tasks
in parallel. This so called thread mode is however not satisfactory as (i) the number of parallel tasks
is fixed at the workflow creation and will not adapt to the available resources on the grid nor to the
amount of input data to be processed, (ii) Taverna still imposes a hard limitation to a maximum of
10 threads for WS, and (iii) it is up to each WS to adapt to the thread mode and to offer a service
capable of dealing with multiple queries.

To overcome this limitation, we had to fake an asynchronous behavior not foreseen in the stan-
dard WS invocation framework of Taverna. The idea is to divide the service dedicated to grid
job processing into two independent services: a submission service and a fetching service. The
asynchronous nature of the grid middleware enables this possibility. When queried, the submission
service sends a task to be processed on the grid, forks a monitoring process, and returns immediately
although the computation is not terminated yet. When queried, the fetching service does return as
soon as any one of the tasks initiated by the submission service terminates. In fact, the monitoring
processes that have been forked for each submission do notify the fetching service as soon as the
computing task they monitor is terminated. Figure 3 is a time diagram showing how the classical
framework for job submission (left: Taverna is blocked until the query returns) is transformed into
our fake asynchronous framework (right: several queries can be processed in parallel although the
submission and fetching are standard blocking services. Note that this framework does not ensure
that the first result returned corresponds to the first computation submitted.

Submission
web service

web service
Fetching

Taverna Monitor1 Monitor2 Grid
query

fork submit

notification polling

Taverna Registration
web service Grid

computation
query

result

Figure 3. Classical (left) and asynchronous (right) framework based on WS

The stateless nature of WS was also a problem in implementing the asynchronous behavior:
the fetching WS is invoked by Taverna for retrieving each result submitted and given the stateless
nature of this service, it does not hold memory of the number of times it was invoked neither which
results have already been returned. A file based state holding has been implemented to ensure
proper operation. In the future, the WSRF specification is supposed to introduce stateful WS.

2.4 Data management in an asynchronous workflow

Another problem we faced was the ordered processing of data in workflows running in an asyn-
chronous way. As we have shown above, a data is able to overtake another one during the execution



of the workflow. This raises a causality problem: consider the sub-workflow made by the CrestLine
(CL), CrestMatch (CM), and PFMatchICP (PFM) in figure 1. Let D0 and D1 be two sets of input
data and CL(D0) be the result of the processing of the dataset D0 by the CrestLine algorithm. If
the order of computations in data is inverted between CL and CM, and in the absence of a data-
aware flow control, the final output would be the computation of PFM(CM(CL(D1)),CL(D0)) and
PFM(CM(CL(D0)),CL(D1)) while PFM(CM(CL(Di)),CL(Di)), i ∈ {0, 1} was needed. To over-
come this problem, we have linearized this sub-part of the workflow: the CrestLines are extracted
first, then both the input data and the processing result are sent to the CrestMatch algorithm, and
finally, the PFMatchICP algorithm is executed. This solves this particular problem but (i) this solu-
tion is clearly inefficient as this linearization of the workflow breaks any possible parallelism, and
(ii) this is not a general solution that can adapt to any kind of workflow. This problem can only be
properly tackled at the workflow level.

2.5 Data dependency

Another limitation induced by Taverna is its execution strategy : when multiple data are sent
to a workflow, all data are processed by the first task before a second (dependent) task can start.
Therefore, if data D0 and D1 are to be sent to task T0 and if T1 depends on T0, the execution of T1
will only start once both T0(D0) and T0(D1) have been processed although there is no dependency
between data and one could perfectly compute T1(T0(D0)) as soon as T0(D0) is available, indepen-
dently of the processing of T0(D1). This limitation could not be overcome and it does alter the total
computation time on a grid infrastructure. In particular, if ever a job is lost due to a system failure,
the whole pipeline is blocked.

3 Experiments and results

We made experiments on a dataset of 5 CT-scan images of a phantom of the abdomen (Body
Form ©, Limbs & Things Ltd, Bristol, UK). The images were acquired on a helical Siemens So-
matom 4 plus CT-scan. They have between 501 and 571 slices of 512 × 512 pixels, with a spacing
between slice of 1mm and a pixel size ranging from 0.78mm to 0.92mm. The phantom was ac-
quired in 5 different positions, with different imaging parameters, in order to simulate the influence
of most possible acquisition biases.

