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Nanoforce estimation with Kalman filtering applied to a force sensor

based on diamagnetic levitation

Emmanuel Piat and Joël Abadie and Stéphane Oster

Abstract— Nano force sensors based on passive diamagnetic
levitation with a macroscopic seismic mass are a possible
alternative to classical Atomic Force Microscopes when the
force bandwidth to be measured is limited to a few Hertz. When
an external unknown force is applied to the levitating seismic
mass, this one acts as a transducer that converts this unknown
input into a displacement that is the measured output signal.
Because the little damped and long transient response of this
kind of macroscopic transducer can not be neglected, it is then
necessary to deconvolve the output to correctly estimate the
unknown input force. The deconvolution approach proposed in
this article is based on a Kalman filter that use an uncertain
a priori model to represent the unknown nanoforce to be
estimated. The main advantage of this approach is that the
end-user can directly control the unavoidable trade-off that
exists between the wished resolution on the estimatedforce and
the response time of the estimation.

I. INTRODUCTION

The design of micro and nano force sensors is constrained

by the fact that only force effects can be directly observed.

Because of this, a transducer is necessary to convert the force

into a measurable effect. The force is the unknown input

to reconstruct and the effect is the measured output signal.

Most of the time, the measured force effect is related to

a displacement x and the usual scalar expression used to

calculate the component F of the applied force ~F in one

direction ~x of space simply consists in the equation:

F = K x K > 0 (1)

in which K is the mechanical stiffness of the transducer

along ~x (by convention x is set to zero when there is no

displacement). This steady-state equation supposes that the

transient response of the transducer can be neglected. This

is usually considered to be the case for classical designs

using monolithic elastic microstructures like microcantilevers

[1]: AFM based microforce sensors [2] [3], piezoresistive

microforce sensors [4], capacitive microforce sensors [5],

piezoelectric microforce sensors [6], etc. When the transient

dynamic of the transducer due to the evolution of the

successive derivatives of x is not negligeable, (1) can not be

used and the general framework of the force reconstruction

corresponds in fact to a deconvolution problematic of a

noisy output signal. In the specific case treated in this

article, the unknown input is a nanoforce that is applied to a

macroscopic seismic mass that levitates passively thanks to

the diamagnetic levitation principle. This seismic mass acts
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as a transducer that converts the unknown input force into

a displacement that is the measured output signal corrupted

by noise. This kind of macroscopic transducer has a badly

damped and long transient response, thus this dynamic

behaviour must be taken into account during the estimation

process contrary to (1). The estimation computation is based

on a discrete Kalman filter that use an uncertain a priori

model to represent the unknown force to be estimated. This

article begins by a short description of the force sensor and its

dynamic behaviour (state-space modelling). The calibration

process is then briefly presented and followed by the de-

velopment of the unknown input estimation under gaussian

assumptions usually used to derive a Kalman filter. To be

realistic, some performances of the force estimation obtained

are then characterized in a non gaussian framework. Finally,

some experimental results are presented.

II. PASSIVE MICRO AND NANOFORCE SENSOR

PROTOTYPE BASED ON DIAMAGNETIC LEVITATION

A. Sensor description

Microforce sensors based on “heavy” rigid seismic mass

are really uncommon. A force sensor with a range measure-

ment of several millinewtons and based on a mass moving in-

side a pneumatic linear bearing is described in [7]. The mass

is 21.17 grams and the force resolution is 0.5 micronewton.

The air friction inside the bearing is assumed small enought

to be neglected. Contrary to the last one, the design presented

in this article is based on levitation in order to reach the same

force resolution than an Atomic Force Microscope (AFM)

but with a larger range measurement. This design is based

on a lighter macroscopic mass (≈ 70 mg) that is levitating

passively thanks to the diamagnetic levitation principle. This

mass is a rigid ten centimeters long capillary tube made of

glass on which are stuck two small magnets M2. The whole

structure is called maglevtube (Figure 1). As it is shown in

figure 2, the maglevtube levitates passively around a given

equilibrium state thanks to repulsive diamagnetic effects

(generated by the graphite diamagnetic plates) coupled with

attractive magnetic effects (generated by the magnets M1

and M ′
1). The maglevtube has a microscopic tip on which

is applied the unknown external force ~F . The sensor is

currently designed to only measure forces applied along the

longitudinal axis ~x of the tube. Thus, the unknown force
~F is assumed to be colinear to ~x and has the following

components in the global reference frame R0 given in figure

2:
~F
[

F x 0 0
]T

(2)
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Fig. 1. Macroscopic seismic mass sensitive to external forces.
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Fig. 2. Levitating seismic mass in the force sensing device that is using
magnets M1, M ′

1
, M2 and diamagnetic graphite plates.

