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Abstract—In spite of the growing interest for grids and cloud
infrastructures among scientific communities and the availability
of such facilities at large–scale, achieving high performance in
production environments remains challenging due to at least
four factors: the low reliability of very large–scale distributed
computing infrastructures, the performance overhead induced
by shared facilities, the difficulty to obtain fair balance of
all user jobs in such an heterogeneous environment, and the
complexity of large–scale distributed applications deployment.
All together, these difficulties make infrastructure exploitation
complex, and often limited to experts. This paper introduces a
pragmatic solution to tackle these four issues based on a service-
oriented methodology, the reuse of existing middleware services,
and the joint exploitation of local and distributed computing
resources. Emphasis is put on the integrated environment ease
of use. Results on an actual neuroscience application show the
impact of the environment setup in terms of reliability and
performance. Recommendations and best practices are derived
from this experiment.

Keywords-Grid Computing, Service Oriented Architecture, Sci-
entific Workflow, Distributed Computing Infrastructure

I. INTRODUCTION

Distributed Computing Infrastructures (DCIs) are being
increasingly exploited for tackling the computation needs
of large–scale applications. DCI middleware helps users in
exploiting seamlessly large amounts of computing resources.
However, executing large–scale applications on a DCI faces
several well–identified problems often causing poor applica-
tion performance, either under–performing execution time or
complete application failure. In particular, the following show-
stoppers are recurrently reported in the literature dealing with
large–scale distributed applications enactment:

• Low reliability of the infrastructure causing high failure
rates and severe performance losses.

• High latency of computing tasks submitted to production
batch systems causing low performance.

• Unfair balance between shorter and longer computation
tasks.

• Complex deployment of distributed computing applica-
tions.

Users often face critical decisions that require expert skills
to setup and tune a workable solution for their particular ap-
plication among available middleware services. In this paper,
we propose a comprehensive and integrated execution envi-
ronment designed to tackle simultaneously the low reliability,
high latency, unfair balance, and complex deployment issues.

The designed software architecture is reusing as much as
possible existing stable middleware services. Their integration
is far from trivial as different services may be tackling
different issues but they are not necessarily compatible nor
interoperable. The resulting framework does not only deliver
to users a uniform interface to manipulate and execute their
applications. It also shields users from the technical issues of
the underlying infrastructure. It is exploited by neuroscientists
to study neurodegenerative diseases such as Alzheimer’s. The
users’ main concern is completely non-technical in this area.

This proposition assumes that the applications to execute
are described as scientific workflows. Workflows formalize
the description of distributed computing processes and they
have been widely adopted among computational scientific
communities. Workflows are decomposed into many applica-
tion services with inter–dependencies which define ordering
constraints at execution time. In scientific workflows, input
datasets are usually composed of many independent data
items to be processed, hence implying a high level of data
parallelism. The workflow services are invoked multiple times,
to process all data segments received. An application can then
be seen as an orchestration of collaborating services deployed
within a Service–oriented Architecture (SOA).

Our methodology is heavily based on SOA principles for
their high versatility. As shown in section III, the provision
of both middleware and application components as services
makes it possible to fine tune application deployment and
configuration, thus tackling the problems of reliability, fair
balancing, and application deployment. Furthermore, high-
latency concerns are addressed by advanced tasks management
services. To take advantage of the service–oriented principles
while being non–intrusive for the existing application services,
our implementation includes an intermediate layer between the
infrastructure stack of technologies and the user interfaces.

The rest of the paper is structured as follows. First, a
requirements analysis is conducted and relevant technical
solutions are reviewed in section II. Then, section III describes
a model to decide computation tasks dispatching integrating
local resources to DCIs. Section IV presents the execution
framework and describes all its software components. This
section also highlights optimization methods to address the
failure recovery, resource reservation, and scalability of the
framework. An experimental validation is presented in sec-
tion V. Finally conclusion and some recommendations derived
from the experiments are developed in section VI.
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II. ADDRESSING PRODUCTION DCIS SHORTCOMINGS

A lot of research efforts have been invested in dealing more
or less independently with the well–known issues of large–
scale infrastructures outlined above [1], [2], [3], [4]. The goal
of this work is to design an end–to–end execution frame-
work simultaneously tackling the most critical showstoppers
commonly encountered. Specifically, four issues are addressed
to improve the application performance on production DCIs
within the framework:

1) Failure recovery. Networking and computing infras-
tructures are subject to random resource failures. The
likeliness of failures increases with the number of phys-
ical entities, as seen in large–scale distributed systems
today [5], [6]. Recovering from failures becomes a crit-
ical issue to improve the reliability of the infrastructure,
preventing the correct completion of many application
runs. Numerous works addressing this issue have been
proposed in the literature including check–pointing, live
migration [7], [8], job replications [2] and submission
strategies [4]. On general purpose production infras-
tructures, job resubmission is often the only general
failure recovery solution available, as check–pointing
and migration usually either make restrictive assump-
tions on the computational processes or they require
application instrumentation. The final makespan could
be increased, specifically with longer applications, but
resubmission ensures that the application execution can
always continue and finish successfully. This approach is
implemented in the framework by controlling the status
of submitted jobs and defining a resubmission policy
when a failure occurs.

2) Lowering latency. The splitting of an application’s
computation logic in many tasks lends towards more
parallelism but the gain may be easily compensated
by the time needed to handle all tasks generated in
a competitive production batch system. In the case of
a workflow–based application with inter–dependencies
between tasks, the sequential submission of tasks to long
batch queues will be highly penalizing. Addressing the
high latency issue, many works study multiple submis-
sions approaches [1], [2], [4]. The results of these studies
confirm that submitting tasks several times increases
application performance. However, users who do not use
multiple submission are penalized. Furthermore, without
considering the capacity of batch schedulers, high num-
ber of submissions can overload the batch schedulers
and then degrade the overall system performance.
Alternatively, pilot jobs systems help users in reserving
a pool of computing resources during the execution
of the application [9], being considered as a bridge
between batch systems and systems supporting resources
reservation. A pilot job is submitted to a workload
manager to reserve a computing resource. User jobs are
then pulled from the job queue to computing nodes by
successfully started pilot jobs. Each pilot job can thus
process sequentially several user jobs without introduc-
ing delay between two of them. Each pilot is subject

once to the workload manager queuing time but the jobs
they process are not. Another advantage of pilot jobs
to the classical submission approach include the sanity
checks of the running environment before assigning
resources for execution. They also allow users to create a
virtual private network of computing resources reserved
for executing their tasks, and they implement effectively
the pull scheduling paradigm. Our execution framework
extensively uses pilot jobs reducing latency and making
executions more reliable because broken resources are
filtered by the pilot jobs.

3) Task fairness. The very complex tuning of large–scale
submission systems, involving meta–brokers and many
schedulers, makes it extremely difficult to achieve fair
balance between short and long tasks in a computation
process. Yet, production infrastructures are not only used
for long running jobs processing data–intensive appli-
cations but they are also frequently used for processing
shorter jobs. Statistical results shows that more than 50%
of the jobs take less than 30 minutes for execution [3].
While the high latency has less impact on long running
jobs, short jobs are heavily penalized if they have long
waiting times before execution. The larger the com-
puting time discrepancy between tasks, the higher the
impact. Users therefore require a mechanism of resource
fair sharing to avoid that long jobs monopolize the whole
computing resources, and delay the completion of other
users’ (short) jobs.
Pilot jobs also improve handling of short jobs as they
reduce individual jobs queuing time. However, although
dedicated to a specific user, pilot job systems usually
do not implement fairness among the user’s jobs and
pilots may be overloaded by the processing of longer
jobs similarly to a Grid meta–scheduler. Therefore, our
approach combines more dedicated resources out of a
distributed infrastructure with the capacity of DCIs to
improve handling of short jobs. Local resources are more
reliable since the user is administrator of computing
nodes, thus failures coming from the software dependen-
cies are lowered. Executing applications locally reduces
the number of job submissions remotely removing the
submission phase and delays of middleware initializa-
tion. This then reduces the waiting time of other jobs
in the queue for obtaining computing resources on
remote infrastructures. Nevertheless, as the number of
computing resources in the local server is limited, the
more jobs submitted locally, the longer is the execution
time needed to finish all jobs. We define a decision
model in section III to decide whether a task is executed
on local resources or submitted to a DCI.