For each of the 25 pairs of images, we considered 2 different similarity measurements for Yas-
mina, 2 sets of different options for PFMatchICP and 3 sets of different options for Baladin. Table 1
summarizes the computing time for each of the algorithms locally and on the grid. There is a sig-
nificant speed-up in grid execution. The computing time on a local machine for all registration
exceeded 1 day (24 hours 25 min) whereas the same computation on the EGEE infrastructure only
took 4h07, thus yielding to a 5.93 speed-up factor. These figures are dependent on the grid load and
may slightly vary in different executions. However, the EGEE infrastructure is a production grid
which is permanently under stress and therefore no drastic changes can be expected.

4 Conclusions

We presented a complete deployment of a data intensive application on the EGEE grid infras-
tructure. It encompasses image registration algorithms wrapped in standard Web-Services, a grid



Algorithm Local execution Grid execution Speed-up
CrestLine (25 crest line extractions) 6h15 49 min 7.65
Baladin (75 registrations) 24h25 4h07 5.93
CrestMatch (25 registrations) 5h29 24min 13.7
PFMatchICP (50 registrations) 2h42 37 min 4.38
PFRegister (50 registrations) 7min 23min 0.3
Yasmina (50 registrations) 16h11 1h41 9.6
Total execution time 24h25 4h07 5.93

Table 1. Computation times, localy and on the EGEE infrastructure

enabled workflow manager and a grid middleware for performing the computations. The framework
developed could easily be adapted to a wide variety of medical applications.

The results have shown the interest of such an approach in the case of a concrete data intensive
medical application. However, we have shown that the setting up of this experiment was compli-
cated by the static limitation of Taverna data management and the blocking nature of its interaction
with Web-Services. It shows that there is still room for development of grid aware workflow man-
agers. A most worrying concern is the limitation induced by the stateless nature of Web Services
while this standard is plebiscited by the international grid community. The WSRF specification
should enable stateful services though.

References

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher, and S. Mock. Kepler : Towards a grid-enabled system
for scientific workflows. In GGF10, March 2004.

[2] H. Benoit-Catttin, F. Bellet, J. Montagnat, and C. Odet. Magnetic Resonance Imaging (MRI) Simulation on a Grid
Computing Architecture. In Biogrid (CCGrid 03), Tokyo, Japan, May 2003.

[3] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, and G. Mehta et al. Mapping abstract complex workflows onto grid
environments. Jnl of Grid Comp., 1(1):9 – 23, 2003.

[4] EGEE: Enabling Grids for E-sciencE, IST European project. http://www.eu-egee.org/.
[5] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for representing, querying and

automating data derivation. In Sc. and Stat. DB Managmt, Edinburgh, Scotland, 2002.
[6] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington. Iceni : Optimisation of component

applications within a grid environment. Jnl of Parall. Comp., 28(12):1753 – 1772, 2002.
[7] P. Jannin, J.M. Fitzpatrick, D.J. Hawkes, X. Pennec, R. Shahidi, and M.W. Vannier. Validation of medical image

processing in image-guided therapy. IEEE Trans. on Med. Imaging, 21(12):1445–1449, 2002.
[8] LCG middleware. http://lcg-web.cern.ch/.
[9] J. Montagnat, F. Bellet, H. Benoit-Cattin, V. Breton, L. Brunie, H. Duque, Y. Legré, I.E. Magnin, L. Maigne,

S. Miguet, J.-M. Pierson, L. Seitz, and T. Tweed. Medical images simulation, storage, and processing on the
european datagrid testbed. to appear in Jnl of Grid Comp., February 2005.

[10] J. Montagnat, V. Breton, and I.E. Magnin. Partitionning medical image databases for content-based queries on a
grid. to appear in Methods of Information in Medicine, 45, February 2005.

[11] S. Nicolau, X. Pennec, L. Soler, and N. Ayache. Evaluation of a new 3d/2d registration criterion for liver radio-
frequencies guided by augmented reality. In Intl. Symp. on Surgery Sim. and Soft Tissue Model., pages 270–283,
Juan-les-Pins, France, 2003.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, A. Wipat, and P. Li. Taverna : A tool for the com-
position and enactment of bioinformatics workflows. Bioinformatics journal, 2004. http://taverna.sourceforge.net/.

[13] I. Taylor, M. Shields, I. Wang, and R. Philp. Grid enabling applications using triana. In Grid App. and Pro. Tools,
GGF8, Seattle, USA, June 2003.