B. Force sensing principle

When the force F x is applied to the tube tip, the dis-

placement obtained corresponds to a little damped behaviour

because the viscous friction due to the air is very small.

The simulated displacement computed with Matlab-Simulink

and obtained with a force F x set to one micronewton is

given in figure 3 (step response). This simulation of the

prototype presented in section II-C is done with a complete

computation of the internal magnetic and diamagnetic forces

at each time step of the Simulink solver. Thus, the complete

behaviour of the six dof of the maglevtube can be plotted if

necessary. The settling time at 5% along ~x axis is typically

20 secondes. Overshoot is 97%. The nonlinear steady-state

response of the maglevtube is given in figure 4 (“force

versus displacement” characteristic). The slope of this curve

corresponds to the magnetic stiffness Kx
m of the sensor that

is equivalent to an invisible magnetic spring with a small

damping. One can notice that the linearity of the stiffness

is good with displacements between ±1.5 millimeters. For

such range of displacements, the maximum relative error

between the linearized force and the nonlinear magnetic force

is 0.63% in this simulation. Knowing the magnetic stiffness

Kx
m, the force measurement is given by (1) in steady-state:

F x = Kx
m x Kx

m > 0. (3)

with x the displacement of the maglevtube measured with

an external distance sensor. Because the stiffness is equal to

0.0289 N/m in this simulation, the corresponding measured

force range associated to a ±1.5 millimeters range displace-

ment is ±43 µN. A more complete description of this sensor

can be found in [8].

C. Experimental prototype

Typical Kx
m stiffnesses obtained with the prototype shown

on figure 5 are between 0.005 N/m and 0.03 N/m (same

order of magnitude than for very flexible AFM cantilevers).

The stiffness can be easily adjusted by changing the distance
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Fig. 3. Simulated step response of the maglevtube with an external force
set to one micronewton.
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Fig. 4. Force versus displacement steady-state characteristic.

between magnets M1 and M ′
1. Lower is the stiffness and

better is the sensitivity of the sensor. There is nevertheless a

limitation on the lower value that can be reached for Kx
m

because if magnets M1 and M ′
1 are too far away from

each other, the magnetic force along the vertical axis is

not sufficient to compensate the maglevtube weight. Typical

mass m for the maglevtube is around 70 mg. Typical resonant

frequency is around 3 Hz. The sensor used to measure

the maglevtube displacement is a confocal chromatic sensor

(manufactured by STIL SA) that is aimed at a glass deflector

stuck at the rear of the maglevtube (see figure 1). Typical

standard deviation for a CL2 confocal head is 12 nm.

Thus, without any signal processing and in steady state, the

minimal standard deviation that can be expected for the force

is 0.12 nN if Kx
m = 0.01 N/m. In practice, such small values

can not be reached because of the seismic mass sensitivity to

seismic disturbances (subsonic air disturbances are avoided

by enclosing the sensor with a chamber). Stochastic low fre-

quency seismic vibrations of magnets M1 and M ′
1 generate

unwanted magnetic return forces that are applied on magnets

M2 and a stochastic oscillating behaviour of the maglevtube

results. With a massive concrete ground slab to minimise

seismic vibrations, the minimal standard deviation currently

reached is 30 nm (measured with a CL2 head).
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Fig. 5. Force sensor prototype.