4) Deployment & scalability. Beyond middleware pa-
rameterization, the deployment of application services
may have a strong impact on application performance
as servers easily become overloaded in large–scale
runs [10]. Some initiatives like GASW [11] or LONI
Pipeline [12] propose tools to reuse scientific applica-
tions on DCIs but they have scalability limitations or in-
teroperability constraints respectively. Concerning Web
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service–related projects, tools such as GEMLCA [13], and
gRAVI [14] manage services lifecycle at different levels,
enabling dynamic deployment and/or supporting of non–
functional concerns. However, their adoption involves
the use of an homogeneous middleware. Our execution
framework relies on a legacy application code wrapper
that both provides a standard Web service interface to all
application computing components, and helps managing
the complete lifecycle of the resulting services.
In practice multiple services containers, acting as a
proxy between users and the production DCI, may be
configured in the framework, as described in section IV.
Each container naturally has a limited capacity to pro-
cess concurrent services. When the size of input dataset
increases, the number of services submitted concurrently
may exceed its capacity. The replication of servers
into the system (scaling out) resolves this limitation.
It increases the performance without modifying the
framework architecture.

The execution framework described below addresses simul-
taneously the production DCIs shortcomings by combining
advanced job submission strategies, services replication, and
including the use of local resources during workflow en-
actment. The implementation of job resubmission improves
the reliability by instantiating a system capable of error
overcoming from remote executions. Then the adoption of
pilot jobs for multilevel scheduling ensures the reduction of
latency. Pilot jobs represent a new approach to overcome
long queues of batch schedulers reusing computing resources
efficiently. In order to tackle the unfair balancing resulting
from the competition of short/lightweight application tasks
with the long/heavyweight ones, a decision model dispatching
tasks among local and remote resources is implemented. The
deployment of services provides transparent mechanisms of
applications reallocation, over local and remote resources,
holding back technical details far from final users. Finally,
the scalability heedfulness ensures large–scale experiment
campaigns by enabling services resiliency.

The delivery of an integrated execution environment is eased
by the application of SOA principles, made possible by the
workflow formalism used to model distributed applications.
SOA has been adopted to a large extent in middleware
design [15]. For instance, the Swift workflow management
system [16] provides an integrated working environment for
job scheduling, data transfer, and job submission. It is built
on top of a uniform implementation based on Globus toolkit.
Yet, production infrastructures hardly ever comply to a homo-
geneous middleware stack, nor adopt a single communication
standard for all core and community services. Conversely,
traditional workflow management systems like Taverna [17],
or Triana [18] support service invocation enabling interoper-
ability but they do not natively execute code on DCIs. In our
architecture, both middleware and application components are
deployed as services. The application code is instrumented
non–invasively to comply to this model through a Web service
builder aware of DCIs computing capability [19]. Using an
SOA approach allows users to scale the execution of their

applications and flexibly extend the execution framework
according to the computation needs.

III. MODEL FOR EFFICIENT USE OF LOCAL RESOURCES

In spite of the large number of computing resources avail-
able on DCIs, the waiting time of a job to obtain a computing
resource may increase considerably with a big number of jobs
simultaneously submitted to the infrastructure. This latency
is particularly not negligible for short–execution jobs. Using
local resources may then complement DCIs resources. By
reducing the number of short jobs executed remotely, they
reduce the management time of jobs processed on the DCI thus
improving the reliability and performance of the application.
However, a strategy is required to ensure that local resources
are not overloaded when many jobs are executed. In view
of this, a decision model is defined to dispatch incoming
jobs for local execution or for submission to a DCI based
on expertises captured from the application. It makes the
assumption that each workflow activity i among the k used
activities {i ∈ Z+ | i 6 k} is consuming a fixed amount
of resources when executing (i.e., ri memory space, and
ti execution time). It is also assumed that the target DCIs
are large enough to handle simultaneously all computation
tasks triggered by the invocation of the application services
at runtime.

Let R denote the memory consumed on the local resource
for all running services including rj which would be an
incoming service of type j executed locally at a given time.
The value of R is computed according to Equation 1, where
ni denotes the number of services of type i. The volume of
assigned memory must not exceed RMAX, the available memory
installed on the local resource (R 6 RMAX).

R = rj +

k∑
i=1

ni × ri (1)

Making the hypothesis that production infrastructures have
sufficient computing resources to execute all submitted ser-
vices, the execution time of a scientific workflow TMAX would
be the longest path of its representation as a graph (aka critical
path). Therefore, the execution time in the local resources
T must be shorter than this theoretical threshold in order
to avoid penalizing the final execution time of the workflow
(T 6 TMAX). The value of T , as shown in Equation 2,
represents the sequential execution time of all services running
on local resources distributed on all available processor units,
where NCPU denotes the number CPU cores.

T =

tj +

k∑
i=1

ni × ti

NCPU
(2)

Algorithm 1 shows the procedure to decide whether a job is
executed locally or submitted remotely. The estimation of R
and T is performed each time an incoming service is enacted
by the workflow manager. Meanwhile, the value of nj is
updated for accounting.
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Fig. 1: Overall framework architecture

Algorithm 1 Dispatching of incoming service (rj , tj)

Require: [ri]k memory benchmark of services
Require: [ti]k execution time benchmark of services
Require: [ni]k number of services running by type
Require: RMAX, TMAX, and NCPU

for i in {1, . . . , k} do
R = R+ ri × ni
T = T + ti × ni

end for
R = R+ rj
T = (T + tj)/NCPU

if R 6 RMAX and T 6 TMAX then
service is executed locally
nj = nj + 1

else
service is submitted to a DCI

end if

IV. EXECUTION FRAMEWORK

This section describes a highly configurable, and standards-
based service architecture enabling reproducible and scalable
experimentation. From a user’s point of view, an end–to–
end system enabling the exploitation of DCIs should provide
high expressiveness to describe applications; design and enact
applications composition making use of consistent interfaces;
and transparent access to DCI resources. The framework archi-
tecture, based on MOTEUR [20] and jigsaw [19] components,
is pictured in Fig. 1.

MOTEUR, a scientific workflow environment, is the front–
end component that connects the user to the rest of the
framework. It includes a workflow designer and an execution
monitor. A MOTEUR client interacts with the MOTEUR server
at runtime to execute the application considering a specific
input dataset. The MOTEUR server is responsible for invoking
each application service through generic interfaces. Before

each invocation, it executes the decision model algorithm to
define whether the job should be executed locally or submitted
remotely addressing the task fairness described in the third
DCI shortcoming of section II. In our architecture, application
services invoked by MOTEUR are packaged and instrumented
using the jigsaw framework. Jigsaw is a legacy application
code wrapper which exposes legacy application components as
standard Web services, and provides a complete mechanism to
handle the invocation of application code locally, on the server
hosting the service, or remotely, on the DCI.

Jigsaw enables the definition of multiple execution profiles
corresponding to different execution platforms, and it is re-
sponsible for monitoring the status jobs and it implements
resubmission policies when an execution fails resolving the
first DCI shortcoming concerning failure recovery. It integrates
multiple submission back–ends such as GASW [11], to target
various execution infrastructures. It can dispatch executions on
the local server (local resource), PBS clusters (not represented
here) or the European Grid Infrastructure (EGI) through its
Workload Management System interface (WMS). In addition,
the DIRAC pilot management system [9] is integrated in the
framework ahead of the default WMS and its computing
resources. The DIRAC architecture consists of numerous co-
operating distributed services and light agents built within the
same framework following distributing security standards. It
implements a multilevel scheduling using pilot jobs that drasti-
cally improves reliability of jobs submission and significantly
reduces task latency. This addresses the second shortcoming,
and overcomes the full list of identified strategies to improve
the applications performance on production DCI environments.

Jigsaw instruments the legacy code execution interfaces
using WS–compliant messages for services invocation. The
execution description, packaged along with the legacy codes
in portable artifacts, are deployed and published in a services
container such as Apache Tomcat [21], thus tackling the com-
plete services lifecycle, from creation to deployment and then
invocation. The jigsaw services may be hosted and replicated
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in several containers. It makes possible to scale the system
out enforcing the availability of services, and distributing the
workload associated to the invocation of services involved in
task dispatching. Together, jigsaw and the services container,
provide an integrated solution to the deployment and scala-
bility arguments mentioned in the fourth shortcoming of the
requirements analysis.

Complementary modules are integrated in the framework to
address non–functional requirements of users’ authentication
and data management. User’s credentials may be required for
authentication during execution. Therefore, each framework
component can connect to a MyProxy server [22]. The user is
just required to provide the login and password of the creden-
tial stored on the MyProxy server. The validity of the proxy
is checked each time an operation is performed. An expired
proxy will be automatically renewed without interrupting the
application execution. Concerning data transfers, the VL-e
Toolkit [23] is also integrated in the framework. It provides
a unified view of heterogeneous file systems. VL-e Toolkit
supports several protocols such as gridFTP or HTTP, and file
schemes like the grid LFN or local file systems. It is used for
service deployment, and file staging on the services container
to provide the data inputs to the service instances enforcing
the interoperability.