III. SENSOR MODELLING AND CALIBRATION

A. One dof linear modelling of the maglevtube dynamic

Let G the centre of gravity of the maglevtube and x its

position in the frame R0 (cf. figure 2). Coordinate x is set

to zero when the maglevtube is in steady state without any

external excitation. If an external force F x is applied under

assumption (2) to the maglevtube tip, the dynamic of G along

~x can be modelled by:

mẍ = F x + F x
mag + F x

visc (4)

in which m is the maglevtube mass and F x
visc is the visquous

friction force due to the air. If the displacement of the tube

along axis ~x remains in the linear domain given in section

II-B and if the speed is small, equation (4) becomes:

mẍ = F x −Kx
m x−Kx

v ẋ (5)

where Kx
m is the magnetic stiffness and Kx

v the viscous

damping coefficient. A possible state equation associated to

(5) with X(t) =
[

x ẋ
]T

and x(t) as output is then:

Ẋ(t) = AX(t) +B F x(t) (6)

x(t) = C X(t) (7)

A =

[

0 1

−
Kx

m

m
−

Kx

v

m

]

B =

[

0
1
m

]

C =
[

1 0
]

(8)

B. Calibration

Calibration is usually a complex problem for micro and

nano force sensors based on elastic microstructures because

of the lack of standard forces at this scale. Stiffness absolute

uncertainty is most of the time not specified and is still an

open problem on which are working international metrology

laboratories [9]. Calibrating micro force sensors based on

macroscopic seismic mass is easier and several dynamic

calibration methods have been investigated. They are based

on particular external force generation like impact force [10],

step force [11] and oscillating force [12], [13]. Because the

maglevtube mass m can be easily measured with a precision

balance, a Zero Input Response (ZIR) is another possible

way to identify the two others parameters Kx
m and Kx

v . It
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Fig. 6. Measured and reconstructed zero input response (ZIR) of the
maglevtube displacement.

requires an unknown excitating force F x with the following

dynamic
{

F x(t) 6= 0 t0 ≤ t < t1 ∀F x

F x(t) = 0 t ≥ t1.
(9)

which can be generated using two coils located near the rear

diamagnetic plates (see figure 5). Knowing m, figure 6 shows

the matching between both experimental ZIR and the linear

model after the parametric identification of Kx
m and Kx

v in

(5) with F x set to zero (done with Matlab identification

toolbox which also estimate initial conditions).

IV. UNKNOWN INPUT FORCE ESTIMATION

Despite the fact that the model-based deconvolution frame-

work of a noisy output is an ill-posed problem with no exact

solution, numerous approaches have been developped in the

past such as for instance the Wiener deconvolution filter

or deconvolution methods based on regularization [14]. In

the specific context of micro or nanoforce measurement in

microrobotics, the deconvolution problematic has been little

addressed but some alternative approaches using unknown

input observers have been recently published [15]. These

approaches generally requires to set several parameters. The

method proposed here only requires one parameter to adjust

an intuitive trade-off (like in regularization methods) between

the wished resolution of the force estimated and the response

time of the estimation.

A. A priory force modelling

The noisy measurement ymk of the maglevtube displace-

ment with the confocal chromatic sensor is done with a

sampling rate Ts at each sampling time tk = k Ts. The

estimation of the unknown force with the set {ymk }k≥1 is

done at each sampling time tk. It is based on an a priori

discrete-time stochastic model for the force evolution that

will be processed inside a recursive discrete Kalman filter.

The working out of this a priori model is based on the

discretization of a Wiener process:

Ḟ (t) = ω(t) (10)



F (t) is a model for the real force F x(t) and ω(t) is a sta-

tionary zero-mean infinite-variance white gaussian stochastic

process representing the fact that the evolution of the force

derivative is not known. The autocorrelation function φω,ω of

this stationary process is characterized by its power spectral

density WḞ :

φω,ω(τ) = WḞ δ(τ) ∀τ ∈ IR (11)

The term WḞ is a parameter to set by the end-user that

will influence in a given way the dynamic of the unknown

force estimation (see section V). To estimate with a discrete

Kalman filter the external force F x at each sampling time tk,

a discrete model of the continuous dynamic (6)-(7) is neces-

sary. This discretized model also includes the discretization

of the modeled force F (t) thus a concatenation of the

process generating the force and the maglevtube dynamic

must be considered. This extended system is represented by

the following extended stochastic state:

Xe(t) =
[

x ẋ F
]T

(12)

The associated state-space model is obtained with (10) and

(6) in which the unknown input force F x(t) is replaced by

the modelled random variable F (t):

Ẋe(t) = AXe(t) +Mω(t) (13)

x(t) = CXe(t) (14)

with

A =
[

A11 A12 B11

A21 A22 B21

0 0 0

]

M =
[

0
0
1

]

C =
[

1 0 0
]

(15)