The framework targets a coherent integration of a data-
driven approach to manipulate complex data structures through
high level interfaces. The MOTEUR client provides to users
a graphical application to configure services and describe
the semantics of dataflows, achieving transparent parallelism.
The description is represented by the GWENDIA workflow
language [24], that supports the required expressiveness to
represent services composition. While the MOTEUR client
offers design tools to build workflows and configure an execu-
tion environment, the MOTEUR server provides asynchronous
invocation and orchestration of services, for optimizing the
execution of data–intensive workflows. The integration of
jigsaw with MOTEUR provides a full range of functionality,
making them suitable for the purpose of applications reuse
and large–scale experimentation.

V. RESULTS

Experiments have been designed to validate the submission
model and the execution framework. The framework is stress
tested using a real application related to the progression of
Alzheimer’s disease. The experimental setup aims at quanti-
fying the endured by, and the speedup of the application.

A. Case study

Neuro–degenerative diseases like Alzheimer’s disease are
characterized by a co–occurrence of different pathological
phenomenas which eventually cause brain cells loss over time.
Monitoring the structural changes of the brain provides a way
to track the evolution of the disease. The evaluation of changes
in time from serial data of the same subject acting as his own
control (i.e., longitudinal analysis) is useful for detecting the
subtle changes related to the biological processes. This original
processing was developed at the Asclepios Research Project

from Inria Sophia–Antipolis [25]. Its scientific workflow rep-
resentation is shown in Fig. 2. It includes pre–treatment steps
for reorientation, and registration of images against an atlas
of the brain. Then the intensity of images is normalized, and
a non–rigid registration is performed to look for anatomical
differences between pairs of images. Finally, a quantification
of the longitudinal brain atrophy is derived from the Jacobian
matrix of deformations as an average measuring the volume
change in comparison to a reference mask.

Fig. 2: Simplified scientific workflow schema of the
Alzheimer’s disease case study where the green ellipses rep-
resent services, and the blue trapezoids input/output data.

In terms of execution the longitudinal atrophy detection in
Alzheimer’s disease is a good example for the validation of
the decision model because services composing the workflow
are heterogeneous in terms of average execution time and
memory consumption as shown in Table I. A benchmark of
the average execution time of each service on the target DCI
was previously done to estimate the values of ti, ri, and TMAX.
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Services Average time Memory
[min] [MB]

images reorientation 1.450 150
reference reorientation 1.450 150
rigid registration 3.217 250
registration to MNI atlas 4.183 250
matrix composition 1.333 150
applying parameters 2.317 200
bias correction 7.167 500
mask creation 14.350 1,000
nonrigid registration 174.783 6,500
Jacobian computation 3.300 1,000
average 1.333 150

TABLE I: Benchmark of average services execution on EGI

B. Experimental setup

Three experiment types were defined to test different sub-
mission approaches supported by jigsaw and validate the
framework scalability:

1) Execution on grid. The workflow is executed by sub-
mitting jobs directly to the EGI WMS. This is the default
behavior when working on production environments and
it is considered as baseline performance.

2) Multilevel scheduling execution. The workflow is ex-
ecuted using DIRAC. It represents a basic environment
considering pilot jobs.

3) Efficient execution. The workflow is executed imple-
menting all optimization mechanisms of the framework.
Two services containers are deployed to instrument the
decision model. One server manages executions using
local resources, and the second one serves the job
submissions on EGI through DIRAC.

Several patients could be processed in parallel without
performance loss assuming availability of resources on the
DCI. For each experiment type, the workflow was executed
with patients’ datasets which size grows exponentially from 1
to 256, and with 2 to 5 images associated to each patient.
This leads to an average of 25 service executions per pa-
tient submitted to the infrastructure. The experiments were
performed on the European Grid Infrastructure, using inputs
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. For the local executions a server with 2 quad–core
processors at 2.67 GHz and 16 GB of memory was used.

We are mainly interested in the final workflow execution
timespan for the speedup calculation and the average latency
of all job submissions. Nevertheless, the execution failure rate
is also reported as it is an important element in the reliability
analysis.

C. Latency

Table II details the statistical results of all three experiment
types for the latency analysis including the average latency
(x̄), the standard deviation (σ), the median absolute deviation
(MAD), and the interquartile range (IQR). The MAD and IQR
are robust statistics that are not significantly affected by
outliers. The variable workload of a production environment
like EGI is noticed obtaining higher values of σ in the grid
execution type. The robust statistics are preferred for the anal-
ysis, in the context of executions on EGI, because outliers have

exhibited a high impact on latency due to load variability [4].
Globally, we observe a sustained latency increment when the
input dataset size increases. This behavior is expected as
the increasing number of jobs loads the submission queues
(e.g., from 5 concurrent executions for 1 patient up to 962
for 256 patients). Nevertheless, the introduction of multilevel
scheduling reduces significantly the average latency. Focusing
on the largest dataset runs, we verify that the multilevel
scheduling optimization reduces the latency of 85.25% com-
pared to grid execution for 256 patients. The latency reduction
of the efficient execution is equivalent to the multilevel one
reaching 86.13%, confirming the benefit effect of pilot jobs in
both execution types. This behavior is verified by the MAD,
a variability measure comparable to σ. In addition, the MAD
exhibits the repercussions of introducing the decision model
into the framework for job submission fairness improvement.
The values of MAD for efficient executions are reduced to
slight or null values in efficient executions compared to the
multilevel execution. Similarly, the range of average latency
is attenuated significantly. We observe a reduced variability of
latency reflected with lower values of IQR. However, the use of
limited local resources shows up with large datasets obtaining
similar IQR values in multilevel and efficient executions.

Type Patients x̄ σ MAD IQR
[min]

Grid 1 1.815 1.712 0.433 2.883
2 2.783 3.180 0.667 3.700
4 2.871 4.049 0.675 3.284
8 12.251 13.836 5.208 10.134

16 35.141 33.672 11.467 28.666
32 39.841 29.903 10.500 29.850
64 52.237 145.353 13.583 43.484

128 107.185 53.747 27.417 78.367
256 178.289 101.185 51.008 100.467

Multilevel 1 1.525 1.112 0.400 1.066
2 2.049 2.354 0.504 1.367
4 3.558 6.031 0.350 2.084
8 2.428 2.750 0.408 2.267

16 5.349 10.609 0.880 3.867
32 10.017 24.844 1.138 5.142
64 6.637 8.637 1.846 9.825

128 14.134 17.741 7.896 19.350
256 26.293 40.736 8.269 32.389

Efficient 1 0.304 1.019 0.000 0.000
2 0.582 1.954 0.000 0.000
4 0.477 1.349 0.000 0.000
8 0.460 1.152 0.000 0.000

16 1.559 5.174 0.000 0.950
32 5.470 17.212 0.171 3.463
64 6.205 11.644 0.900 6.000

128 10.279 16.120 1.517 15.350
256 24.730 48.920 2.900 29.217

TABLE II: Statistics summary for submission latency: average
latency over 3 executions (x̄), standard deviation (σ), median
absolute deviation (MAD), and interquartile range (IQR).

In Fig. 3, we present the timeline diagrams for the execution
of the three identified experiment types. Graphically, we
observe the time evolution of a saturated workload manager
during the grid execution that results in all tasks having a
similar waiting time. This latency is gradually reduced during
the multilevel scheduling execution. Finally, we observe a
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Fig. 3: Execution timeline charts (number of services as
a function of the timespan in seconds) for the workflow
executions of 128 patients on EGI. Each service execution is
represented by a horizontal bar composed of two parts: the first
(in red) is the latency before obtaining computing resource, the
second (in green) is the execution time including data transfers.

scaled latency attenuation effect when local resources are used
in the efficient execution type. However, the dynamic resource
acquisition is exhibited once the pilot jobs are enabled in
multilevel and efficient executions.

D. Speedup

Two types of speedup are considered to evaluate the impact
of the execution framework on the application performance:
the traditional speedup and the workflow speedup. The tra-
ditional speedup S is defined as the ratio of a reference,
sequential running time of the application over the timespan
measured during a parallel run. This value assesses the interest

of using DCIs for executing large–scale applications instead
of running applications sequentially. It varies with the parallel
execution mode considered and the input data set processed.
On the other hand, we determine the workflow speedup
Sw = p × T1/Tp, where p is the number of patients, and Ti
is the execution time for i patients in a given execution type.
In practice, we obtain the value of Sw with regard a constant
reference time T1 of the grid execution. Acting this way, Sw

represents a good comparator between execution types.
Table III presents the statistical results of the timespan,

failure rate, and the computed speedups for each execution
type. For all execution, the timespan grows when the size
of input dataset increases. However, an exception is verified
in case of multilevel scheduling execution of 128 patients,
which is longer than the 256–patient run. This is due to its
high failure rate leading to the resubmission of 9.09% of total
number of tasks. This behavior exhibits the dynamic workload
of production Grid infrastructures.