The state equation (13) is driven by ω(t) and thus by the

parameter WḞ to set. Its discretization using a zero-order

hold (zoh) on ω(t) gives:

Xe
k+1 = F Xe

k +Ωk (16)

xk = CXe
k (17)

with

Xe
k =

[

xk ẋk Fk

]T

Ωk =
[

ωx
k ωẋ

k ωF
k

]T

(18)

and

F = eATs =





F11 F12 F13

F21 F22 F23

0 0 1



 (19)

Ωk is a discrete-time band-limited white gaussian random

process with zero-mean characterizing uncertainties on xk,

ẋk and Fk due to the stochastic force model used and the

zoh. Its 3× 3 covariance matrix Q is:

Q = E
[

ΩkΩ
T

k

]

=

∫ Ts

0

eAtMWḞM
TeA

Ttdt (20)

= WḞ

∫ Ts

0

eAtMMTeA
Ttdt (21)

= WḞ η(Ts) (22)

In (22), Q is proportional to WḞ and it can be easily shown

with (21) that the variance of ωF
k is equal to

σ2(ωF
k ) = Q33 = Ts WḞ (23)

The evolution of Fk (third component of Xe
k) is obtained

from (16) and (18):

Fk+1 = Fk + ωF
k k ≥ 0 (24)

and the statistic properties of the random process ωF
k are

E
[

ωF
k

]

= 0 E
[

(ωF
k )

2
]

= σ2(ωF
k ) = Ts WḞ (25)

E
[

ωF
i ωF

j

]

= σ2(ωF
k ) δij = Ts WḞ δij (26)

Equations (24) to (26) fully characterize the a priori discrete-

time gaussian stochastic model that will be used inside the

Kalman filter. The uncertainty model (24) corresponds to a

discrete-time gaussian random walk that is usually written

as follow (index shift on ωF
k ):

Fk = Fk−1 + ωF
k k ≥ 1 (27)

It comes from (27) that

Fk =

k
∑

i=1

ωF
i + F0 (28)

Because successive random variables ωF
i form an a pri-

ori discrete zero-mean white gaussian process (the white

property is induced by (26)), Fk in (28) is gaussian if the

knowledge on F0 is assumed gaussian or if F0 is supposed

equal to some fixed value. Its a priori variance at each step

k can be calculated thanks to (26):

σ2(Fk) =

k
∑

i=1

σ2(ωF
i )+σ2(F0) = k Ts WḞ +σ2(F0) (29)

(29) shows that bigger is the parameter WḞ to set and

bigger is the a priori uncertainty (variance) on the possible

values of the modelled unknown force Fk at time tk and the

uncertainty growth in time is linear with tk (see figure 7). So

at this early stage, it is possible to say that if the unknown

force is supposed to vary rapidly, WḞ that represents the

growth rate of the a priori uncertainty on Fk should be set

greater than if the force is supposed to vary slowly. Finally,

the measurement mx
k of xk (given by (17)) takes into account

the discrete-time white gaussian noise vk with zero-mean and

variance R added by the confocal chromatic sensor:

mx
k = xk + vk = CXe

k + vk (30)

B. Force estimation using a time-varying Kalman filter

If the parameter WḞ is changed by the end-user during the

force estimation process, a time-varying Kalman filter must

be used and a numerical computation of Q must be done

each time WḞ is changed (the term η(Ts) in (22) can be

precomputed [16]). The prediction-estimation stages of the

Kalman filter are derived from equations (16) and (30):

X̂e
k|k−1 = F X̂e

k−1 (31)

Pk|k−1 = FPk−1F
T +Q (32)

Kk = Pk|k−1C
T
(

CPk|k−1C
T +R

)−1
(33)

X̂e
k = X̂e

k|k−1 +Kk

(

mx
k − CX̂e

k|k−1

)

(34)

Pk = (I −KkC)Pk|k−1 (35)
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mx
k is the noisy measurement of the mavlevtube displacement

(input of the Kalman filter). The output of the filter is the

estimation F̂k of F x(t) at time tk. It is given by:

F̂k = CF X̂e
k (36)

thanks to the output matrix CF =
[

0 0 1
]

.

The Kalman filter is initialized for instance with the ma-

glevtube in its equilibrium state when no force is applied to

it:

X̂e
0 =

[

0 0 0
]T

(37)

The covariance matrix P0 of the initial estimation error is

taken equal to:

P0 =

[

σ2(x0) 0 0

0 σ2(ẋ0) 0

0 0 σ2(F0)

]

(38)

in which each variance represents the a priori uncertainty

on x0, ẋ0 and F0. These values are chosen to be coherent

with the initial conditions associated to the experiment made.

In practice, they have little importance if the user starts the

Kalman filter with no force applied on the maglevtube and

waits a few seconds such that the Kalman gain Kk converges

to its steady-state K∞(WḞ , Ts, R) (solution to the discrete

Riccati equation that depends on WḞ , Ts and R) before

applying an unknown varying external force.

V. SIMULATED RESULTS

Studying in simulation the estimation behaviour with a

force F x(t) really generated by (10) has no interest in

practice because this model is purely theorical (it corresponds

to a brownian evolution of the input force). The character-

istics of F̂k will be illustrated on a canonical input force

instead. In this article, we focus only on a step input force.

To be independant of (38), a steady-state Kalman filter is

used substituting K∞ to Kk and using only equations (31)

(34) (36). Sampling time Ts is 0.001 sec. The variance of

measurement noise is R = 1.44×10−16 m2. The maglevtube

parameters are m = 74 mg, Kx
m = 0.02818 N/m (in linear

domain), Kx
v = 1.8 × 10−5 N.s/m (ζ = 6.23 × 10−3).

Identified values are Kx
m = 0.02812 N/m, Kx

v = 1.772 ×
10−5 N.s/m (ζ = 6.14 × 10−3). Figures 8 and 9 shows F̂k

for WḞ = 10−18 N2/Hz and WḞ = 10−15 N2/Hz with Ts

set to 0.001 seconde. Step amplitude to estimate is 100 nN.

Smaller is WḞ and smaller is the noise on F̂k but longer
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is the estimation response time. As a consequence, smaller

is the amplitude to estimate and smaller must be WḞ to

have a good signal to noise ratio in F̂k. But in this case,

the force bandwidth of the sensor becomes also smaller.

This behaviour can be explained with the frequency response

F̂ (ejω)/mx(ejω) of the steady-state Kalman filter (see fig-

ure 10). This frequency response “inverts” the frequency

response of the maglevtube with its resonance peak. Bigger

is WḞ , bigger is the gain in the high frequencies. Thus

bigger is the amplification of the high frequency components

present in the noise vk inside mx
k . To reduce this noise level,

it is necessary to reduce WḞ . But in this case, the high

frequency components present in the displacement mx
k have

a very low amplitude (the maglevtube acts as a low pass

filter) and are insufficiently amplified by the kalman filter to

correctly reconstruct the high frequency composents in the

input F (t). As a consequence, the response time increases

(and the bandwith decreases).

VI. EXPERIMENTAL RESULTS

Figure 11 shows the evolution of the force during a pull-

off force measurement. A planar material is pushed against
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a micro-sphere stuck at the maglevtube tip (loading stage)

and then pushed back (unloading stage) until the contact is

broken between the material and the tip (ZIR displacement

that is a one-direction damped oscillating trajectory). After

this contact loss, the unknown external force applied on the

maglevtube becomes known because it is equal to zero and

thus it can be compared with the force estimated with (3)

or (36). Equation (3) gives a bad estimation because it is

proportional to the ZIR displacement. Kalman estimation

(36) gives a better result with a shorter and smaller oscillating

transient response. The vertical seismic disturbances of the

maglevtube probably participate to these residual oscillations

and their modelling is an outlook to this work.

VII. CONCLUSION

The force estimation presented in this article is based

on the displacement of a macroscopic seismic mass. This

displacement is processed by a Kalman filter that is using

a Wiener process to model the unknown input force. This

processing requires the adjustement of a single parameter

WḞ which directly adjusts a trade-off between the resolution

(variance) of F̂k and the response time of the estimation.

This parameter can be modified at any time by the end-

user in accordance with its own knowledge on the force

to measure. Compared to simple low-pass filter added on

the displacement measurement, the force bandwidth can be

extented reasonably four times higher than the displacement

bandwidth. This method is computationaly cheap and can

be implemented in small DSP or microcontrollers. Response

time shorter than 0.1 seconde can be reached with a correct

S/N ratio despite the very long settling time of the transducer

(20 secondes) and its low damping.
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