Concerning speedups, we observe that they are effective
from one patient (S > 1). The increasing speedup verifies
the several levels of parallelism (data, service, pipeline) im-
plemented in the workflow enactment system. The speedup
increases significantly even if the latency increases showing
the relevance of the resources availability on DCIs. The
workflow enactment enables concurrent executions improving
the final execution timespan specially for large number of
patients. In the best case of efficient execution, the traditional
speedup reaches a factor of 120.915 in comparison to the
sequential execution. When comparing Sw of the multilevel
scheduling execution to the grid one, we observe that pilot
jobs reduce significantly the execution timespan. The workflow
speedup attains a factor of 102.918 for the largest input dataset.

Combining the local resources to the execution framework
lightly reduces the final execution timespan. It confirms that
the use of local resources does not reduce the final execution
timespan significantly, but it has a clear influence on latency
and reliability as expected in a high throughput environment.
Therefore, Sw of the efficient execution is relatively the same
as the multilevel one.

E. Reliability

We observe in Table III a significant failure rate within
each execution type. These rates are influenced by several
factors on the production environment, namely full storage
elements, temporal unavailability of middleware services such
as the file catalog server or the proxy certificates manager,
unexpected timeouts while storing data, or application specific
errors due to incompatibilities with OS computing elements
and/or missing system libraries. For instance, the failure rate
of the default grid execution type is high, up to 31.86% in the
worst case. The reduction of the failure rate in the multilevel
scheduling execution (up to 13.71% in the worst case) is
possible thanks to the sanity check mechanism of pilot jobs,
and broken computing resources filtering before jobs pulling.
When executing jobs to local resources, we also eliminate the
errors concerning the incompatibilities with OS computing
elements and/or missing system libraries. The failure rate
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Type Patients Timespan Failure S Sw

[hours] rate
Grid 1 8.024 0.00% 1.749 1.000

2 6.556 25.00% 3.058 2.448
4 7.326 14.29% 4.047 4.381
8 14.394 31.86% 5.812 4.460

16 21.144 17.46% 10.567 6.072
32 22.442 27.77% 15.979 11.441
64 33.619 11.31% 17.020 15.275

128 35.863 14.83% 37.051 28.639
256 41.531 11.36% 57.500 49.460

Multilevel 1 3.382 0.00% 3.439 2.373
2 4.569 10.26% 4.694 3.512
4 4.484 1.82% 8.262 7.158
8 4.478 2.26% 15.488 14.335

16 6.200 1.51% 16.800 20.706
32 8.614 2.02% 26.407 29.808
64 12.831 13.71% 54.423 40.023

128 20.528 9.09% 56.527 50.033
256 19.959 1.99% 93.043 102.918

Efficient 1 3.152 0.00% 3.222 2.546
2 3.574 0.00% 5.670 4.490
4 3.461 0.00% 9.249 9.274
8 3.354 0.46% 16.737 19.139

16 4.048 0.92% 28.445 31.715
32 7.750 1.02% 28.288 33.131
64 9.560 6.13% 40.610 53.717

128 12.536 6.95% 76.742 81.930
256 18.655 7.42% 120.915 110.112

TABLE III: Statistics summary for timespan and speedup

therefore reduces up to 7.42% in the worst case. It means that
the use of local resources does not represent a error safeguard,
specially in case of executions with large datasets becoming
only a improving method to attenuate failure rates and latency.

VI. CONCLUSION

In spite of more than a decade spent in active research and
development of DCIs middleware, large–scale infrastructures
often remain accessible to experts only. The inherent complex-
ity of such systems is causing large overheads, numerous fail-
ures, and complex application control environment. This paper
proposed pragmatic solutions to deploy and control execution
of large–scale applications. The solution proposed is based
on state–of–the–art middleware components, glued together in
a coherent service–oriented environment that interfaces these
components so as to balance the features provided by each of
them. As a result, complex scientific experiments such as the
study on Alzheimer’s exemplified in this paper can be reliably
enacted and high performing. The computing environment was
built from well–established software component in a general
setting to make it as reusable as possible.
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